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Abstract 
Background: Google Flu Trends (GFT) claimed to generate real-time and valid predictions of 
population influenza-like illness (ILI) using search queries, heralding acclaim and replication 
across public health. However, recent studies have questioned the validity of GFT.  
Purpose: We propose an alternative methodology that better realizes the potential of GFT, with 
collateral value for digital disease detection broadly. 
Methods: Our alterative method automatically selects the specific queries to monitor and 
autonomously updates the model each week as new information about CDC-reported ILI 
becomes available, as developed in 2013. Root mean squared errors (RMSE) and Pearson 
correlations comparing predicted ILI (the proportion of patient visits indicative of ILI) with 
subsequently observed ILI were used to judge model performance.  
Results: During the height of the H1N1 pandemic (2 August to 22 December 2009) and 2012/13 
season (30 September 2012 to April 12 2013) GFT’s predictions had RMSEs of 0.023 and 0.022 
(i.e., hypothetically if GFT predicted 0.061 ILI one week, it is expected to error by 0.023), and 
correlations of r=0.916 and r=0.927. Our alternative method had RMSEs of 0.006 and 0.009, and 
correlations of r=0.961 and r=0.919 for the same periods. Critically, during these important 
periods the alternative method yielded more accurate ILI predictions every week, and was 
typically more accurate during other influenza seasons.  
Conclusion: GFT may be inaccurate, but improved methodological underpinnings can yield 
accurate predictions with significant public health value. Applying similar methods elsewhere 
can improve digital disease detection, with broader transparency, improved accuracy, and real-
world public health impacts. 
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Introduction 
The rapid escalation of digital methods is changing public health surveillance.1-3 By harvesting 
web data, investigators claim to validly estimate cholera,4 dengue,5,6 influenza,7,8 kidney 
stones,9,10, listerosis,11 methicillin-resistant staphylococcus aureus,12 mental health,13 and tobacco 
control14 trends, but are they actually valid? 
 
The novelty of digital data has generally remained the central focus in these studies, while the 
methods and disinterested interpretations have been overlooked. As a result, studies 
demonstrating modest associations with ground truth outcomes (e.g., r2=0.15,14 r2=0.25,4 or 
r2=0.6211) have been presented as accurate, without further model validation. Most notable is 
Google Flu Trends (GFT),8 not because it is potentially the most flawed, but because it is oft-
cited and many subsequent studies modeled their approach after GFT6,12,15,16 or even used 
weaker methods.  
 
Concerns about GFT’s accuracy came to light via media reports in 2009 when it misrepresented 
the epidemic curve and required updating that Autumn.17 Again during 2012/13 media reports 
questioned the revised GFT,18 followed by separate peer-reviewed analyses suggesting GFT was 
typically inferior to traditional sentinels due to inaccuracies.19,20 Most recently, Google again 
updated their model to improve GFT operation, but did not identify their revisions nor describe 
its performance.21 Many, unfortunately, are unaware of these problems.  
 
The head of the CDC Influenza Surveillance and Outbreak Response Team told Nature News she 
monitored GFT (and other digital disease detection sentinels) “all the time”, likely in the sense 
that some data are better than no data.18 Moreover, some investigators are beginning to use GFT 
as ground truth for epidemiologic studies.22 But if GFT (and similar systems for other outcomes) 
are invalid, should public health officials be paying any attention and should investigators rely 
on these data?  
 
We remain optimistic about the future of GFT and digital disease detection broadly,23-26 because 
a methodological problem has a methodological solution. A transparent, external evaluation of 
GFT, as a case study for the scientific status of digital disease detection, is presented. An 
alternative methodology capable of outperforming GFT is then proposed, with potential 
application across digital disease detection.  
 
 
Methods 
The methodology behind the original GFT and the 2009 revision (published in 2011) consisted 
of building a regression for CDC-reported influenza-like illnesses (ILI) with a single explanatory 
variable. Originally, the single variable was the mean trend for the 45 search terms with the 
strongest correlation with ILI for September 28, 2003 through March 11, 2007.8 The revised 
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GFT single variable was the mean trend for the most correlated search terms (~160, the exact 
number unknown) for September 28, 2003 through September 13, 2009 after removing terms 
related to influenza complications and general interest in influenza.17 Both generated ILI 
predictions at time (t) using search data from (t) and historic periods, but because ILI is delayed, 
these estimates are typically available 1 to 2 weeks earlier.  
 
The original and updated GFT methodology is problematic for at least three reasons. First, 
combining multiple queries into a single variable ignores the variability in individual search 
query tendencies over time, how certain unique queries may be better predictors.8 Second, the 
exclusion of search queries in the revised GFT relies on investigator opinion rather than any 
empirical evidence.17 Third, the model is static, assuming that queries predicting ILI at time (t) 
will equally predict ILI at time (t + x years). The language of search undoubtedly changes over 
time (e.g., swine flu, H1N1, H1N9, etc.) and must be accounted for any prediction model.   
 
Our alternative approach, inspired by data-assimilation techniques,27,28 supervised machine 
learning,29 and artificial intelligence,30 expands upon (a) their single explanatory-variable 
approach, by allowing multiple individual queries to contribute independently to the prediction, 
(b) their quasi-non empirical search query selection, by empirically choosing search queries that 
maximize predictive accuracy in real-time, and (c) their use of manual revisions, by dynamically 
updating how individual queries predict influenza each week to ensure accurate prediction across 
a changing search and influenza landscape. All improve the transparency of GFT.  
 
These revisions are executed in a multivariable linear model with different coefficients for each 
specific search query trend. Each query is prescribed a different level of importance based on its 
coefficient, determined by a LASSO for the best predicting and most parsimonious model.31 The 
coefficients change each week based on refitting the model at time (t) to ILI through (t – 2), 
representing the latest available CDC ILI estimates if the system was running in real-time. The 
equation is given by the simplified regression notation below: 
 

logit (I(t))= 𝑎!(𝑡)!
!!!  logit (𝑄!(𝑡)) + e,     (eq. 1) 

 
where I(t) is the percentage of ILI physician visits, 𝑄! 𝑡  is the query fraction for term i at time t, 
and 𝑎!(𝑡) is the multiplicative coefficient associated to such term at time t, e is the normally-
distributed error term, and logit(p) = ln(p/(1 - p)).  
 
The criterion is the weekly percent of confirmed influenza-like illness (ILI) related physician 
visits (e.g., fever > 100*F and cough or sore throat as a percentage of all outpatient healthcare 
provider visits nationally to over 2,900 reporting clinics) publicly available at 
(cdc.gov/flu/weekly/). Predictions were made for the entire US, following the strategy used in 
media critiques and Google’s revisions.17,21 
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For the explanatory variables, our alternative conceptually relies on the same initial selection 
strategy used by GFT: time-trends for the Google queries most strongly correlated with ILI. 
Google Correlate (google.org/trend/correlate) returned the weekly z-scores of the query 
fractions spanning January 2004 to May 2013 of the 100 Google terms most correlated with 
CDC-reported ILI from September 28, 2003 to March 22, 2009, as accessed October 17, 2013 
and still available today. These 100 terms were then the fixed inputs in the model, where the 
query fraction of each term is the total count of a query term in the US aggregated weekly and 
then scaled by the total count of all queries issued in the same week.8 This choice simulates the 
optimal selection process that could occur if this methodology operated in real-time and had been 
implemented since March 22, 2009. Unlike Google, our alternative method did not filter this list 
of queries based on either the intensity of the correlation or the query content, but used all 100 
most-correlated queries anticipating the model would then select queries to maximize prediction. 
  
For performance benchmarks our alternative model was implemented for March 22, 2009 
through May 2013, fitting to early trends (since January 1 2004) as a training period. Pearson 
correlation coefficients and root mean squared errors (RMSE) comparing predicted ILI with 
subsequently observed ILI were used to judge model performance. The latter was added to 
accurately assess performance when correlation may not (i.e., two trends may have r=1.00 
correlation, but differ by a constant factor).  
 
For comparisons to GFT we relied on the estimates made by GFT as events unfolded. Since GFT 
was updated after the H1N1 season in 2011 the GFT webpage returns those updated results, but 
the national predictions originally made by GFT were downloaded through December 27, 2009 
from Figure 1 in Google revision.17 For later periods, GFT predictions were simply downloaded 
in the summer of 2013 (google.org/flutrends). All analyses were conducted in R 2.15.3. 
 
Results 
Figure 1 presents GFT’s and our alternative model predictions alongside the subsequently 
observed ILI trends, where it is readily apparent that the alternative produced more accurate 
predictions.  
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Figure 1. The alternative model outperforms Google Flu Trends 
Both GFT (dot) and the proposed alternative model (dash) are shown against the criterion (solid) 
measure of national CDC-reported ILI (the weekly percent of confirmed influenza-like illness 
(ILI) related physician visits (e.g., fever > 100*F and cough or sore throat as a percentage of all 
outpatient healthcare provider visits nationally to over 2,900 reporting clinics). Both GFT and 
the alternative model generated predictions for ILI at time (t) using search data from the same 
week (t) and historic periods, but because ILI is delayed, these estimates were typically available 
1 to 2 weeks earlier than CDC-reported ILI.  
 
 
During Wave 1 (March 29 through August 2, 2009) and Wave 2 (August 3 through December 
27, 2009) of the H1N1 outbreak, particularly important periods of ILI surveillance, the RMSEs 
were 0.008 and 0.023  (i.e., if GFT predicted 0.061 ILI, it would be have a usual error of 0.008 or 
0.023 each week) with correlations of r=0.290 and r=0.916 for GFT (Table 1). In contrast, our 
alternative model had RMSEs 0.002 and 0.006 with correlations of r=0.887 and r=0.961. In 
practical terms, the alternative model yielded more accurate predictions 17 out of 18 weeks 
during Wave 1 and every week (21 of 21) during Wave 2. For example, the original GFT 
predicted an estimated 4.3% peak ILI compared to a 7.7% CDC-reported ILI, an absolute 
difference of 3.4%; whereas our alternative model predicted an 8.0% peak, an absolute 
difference of 0.3%.  
 
Our alternative predictions were often better than GFT during other influenza cycles. For Dec 28, 
2009 to September 29, 2012, the alternative predictions had smaller error (RMSE=0.002, 
r=0.978 versus GFT RMSE=0.003, r=0.912), suggesting a relative 33% reduction in error (i.e., 

Original GFT Revised GFT 

3/29/09 8/2/09 12/27/09 9/30/12 5/12/13 

Wave 1 Wave 2 post-H1N1 to ‘12 season 2012-13 season 
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(0.003-0.002)/0.003).  Again, in practical terms, the alternative model was more accurate 126 of 
176 weeks (72%), with several periods where the alternative model produces predictions that 
mirror ILI when GFT is mis-predicting ILI by +/- 1%.  
 
During the 2012/13 season the GFT’s RMSE was 0.022 versus 0.009 for our alternative model, 
with correlations of r=0.927 and r=0.919. In practical terms, the alternative yielded more 
accurate predictions every single week. For example, GFT predicted a peak ILI of 10.6% versus 
6.1% CDC-reported ILI, an absolute difference of 4.5%, compared to a 7.7% peak estimate from 
our alternative method, an absolute difference of 1.6%. 
 
The autonomous and dynamic nature of our alternative appears to be a key component to 
improved predictions (Figure 2). First, the model automatically excludes or reduces the 
predictive influence of many non-influenza terms. For example, “chaos tour” is typically given 
zero or little weight in the predictions without relying on human opinion as in prior revisions to 
GFT. Second, there is great variability in the coefficient estimates for each term by each week, 
where the alternative is automatically updating in response to how terms are indicative of ILI or 
not from the recent past. For example, terms indicative of influenza concern are given 
diminishing predictive value overtime and those indicative of treatment/complications are given 
more predictive value (i.e., “is flu contagious” versus “expectorant”).  
 
Most important our alternative does not guarantee accurate predictions, but when predictions do 
go astray, the alternative learns from its mistake in just 2 weeks, rather than waiting 2 years for a 
manual revision.17 At the height of the 2012/13 season the alternative mis-predicted the peak ILI 
proportion by a nontrivial amount, but the model self-corrected changing the queries 
included/excluded just 2 weeks later (when the model was first aware of the error due to the 
delay in CDC-reported ILI). For example, in response to the model error “flu incubation” queries 
were discounted and used to predict lower ILI where “flu symptoms” were given more weight, 
used to predict higher ILI, with large changes in how dozens of other queries where included in 
the model as indicated by a clear shift in coefficient values in the latter portion of Figure 2.  
 
Discussion  
Our alternative methodology is capable of producing more accurate predictions of influenza 
activity than GFT, and does so autonomously with dynamic updating of the model each week. 
With 3-5 million infected and 250-500 thousand killed by influenza worldwide each year,32 
influenza surveillance is of tremendous importance, providing necessary intelligence for 
hospitals facing staffing decisions, physicians facing active and accurate diagnoses, employers 
with workers at risk for infection, and public health officials making recommendations for 
protecting unvaccinated individuals. Yet, these results have even greater implications as a case 
study for digital disease detection broadly. 
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Figure 2. Search term inclusion and dynamic updating over time in the alternative model 
Each line is an indicator of the estimated coefficient for a specific search term (y axis) updated 
each week (x axis). Colors indicate the relative importance of the search term (positive in blue, 
negative in red) on prediction over time. For example “flu in children” has a uniformly positive 
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prediction and “st louis cardinals spring training” has a nearly uniform zero effect. This figure 
shows how the alternative model is autonomously selecting queries and updating the relative 
value assigned to these queries each week.  
 
 
Implications for the next Google Flu Trends 
In a brief working paper, Google recently described the need to revise GFT.21 In that they 
acknowledged that a multivariable approach (one of the improvements implemented here) would 
enhance the accuracy of GFT, but that paper also shared many of the weaknesses inherit in the 
original and first revision to GFT that our alternative may overcome. First, the methods lacked 
transparency as the working paper did not identify the model they were implementing.21 Second, 
the predictive validity of the revised GFT remains unknown, since Google.org only included 5 
weeks of data in the paper estimating the predictive accuracy. Using this small sample of data, 
however, our alternative method appears to be a better predictor. Last, their revision still relied 
on investigator opinion to select/omit some queries and failed to incorporate automatic updating, 
as we added herein. As a result, our alternative method may serve as the foundation for another 
revision to GFT. Specifically, because much of the alternative is automated, it can be scaled up 
(e.g., Google could apply it to thousands of strongly correlated search terms instead of just 100 
as herein). Our study is just an initial step toward improving GFT, as the structure around our 
model can be further refined to yield even greater accuracy. Moreover, by making the inner 
workings of GFT and the data behind GFT more public, such improvements may be more 
quickly realized by other external teams.19,20 
 
Implications for Digital Disease Detection 
It is important to appraise how the leading system in the field, GFT, produced questionable 
predictions, while investigators mimicked the methods behind GFT6,12,15,16 and few levied 
significant criticisms,19,20,33,34 and how this omission can serve as a call for action within the 
field.  
 
One European study found GFT predictions before and during the H1N1 pandemic only crudely 
associated with influenza (rho=0.39 and 0.52, respectively), but concluded GFT provided 
accurate detection.35 Analyses from Australia,36 China,37 Japan,38 New Zealand,11 and the United 
States,39 suggest GFT predicted larger incidences and missed the timing of outbreaks. Yet, these 
studies concluded GFT was valid, with one calling the accuracy of GFT “remarkable,”36 as also 
quoted in a Google led publication.17 This disparity in results and praise is indicative of a larger 
problem in digital disease detection.  
 
Many of the current studies are the first of their kind and deserve praise as such, but to move this 
potentially very important field forward, investigators and public health leaders need to exercise 
caution and become discerning scientific consumers. Claims need to be carefully critiqued, as 
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nearly all of the literature on digital disease detection4,6,9-14,40 relies on weak methodological 
approaches or patterns of association similar to GFT, with rare exception.5,41-44 As a result, 
investigators should turn to more sophisticated approaches for the development and evaluation of 
digital systems. The stakes are high in public health surveillance and the methodological bar 
must be raised higher accordingly.  
 
Yet, we remain optimistic about digital disease detection, because as with all adolescent fields 
there needs to be periodic methodological critique and revision. Building on this study and the 
work of others,19,20 digital disease detection may better realize its aims. 
 
 
 
 
 

  
H1N1  

(Wave 1) 
H1N1  

(Wave 2) 
post-H1N1 to '12 

season 
2012-13 
season 

  
(3/29/09 - 

8/2/09) 
(8/2/09 - 
12/27/09) (12/27/09 - 9/30/12) 

(9/30/12 - 
5/12/13) 

Correlation         
Alternative 0.887 0.961 0.978 0.919 
GFT (Original)  0.290 0.916 - - 
GFT (Updated) - - 0.912 0.927 
RMSE         
Alternative 0.002 0.006 0.002 0.009 
GFT (Original)  0.008 0.023 - - 
GFT (Updated) - - 0.003 0.022 

Table 1. Predictive Accuracy of the Alternative Model and Google Flu Trends 
Both GFT and th alternative method generated predictions for ILI at time (t) using search data 
from the same week (t) and historic periods, but because ILI is delayed, these estimates were 
typically available 1 to 2 weeks earlier than CDC-reported ILI.  
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Limitations 
Though advancing the underpinnings of GFT and digital disease detection, the alternative 
method is not without limitations. As usual, the alternative method was only evaluated at 1 
geographic resolution, and model fits may vary in other geographies, especially geographies for 
which there is no ground-truth to compare the model predictions against. In addition, CDC-
reported ILI estimates (the ground truth) sometimes are later revised as the flu season 
progresses,45 thus introducing uncertainties in the (or any) prediction methodology. In this 
regard, the dynamic alternative approach is capable of incorporating information as it becomes 
available, and thus, will automatically produce an improved model every time CDC ILI 
information is either initially released or revised. Last, Google queries are but one source of 
information and a multi-sourced model would be preferred, but through appropriate modeling, 
searches can be leveraged to achieve accurate predictions that better realize the implications of 
GFT.8  
  
Conclusion 
The methods behind digital disease detection are wanting, but by outlining a correction that 
could improve the accuracy of influenza detection we hope public health officials find value in 
digital disease detection and investigators refine our approach to achieve more transparent and 
accurate surveillance that can have real-world public health impacts.  
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