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Abstract

Seasonal influenza is a significant public health threat, annually infecting three to

five million and killing 250,000 to 500,000 people worldwide. In addition, epidemics

such as the pH1N1 outbreak remind the world of even graver dangers if faced with

influenza subtypes for which there is little to no preexisting human immunity, with

the potential to cause devastating pandemics. On both fronts, improving surveillance

of outbreaks before and as they occur can quicken response times and possibly save

millions of lives. Google Flu Trends (GFT) was developed as a tool for large-scale,

real-time surveillance of influenza-like illnesses (ILI) using Google search queries. Un-

fortunately, it provided inaccurate estimates during crucial influenza outbreaks, par-

ticularly during the pH1N1 outbreak, and also, even after GFT received an update

to its database of search queries used in its model, during the most recent 2012-13 in-

fluenza season. The data used in GFT was also not made publicly available. However,

using open-source tools, we assemble here a proxy dataset of search queries and build

a dynamically updated, lasso regression model for ILI surveillance, and successfully

outperform GFT on the national level, especially during crucial periods for influenza

surveillance. In particular, we achieve Pearson correlation of 0.828 where the original

GFT model achieves 0.290 during pH1N1, and we achieve correlation of 0.982 and

average relative error of 12.1% from Sep. 2009, when GFT was updated, through

Jan. 2013, while the updated GFT model achieves correlation of 0.854 and average

relative error of 30.7% during the same period. Our results show that improving the

underlying regression model makes substantial and long-term improvements to ILI

surveillance using query-based methods, rendering the update to GFT’s database of

search queries unnecessary.
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Chapter 1

Introduction

1.1 Motivation

An angry father walked into his local Target and demanded the manager explain why

his high school daughter had received ads for baby products. Equally bewildered,

the manager apologized, and called the father at home several days later to apolo-

gize once more. On the phone, the father instead sounded embarrassed, and actually

apologized to the manager for his behavior the other day. It turned out he had finally

learned that, indeed, his daughter had become pregnant without his knowing. There-

fore, more remarkably, Target’s advertisements knew before anyone else, manager or

father, had a clue about the real situation [8]. While somewhat chilling, stories such

as these highlighted the potential of collecting and analyzing “big data” to answer

crucial questions that businesses, institutions, or society at large could have. The

wide range of real-world questions one could tackle, the mathematical and statisti-

cal methods required for these tasks, and the philosophical implications behind data

mining and machine learning all motivated me to spend my past few undergraduate

years exploring this field.
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This story of the angry father appeared in a New York Times magazine article in

February 2012, which profiled Andrew Pole, a statistician, and his work at Target.

Pole could estimate, accurate up to a narrow due date of a few weeks, which of Target’s

female loyalty program customers were pregnant, simply based on their shopping

patterns. This information, in turn, provided valuable sales potential to Target.

Though the resulting marketing was probably too blunt (and since then Target had

introduced subtler advertising), what Pole developed ultimately accounted for several

billion dollars in additional revenue for the company [8]. In fact, in all domains, “big

data” and the ability to analyze it has stirred a firestorm of research, inventions, and

adaptations. Certainly in business, companies increasingly desire to take advantage

of swaths of electronic data generated both internally and externally. The book that

piqued my interest freshman year to study more statistics and quantitative methods,

Super Crunchers, mentions a broad range of applications, from using regressions to

forecast the quality of upcoming wine vintages to making conclusions about social

and family issues, such as the likelihood of divorce through credit card reports [1]. Of

course, while it was exciting to read about new applications each year, and to study

the methods theoretically in classrooms, I wished to choose a current, significant,

real-world problem for my thesis that would require data mining methods, and take

it from start to finish in studying, experimenting, and finally in some manner, solving

the issue. After a few conversations, one fruitful discussion at the School of Public

Health introduced me to influenza surveillance and the possible contributions I could

make in this area.
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1.2 Influenza and Google Flu Trends

1.2.1 Overview of Influenza and Surveillance Techniques

Influenza poses as a serious public health issue, with the annual seasonal form of

flu epidemics resulting in three to five million severe cases worldwide annually, and

about 250,000 to 500,000 deaths [25]. Of graver danger, moreover, is unpreparedness

in the face of emerging pandemics. Researchers and public health officials maintain

surveillance of non-seasonal flu outbreaks, especially from swine or avian influenza

for which regular season human influenza vaccines are ineffective. If not treated or

contained, an influenza subtype for which there is little or no preexisting human

immunity could cause pandemic proportions of illnesses and deaths. For instance,

the 1918 Spanish flu pandemic casts a historic shadow over the possible devastation

of unpreparedness, with worldwide deaths estimated at 50 million [4]. Therefore, for

strains that do not have readily available vaccines, as well as for the seasonal flu,

early detection and prevention can play a vital role in minimizing influenza spread

and mortality.

To this end in the United States, the U.S. Centers for Disease Control and Preven-

tion (CDC) publishes national and regional data concerning influenza using virologic

and clinical data on a weekly basis, but with a one to two week reporting lag. Specif-

ically, among several methods, the CDC reports the number of influenza-like illness

(ILI) related physician visits out of total physician visits for a particular week from

more than 2,700 outpatient healthcare providers in all 50 states. ILI is defined as fever

(temperature of 100F [37.8C] or greater) and a cough and/or a sore throat without a

known cause other than influenza [5]. Since whether influenza is actually present in a

patient can only be confirmed through laboratory tests, a slower process that makes

reporting the true weekly incidence on an up-to-date basis difficult, ILI serves as an

accepted substitute of the actual influenza level, and forecasting it prior to the CDC’s
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lagged reporting has been the aim of several recent novel methods using telecommu-

nications, business, and Internet data. For example, telephone triage data used by

hospitals and healthcare systems to direct patients to appropriate medical resources

[9] and records of over-the-counter (OTC) pharmaceutical sales [7, 17, 20, 24] have

been demonstrated as possible earlier indicators of ILI. Relating to online search ac-

tivity, queries to a medical website [18], web access of illness-related articles [19], the

number of clicks in an influenza-related Google Adsense campaign [10], and the fre-

quency of certain influenza-related terms in Yahoo! search [23] all have demonstrated

some ability to detect ILI prior to reports issued by the CDC. Finally, Flu Near You,

an ongoing mobile and online crowdsourcing tool, allows the public to register and

report their health information directly using a quick weekly survey, and then maps

this information to provide local and national views of ILI [16].

1.2.2 Select Method: Google Flu Trends

Another widely-known model that used search activity to provide estimates of ILI

was the Google Flu Trends (GFT) model [11], which mined its own massive database

of search queries and provided forecasts that were reported online each week on the

Google Flu Trends website [13]. This model and its shortcomings served as the

springboard for making methodological improvements in ILI surveillance through

search activity. To build their original model, Ginsberg et. al. scored the weekly

time series data of 50 million of the most common queries in the U.S. according to

their correlations to ILI-related outpatient visits data from the CDC. Cross-validated

tests showed that an optimal set of 45 most-correlated terms should be utilized in

order to construct a simple logit regression model to best predict ILI. Google Flu

Trends aimed for nationwide surveillance capabilities, and automated the process for

selecting search queries to use in its model, both significant contributions to the field

of ILI surveillance.
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These improvements tremendously broadened the relevance as well as the sophis-

tication of influenza surveillance using the Internet, but two major issues hampered

GFT. First, Google did not release the specific queries it used in its model, which

made research by third parties to replicate exactly the GFT model impossible, and

to expand upon the methodology highly difficult. Second, the original GFT was

demonstrated to perform poorly during the pH1N1 influenza epidemic, an off-season

flu outbreak, achieving a Pearson correlation of only 0.290 during the first critical

wave of outbreak, which was one motivation for Google to update the set of search

queries used in GFT [6]. The original training period for query selection ended the

week of Mar. 11, 2007. The pH1N1 epidemic began the week of Mar. 29, 2009,

and Google ended its updated period for query selection the week of Sep. 13, 2009,

several months after the pH1N1 epidemic began [6]. Google therefore implied that

they believed search behavior changed over time, and needed to update their set of

search queries used in their regression to account for this changing behavior. Fail-

ing at pH1N1 and making an update after this epidemic began, Google essentially

reselected their search queries to take into account terms that might have become

relevant during this off-season flu epidemic. Unfortunately, this updated GFT also

performed poorly in the most recent flu season, forecasting a peak in the 2012-13

flu season of over 10.5% against an actual peak in ILI of 6.1%. These insufficiencies

suggested that GFT, likely due to its simple regression model, lacked the flexibility

to adapt to changing conditions. Hence, we attempted to make improvements that

not only addressed these insufficiencies, but did so through lesser-quality, open-source

data.
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1.3 Overview of Improved Methodology

First, to obtain data, we used Google Correlate as a proxy for search queries used

in GFT [12]. An open-source tool, Google Correlate allows users to upload their

own time series data, and then outputs the time series, standardized with zero mean

and divided by sample standard deviation, of the top 100 most highly correlated

search queries to the uploaded time series. Hence, by uploading weighted ILI-related

outpatients visits at the national level from the CDC, we could obtain a dataset

that resembled the top most correlated search queries to CDC data on ILI used by

GFT. Second, through this open-source approach, we then applied several multivari-

ate regression methods to dynamically select the appropriate predictive model as new

information became available, with the lasso method providing the most accurate ini-

tial forecasts through 2009. Once we found that lasso provided substantial initial

improvements in predictive performance, we continued to make weekly forecasts after

2009 and compared to published data from updated GFT. We found that, at the na-

tional level, and over the past six years when it could have hypothetically operated,

lasso forecasted ILI on the whole more accurately than updated GFT, and especially

made predictions accurately where they were most important. In contrast to GFT,

which required its search queries to be updated in 2009, our model used the same set

of queries through Oct. 14, 2012, selected using the original GFT’s training period

from Sep. 28, 2003, through Mar. 11, 2007. Unfortunately, the last week for which

data was available from Google Correlate was Oct. 14, 2012, so to continue our fore-

casts, we used a separate tool called Google Trends to build a dataset on which we

could run lasso. Google Trends outputs the search volume, rescaled as an integer

from 0 to 100, of any search term the user provides. Unfortunately, because of this

rescaling and the rounding to integers, low search volumes in particular weeks for

queries results in an output of 0, and when too many 0’s appear, Google Trends con-

denses weekly output into monthly output for these queries. Of the 100 terms from
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Google Correlate, therefore, only 70 had weekly data through Google Trends. Hence,

we built a script that augmented these 70 queries from Google Correlate essentially

with over 2,700 additional queries we thought might be related to ILI, and obtained

volume data from Google Trends. We then correlated these terms against CDC in

our own ad-hoc replication of GFT methodology in a more recent correlation period,

from Dec. 27, 2009, through Oct. 7, 2012, due to a lack of data in the earlier years

for these search queries. The top 100 most correlated terms were used with lasso

to forecast weeks subsequent to Oct. 14, 2012. Our patchwork model, compared

to our original model, was less refined, as we could not be sure we used the actual

top 100 most correlated search queries, nor could we train on the years from 2004

through 2009. Nevertheless, this model, which still used open-source data, managed

to forecast the most recent flu season accurately.

In summary, prevention of both seasonal and off-season influenza epidemics would

benefit greatly from improved surveillance. Considered in the face of pandemic strains

or possible bioterrorism, improved early detection of influenza outbreaks could result

in millions of additional lives saved. Officially, while the CDC would publish weekly

reports on ILI in the United States, the cost and lag in reporting encouraged research

into cheaper, more timely methods of surveillance to supplement existing techniques.

To this end, while GFT represented one of the most comprehensive and sophisticated

techniques of surveillance to date, several critical improvements could be made to

the model to make it more accessible to exploration by the general public, as well

as to make it more robust to changing conditions. We offered one possible set of

improvements to these standing issues, and hoped future research would develop

upon it to create an ever stronger ILI surveillance network.
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Chapter 2

Method

2.1 Data Description

Our ultimate goal was to build a model that performed comparably to GFT on the

national level, using open-source data and improved methodology. Therefore, our goal

in collecting data was to find open-source search query data that resembled search

queries used for GFT. As our baseline, ILI data from the CDC could be obtained

for every season since the 1997-98 season [3]. GFT mined through 50 million of

the most common search queries in the United States, where a query was defined

as a complete exact sequence of terms from a user, to find a set of queries most

correlated to this data from the CDC. Ginsberg et. al. performed this correlation

on the regional level, using 4-fold cross-validation for each term in each of the 9

census regions, therefore producing 36 correlation values for each term, and taking

the score of the query’s performance as the average of these values. Using a simpler

method, Google also built Google Correlate, which would provide the top 100 most

correlated search queries at the national level to data a user could upload, as well as

these queries’ respective weekly time series [12]. We therefore used this tool to obtain

an open-source dataset that reasonably substituted for the query data used in GFT,
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which Google would not release. We uploaded weighted ILI data from the CDC from

Sep. 28, 2003 through Mar. 11, 2007 into Google Correlate and obtained an output

of presumably the 100 most correlated search queries. The time series for each of

these queries from Correlate was not the actual volume, but the volume subtracted

by the mean and divided by the sample standard deviation. The outputted time

series also ranged from Jan. 4, 2004 through Oct. 14, 2012, no matter how early in

the past or how recent were the uploaded data. Therefore, to compare to the original

and updated GFT outputs, which ranged in combined training and forecast periods

from Sep. 28, 2003 through the present-day, modifications to comparison periods in

the past and tweaks to methodology in the present had to be made. Specifically,

beyond Oct. 14, 2012, a separate Google-related tool, Google Trends, was used to

build an ad-hoc database of highly correlated search queries on which our improved

methodology could be performed.

Google Trends would allow users to enter keywords and would then return the

search volume of the keyword over time, scaled in integer values from 0 to 100 [14].

Naturally, yet unfortunately, search volume tended upward over the years since 2004,

and since volume remained an integer value between 0 to 100 in Trends, for most

queries, volume would be denoted 0 most of the time in earlier years, generally between

2004 to 2009. Moreover, when volume was low by weekly counts for a keyword, Google

Trend would aggregate data automatically to return the monthly volume instead for

that keyword. All these barriers made obtaining data for all 100 queries outputted

by Google Correlate impossible, since 30 of these queries had only monthly output.

Recalling our goal at this point was to obtain as high quality data as possible (though

never matching the original quality accessible to GFT) to use in our determined

model, we compiled a database of approximately 2,700 additional terms with weekly

and monthly time series related to ILI symptoms. We used a script to use the root

queries {cough, flu, fever, headache, aches, fatigue, exhaustion, sneezing, sore throat}
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as keywords in Trends, and then used as keywords related queries to these roots

suggested by Trends, and then related queries to those searches, and so on, until

we had a large database. Queries with only monthly output were discarded. In

addition, this dataset also included the 70 queries with weekly time series in Trends

from the original 100 queries obtained using Google Correlate. Finally, once this

database was compiled, in total 697 queries with weekly data, the top 100 most

correlated search queries of this database were obtained, simply by obtaining the

correlation of each query to ILI data during the period of Dec. 27, 2009 through Oct.

7, 2012. This period was chosen to avoid poor Trends data from the earlier years,

and to find correlations on regular season ILI data, averting the off-season data from

pH1N1 during 2009. Once these 100 most correlated Trends queries were obtained,

we continued our methodology to make forecasts for the weeks subsequent to Oct.

14, 2012.

2.2 Details on Google Flu Trends and its Update

2.2.1 Google Flu Trends: Original Model

Again, building GFT began with mining through the weekly search volumes for 50

million of the most common search queries in the United States. Separate aggregate

weekly counts were kept for every query in each state. A set of 100 top influenza-

related queries was chosen using 4-fold cross-validation of correlation between search

volumes to regional ILI data from the CDC in each of the nine census regions in the

U.S. Search volume here was measured by query fractions, which were proportions

of particular search queries to the general pool of queries over time. Specifically, for

every search query in a region, its time series was normalized by dividing the count for

the query in a particular week by the total number of online search queries submitted

in that location during the week, thereby normalizing the volumes across searches [11].
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Once query fractions were obtained for each of the top 100 most correlated queries,

these fractions were sequentially added from most correlated to least correlated into

a single independent variable and cross-validated for best in-sample performance in

a final simple linear (logit) model. Specifically, Google fit a linear model using the

log-odds of an ILI physician visit versus the log-odds of an ILI-related search query:

logit(p) = β0 + β1 ∗ logit(q) + ε (2.1)

where p was the percentage of ILI physician visits, q was the ILI-related query frac-

tion, β0 was the intercept, β1 was the multiplicative coefficient, and ε was the error

term. In essence, the GFT model regressed the proportion of ILI-related outpatient

visits against this single variable obtained by summing the proportion of queries.

Through in-sample cross-validation, Ginsberg et. al. determined that the summed

query fractions of the top 45 most correlated search queries provided the optimal

results. This in-sample period during which top correlated queries were obtained and

trained in the GFT model ranged from Sep. 28, 2003 through Mar. 11, 2007. This

model was finally verified with out-of-sample performance ranging from Mar. 18,

2007 through May 11, 2008. Subsequent results from GFT were also made publicly

available at the GFT website, but the results likely stemmed instead from the model

after its update in 2009 with an extended queries selection period.

2.2.2 Google Flu Trends: Update

During the spring of 2009, the influenza A (pH1N1) virus emerged and spread quickly

to the United States, occurring out-of-season from annual seasonal influenza. Specif-

ically, the complete “pH1N1 period” was defined to have occurred from Mar. 29,

2009 through Dec. 31, 2009. We followed Cook et. al.’s naming for further divisions,

designating the time period from Sep. 28, 2009 through Mar. 29, 2009 as the “pre-
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H1N1” period; within pH1N1, we defined Mar. 29, 2009 through Aug. 2, 2009 as

“Wave 1”, and Aug. 2, 2009 through Dec. 31, 2009 as “Wave 2” [6]. Two weeks,

beginning Apr. 27, 2009, and May 3, 2009, were excluded from consideration due to

high media attention. During the pH1N1 period, the original GFT model performed

poorly in forecasting ILI levels compared to its out-of-sample forecasts for seasonal

ILI. Especially in Wave 1, the original GFT model achieved a Pearson correlation of

only 0.290 [6]. Cook et. al. mentioned that Google planned an update of the search

queries used in GFT in 2009, and this update occurred using an extended correlation

period from Sep. 28, 2003 through Sep. 13, 2009 during which correlations of search

queries to ILI data were determined, as well as using an expanded pool of candidate

search queries. Since this new training period occurred partially during pH1N1, Cook

et. al. essentially implied that the set of queries used in GFT needed to be manually

updated to account for changing search behaviors, such as during an unexpected epi-

demic like pH1N1, and that GFT in itself empirically did not appear flexible enough

to adapt to changing conditions. Once this updated model was completed, Cook et.

al. used it to produce both prospective estimates of ILI from Sep. through Dec.

2009 and retrospective estimates from Jul. 2003 through Sep. 2009 [6]. Finally, the

estimates from the GFT website definitely reflected this update during the pH1N1

epidemic, and likely reflected this updated model (or other updated models there-

after) for what was shown and available for download after 2009 as well. As far as we

know, however, the underlying simple linear (logit) regression model that Ginsberg et.

al. used to train GFT remained unchanged in Cook et. al.’s update and in wherever

output is taken from for present-day forecasts on the GFT website. In fact, when we

completed our own methodology, we concluded that improvements to this underly-

ing model would be sufficient to making substantial improvements to ILI forecasts,

rendering this update of search queries that Cook et. al. pursued unnecessary.
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2.3 Our Multivariate Approaches to ILI Forecasts

First, because Google did not release any of the sets of search queries along with

their query fractions used in GFT, we needed to use a substitute dataset in order

to build models to estimate ILI. These substitute datasets were obtained via Google

Correlate and Google Trends and have already been described in detail. ILI data

could be obtained through the CDC, while the estimates from updated GFT could be

downloaded directly at http://www.google.org/flutrends/. Hence, once we built

our model and made our forecasts, we had adequate benchmark data with which to

evaluate our performance.

2.3.1 Initial Model: Unregularized Ordinary Least Squares

Once we obtained search queries and their standardized weekly volumes, our first,

naive approach was to apply an ordinary least squares (OLS) multivariate regression

on all of our search queries, with a different beta coefficient for each query, against

ILI data. Namely, our model was

y = βTX (2.2)

where y was the column vector of ILI data over time, β was the column vector of

beta coefficients, including the intercept, and X was the matrix with its first row

filled with 1’s, then each row thereafter as one of the search queries over time.

We performed all of our experiments using RStudio v0.97.316, which ran R v2.15.2.

To perform OLS regression, we used an initial training period from Jan. 4, 2004 (the

first week in which Google Correlate output was actually available) through Mar.

4, 2007, regressing weighted ILI data during this time as the dependent variable

against the 100 search queries as independent variables. After obtaining this model,

we forecasted the ILI rate for the week of Mar. 18, 2007 using Google Correlate data

13
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from this week in the trained model. Once this estimate was obtained, to forecast

the subsequent week beginning Mar. 25, 2007, we incremented our training period

to include the week of Mar. 11, 2007 and retrained our model. We continued this

process until the end of 2009. Hence, our methodology accomplished two purposes:

first, by training two weeks behind the week of interest for ILI, we simulated the

the reality in which the most recently available ILI estimates from the CDC usually

would provide information for up to two weeks behind the present week; second, by

updating our trained model dynamically, we would be able to take advantage of new

information as it appeared into our model.

Of course, OLS would only be valid given certain conditions, but we were not

as concerned whether a similar method to OLS, perhaps generalized least squares or

the application of some other transformations, would have been more statistically or

otherwise valid. Instead, our purpose was entirely predictive, so we chose OLS as our

initial, naive model to represent a multivariate approach that attempted to minimize

the error between the model and the observed data. We felt taking a multivariate

approach would perform better than Google’s simple regression model because the

separate beta coefficients for each of the search queries in OLS would give the model

more flexibility in adapting to changing conditions over time. We also noted that

(2.1) could equivalently be seen as fixing the number of search queries to the first

45 queries, summing across them (and transforming them through logit), and then

weighing this value by a common factor, giving each of these 45 queries essentially the

same beta coefficient. In contrast, OLS would have much more flexibility in choosing

different beta coefficients for different queries, and using as many as necessary to

adequately fit the data.
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2.3.2 Addition: Principal Component Analysis

While our OLS model accomplished our broad goals of introducing a multivariate ap-

proach and dynamically updating the model as new information became available, we

needed to address multicollinearity among the search queries. In fact, GFT managed

to avoid this issue by summing across query fractions. That is, since we found the

search queries to have as high correlation to ILI data as possible, multicollinearity

among at least some of the 100 queries would likely be strong. One way to tackle this

issue was to use principal component analysis (PCA), which broke apart a dataset

with correlated vectors into uncorrelated components, ordered such that each would

capture as much of the variance of the original data as possible.

We provide the mathematical derivation of PCA in the appendix. Once principal

components of the search query data from Correlate were obtained, OLS regression

of ILI data against the components was again performed dynamically in a similar

fashion to our previous method, with an initial training period from Jan. 4, 2004

through Mar. 4, 2007, and with forecasts made through Dec. 27, 2009.

2.3.3 Final Model: Lasso

While PCA addressed multicollinearity, we were also concerned about overfitting.

Overfitting is a phenomena that occurs when a model fits minor variations in the

training data too well, therefore likely to model a lot of noise relative to true signals

[22]. An obvious instance when this phenomena could occur would be when the

number of independent variables equaled or exceeded the number of data points in

the training period. Fortunately, this situation was not the case here. However, even if

this situation did not occur, certain conditions could arise in training that could cause

the model to overfit. Several principles of modeling can deal with overfitting, and in

our case, we chose to consider ways that would reduce the number of independent

variables used, that is, to reduce the complexity of the model.
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In addition to this technical consideration, in our exploration, we were also inter-

ested in the public health as well as possible social implications of our experiments.

Mathematically, the entire set of principal components and the original data con-

tained the same amount of information. However, realistically, the principal compo-

nents were uninterpretable, while each independent variable in the original data was

a search query. Hence, we were also interested in a method that could preserve the

original data while performing well, especially against overfitting on the training data.

These considerations led us to use the lasso method for training on and forecasting

ILI data.

‘Lasso’ stands for least absolute shrinkage and selection operator, and differs from

OLS in that it minimizes the square errors with an additional constraint that the

sum of the absolute value of the betas, or the L-1 norm, cannot be greater than

a constant value. Specifically, if there are M beta values β to be considered, N

dependent variables y of ILI data in the training period, and some constant t, the

lasso estimate is defined as (from [15]):

βlasso = arg min
β

N∑
i=1

(
yi − β0 −

M∑
j=1

xijβj

)2

subject to
M∑
j=1

|βj| ≤ t. (2.3)

An equivalent way to write this equation is in Lagrangian form:

βlasso = arg min
β

1

2

N∑
i=1

(
yi − β0 −

M∑
j=1

xijβj

)2

+ λ
M∑
j=1

|βj|

 (2.4)

In this form, it is evident that the Lagrangian serves as a complexity component to

the minimization. Moreover, due to taking the L-1 norm, the penalization actually

causes shrinkage in the sum of the absolute values by forcing certain beta coefficients

to 0 while preserving others. Hence, this methodology, with an appropriate selection

for t or λ (note that as t gets extremely large or as λ approaches 0, we obtain once
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again the full OLS regression), can reduce the number of beta coefficients used in the

regression, and therefore account for issues of overfitting. Moreover, empirically, one

of the issues with multicollinearity is that beta coefficients can sometimes become

extreme, and the penalization in lasso can also help take care of this issue.

In order to perform the lasso method, we employed the lars package in R. This

package computed the complete lasso solution for all values of the shrinkage parameter

until the full OLS regression values were reached. The package lars also reported

Mallows’ Cp statistic, which would be calculated for a particular set of independent

variables of size P as

Cp =
SSEp
S2

−N + 2P (2.5)

where SSEp was the error sum of squares of the model with these P variables, S2 was

the residual mean square after regression on all independent variables, and N was

the sample size for modeling [21]. This value as a minimum served as an adequate

measure for model selection against overfitting, so we attempted always to select the

model that minimized this value. Once models were selected, we dynamically updated

lasso over the same time frame as OLS and PCA, and in a similar fashion. As we

realized that lasso performed better than OLS and PCA during this time frame, and

also that it made sense practically and theoretically, we continued lasso estimates

beyond 2009 as well, eventually requiring the use of Google Trends to build a dataset

for the most recent past, with which to produce lasso estimates for those weeks.
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Chapter 3

Results

Table 3.1 showed the search queries Google Correlate returned to be most correlated

to CDC ILI data from Sep. 28, 2003 through Mar. 11, 2007. Moreover, to supplement

this main set of queries, the queries data used in forecasts by lasso after Oct. 14,

2012 were shown in table 3.2. As noted, only 70 of the 100 original Google Correlate

queries could be included among the 697 total queries with weekly Trends volume

data. However, 46 of these 70 remained in the top 100.

Table 3.3 revealed performance of several methods in various periods of time,

notably the across-the-board strong performance of the lasso against original and up-

dated GFT on the national level. This table and its comparison periods and statistics

are adopted with modifications from the structure of reported values from Cook et.

al., with ‘Original GFT’ values adopted directly from them [6], and updated GFT

values downloaded from the Flu Trends website, but we chose to include a few other

categories that we felt were helpful for better intuition or more valid comparisons.

For example, we needed to modify the initial ‘Pre-pH1N1’ comparisons Cook et. al.

drew because these began on Sep. 28, 2003. Since we did not have Google Correlate

data from 2003, we created a modified ‘Pre-pH1N1*’ category that began on Jan. 4,

2004. Moreover, since GFT was updated on Sep. 13, 2009, we created a ‘Common
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Correlate Queries
1 influenza type a 35 is the flu contagious 68 fever in adults
2 bronchitis 36 flu in children 69 decongestant
3 influenza a 37 fever flu 70 normal body
4 symptoms of pneumonia 38 take action tour 71 low body temperature
5 flu incubation 39 flu remedies 72 a fever
6 influenza incubation 40 flu report 73 influenza a symptoms
7 flu contagious 41 nasal congestion 74 dangerous fever
8 influenza contagious 42 fever reducer 75 is flu contagious
9 flu incubation period 43 sinus infections 76 lauderdale florida
10 tussionex 44 rhode island wrestling 77 hotel fort lauderdale
11 benzonatate 45 symptoms of influenza 78 webmail shaw ca
12 influenza symptoms 46 castaway bay 79 high fever
13 a influenza 47 coral by the sea 80 robitussin ac
14 sinus 48 cold or flu 81 bronchitis contagious
15 pneumonia 49 respiratory infection 82 indoor driving
16 flu fever 50 take action 83 tussionex pennkinetic
17 flu duration 51 respiratory flu 84 wrestling report
18 taste of chaos 52 soweto gospel 85 walking pneumonia
19 bronchitis symptoms 53 soweto gospel choir 86 days inn miami
20 symptoms of bronchitis 54 illinois wrestling 87 body temperature
21 how long does the flu last 55 how long is the flu contagious 88 phlegm
22 symptoms of the flu 56 cold symptoms 89 flu relief
23 taste of chaos tour 57 the taste of chaos 90 mt sunapee
24 influenza incubation period 58 is bronchitis 91 harlem globe
25 sinus infection 59 upper respiratory 92 levaquin
26 flu recovery 60 afrin 93 strep throat
27 chaos tour 61 painful cough 94 coughing
28 type a influenza 62 laprepsoccer 95 whistler snow
29 flu symptoms 63 upper respiratory infection 96 fever temperature
30 tessalon 64 amoxicillin 97 sales tax credit
31 type a flu 65 ski harness 98 glitches
32 treat the flu 66 robitussin dm 99 pennkinetic
33 treating the flu 67 treating flu 100 histinex
34 how to treat the flu

Table 3.1: The top 100 correlated search queries obtained through Google Correlate by uploading
CDC data from Sep. 2003 to Mar. 2007. Queries are numbered from most to least correlated.

Forecast Period’ that began on this date, as a possible cutoff where updated GFT val-

ues were completely in predictive mode (if GFT were not updated again afterwards),

and could therefore be validly compared to lasso predictions for test error.

Root mean square error (RMSE) was reported in Cook et. al., and we did so here

as well, but we noted that the formula for RMSE for the N values of true ILI data y
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Trends Queries
1 tamiflu 35 sinus 68 tylenol cold
2 tamiflu side effects 36 influenza type a 69 low temperature
3 flu contagious 37 indoor driving 70 coricidin hbp
4 is the flu contagious 38 flu virus 71 upper respiratory infection
5 flu treatment 39 symptoms of pneumonia 72 stomach virus
6 type a flu 40 robitussin dm 73 common cold
7 flu in children 41 cough in children 74 wrestling report
8 influenza a 42 cold or flu 75 cold remedies
9 symptoms of the flu 43 cough and cold 76 the stomach flu
10 flu symptoms 44 stomach flu 77 normal body
11 flu incubation period 45 walking pneumonia 78 symptoms of strep
12 flu incubation 46 cold vs flu 79 nasal congestion
13 symptoms of flu 47 tussionex 80 cold and flu
14 flu remedies 48 cough medicine 81 nyquil
15 flu medicine 49 robitussin ac 82 benzonatate
16 influenza b 50 afrin 83 baby cough
17 influenza symptoms 51 how long does the flu last 84 is bronchitis
18 robitussin 52 cold symptoms 85 fever in children
19 bronchitis 53 bronchitis contagious 86 the flue
20 harlem globe 54 sinus infection 87 cold medicine
21 cough remedies 55 tessalon 88 coughing
22 type a influenza 56 infant cough 89 bad cough
23 cough remedy 57 child fever 90 pneumonia contagious
24 the flu 58 mt sunapee 91 decongestant
25 influenza 59 illinois wrestling 92 stomach flu contagious
26 remedies for cough 60 strep throat 93 stop coughing
27 pneumonia symptoms 61 flu symtoms 94 robitussin cough
28 symptoms of bronchitis 62 strep 95 pneumonia treatment
29 bronchitis symptoms 63 low body temperature 96 barking cough
30 delsym 64 respiratory infection 97 chest cough
31 coricidin 65 upper respiratory 98 strep throat symptoms
32 the flu virus 66 dry cough 99 coughing up
33 cough suppressant 67 toddler cough 100 sinus pain
34 pneumonia

Table 3.2: The top 100 correlated queries obtained through Google Trends, chosen by correlating
each of 697 queries against ILI data from Dec. 27, 2009 through Oct. 7, 2012. 46 of the 70 original
Correlate queries that were included in the Trends queries appeared in this list.

and predictions of ILI ŷ was (adapted from [22]):

RMSE =

√√√√ 1

N

N∑
n=1

(yn − ŷn)2 (3.1)

Unfortunately, while RMSE values provided a way to compare models with similarly

scaled outputs, it did not offer an intuitive interpretation for the amount models

erred, because the square difference between true and predicted ILI data was not

20



Pre- Pre- pH1N1 pH1N1 pH1N1 post- Common
pH1N1 pH1N1* Overall Wave 1 Wave 2 pH1N1 Forecast Period

Dates begin Sep ’03 Jan ’04 Mar ’09 Mar ’09 Aug ’09 Dec ’09 Sep ’09
end Mar ’09 Mar ’09 Dec ’09 Aug ’09 Dec ’09 Feb ’13 Feb ’13

Correlation
Lasso n/a 0.991 0.976 0.828 0.970 0.975 0.982
Original GFT 0.906 n/a 0.912 0.290 0.916 n/a n/a
Updated GFT 0.957 0.959 0.990 0.940 0.987 0.866 0.854
OLS n/a 0.990 0.962 0.660 0.953 n/a n/a
PCA n/a 0.989 0.859 0.619 0.867 n/a n/a

Relative Error
Lasso n/a 10.2% 13.8% 11.9% 15.0% 12.2% 12.1%
Original GFT n/a n/a n/a n/a n/a n/a
Updated GFT 20.3% 20.0% 11.8% 6.38% 14.7% 31.7% 30.7%
OLS n/a 10.9% 18.2% 17.8% 18.2% n/a n/a
PCA n/a 10.8% 38.3% 36.5% 38.8% n/a n/a

RMSE
Lasso n/a 0.001 0.004 0.002 0.006 0.002 0.003
Original GFT 0.006 n/a 0.018 0.008 0.023 n/a n/a
Updated GFT 0.004 0.003 0.005 0.001 0.006 0.010 0.010
OLS n/a 0.002 0.006 0.003 0.007 n/a n/a
PCA n/a 0.002 0.012 0.005 0.016 n/a n/a

Table 3.3: Performance summary, with correlation, relative error, and root mean square error
(RMSE) reported. For RMSE, the unit for weekly outputs is the fraction of U.S. population with
ILI, so RMSE gives some measure of the absolute error, on average, of trained/predicted vs. actual
fractions each week. However, because RMSE does not take into account the absolute level of ILI
each week, relative error provides the more intuitive and correct interpretation of how well a method
is performing relative to the true data. Formulas can be found in the report for more details on this
discrepancy. In terms of the table rows and columns, ‘Pre-H1N1*’ is a modified pre-H1N1 period
that begins in Jan. 2004 rather than Sep. 2003 because Google Correlate does not output pre-2004
results. The ‘Common Forecast Period’ marks off Sep. 13, 2009 onward, because this date is the
last reported date of when GFT queries were updated, so we presume GFT is entirely in predictive
mode afterwards and can therefore be validly compared with lasso for predictive errors. Original
GFT’ values are taken from [6], while ‘Updated GFT’ values are downloaded from the GFT website.

taken relative to the true ILI rate each week. That is, a difference of 1% in true

versus predicted ILI data for a week if the true rate were 10% and a difference of 1%

if the true rate were 2% for a given week do not carry the same amount of practical

significance. Therefore, we also wrote down a formula that made sense in this context:

Relative Error (%) =

√√√√ 1

N

N∑
n=1

(
yn − ŷn
yn

∗ 100%

)2

(3.2)
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where we multiplied by 100 to let the value easily be read and interpreted as a

percentage. This formula could approximately be interpreted as the average percent

error a model’s output deviated from the truth. RMSE did not allow this easy

interpretation because the average that RMSE reported, if divided by the average ILI

level over a certain period, would still not account for variations in the ILI, such as

the hypothetical example of 2% versus 10% true rates, and would therefore typically

understate the severity of the error.

This table, 3.3, made comparisons during the interesting periods for GFT, namely

during pH1N1 and during the recent 2012-13 flu season, but we further wished to

highlight these periods in graphical form. First, figure 3.1 showed two graphs, ranged

from Jan. 4, 2004 through Dec. 27, 2009, displaying updated GFT, lasso, OLS, and

PCA. To avoid overfitting when using OLS as well as to address the unstable outputs

in PCA seen after pH1N1 began, lasso was used to make predictions for the rest of

the time after 2009 and was compared to updated GFT.

Figure 3.2 zoomed in on the pH1N1 period, with ‘Original GFT’ values extracted

from Cook et. al. using the program GraphClick v3.0.2. Lasso performed far better

than the original GFT during this period, even in an estimated fashion of the latter’s

output, and it performed comparably to the updated GFT. It was important to note

that the update for GFT occurred during pH1N1. Figure 3.3, on the other hand,

showed that despite GFT’s update, lasso outperformed updated GFT significantly in

the most recent 2012-13 flu season. Updated GFT estimated a peak in the season

of over 10%, while the peak actually tipped at around 6% in ILI data, and lasso

successfully estimated this turnaround.

Finally, it was instructive to plot and examine coefficient values of betas that

were ‘non-zero’ in the various models. Because OLS and PCA were not expected to

produce any coefficients of 0 value, ‘zero’ here was defined as any absolute value of

an output for a particular model, from Mar. 18, 2007 through Dec. 27, 2009 (when

22



Figure 3.1: Graph of all the methods over time, until end of 2009. Because of unstable outputs in
the OLS and PCA methods in these initial training and predictive periods, the lasso method was
chosen as the method of comparison against Google Flu Trends for the rest of the time post-2009.
The training period for updated GFT ends Sep. 13, 2009, after the end of the training period for
the other methods, which end Mar. 11, 2007, also marking the end of the training period of the
original GFT model.

lasso, OLS, and PCA were all three in predictive mode), that was less than or equal

to 0.01 ∗max{abs. value of outputs}, or 100 times less than the maximum absolute

value of outputs.
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Figure 3.2: On the left, an estimated graph of the original Google Flu Trends (GFT) model, its
update, compared to a graph on the right of the lasso method during the entire pH1N1 season from
Mar. 29, 2009, through Dec. 27, 2009. GFT’s update is also shown.

Under this heuristic, figure 3.4 showed the number of these non-zero coefficients

present in the models over time, as well as the average over these periods. We also

plotted heat maps of lasso, OLS, and PCA coefficients for each query over time

in figures 3.5-3.6. For figure 3.5, we plotted the query coefficients over the entire

predictive timespan of lasso from Correlate queries, until Oct. 14, 2012. We noted

that even at our heuristic, lasso produced far more ‘zero’ coefficients than OLS did,

which supported our view that lasso would help us prevent overfitting through the

regularization component. Moreover, figure 3.6 showed, as expected, that while OLS

coefficients varied in strength across queries over time, PCA displayed a pattern of

high coefficients to low coefficients as we moved left to right in the bottom graph,

therefore confirming that the methodology was working and that PCA managed to

find principal components such that most of the variance of the original data could

be accounted for in the first few principal components.
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Figure 3.3: On the left, a recent graphic in Nature [2] examining Google Flu Trends’ (GFT) failure
to accurately forecast the recent flu season, drastically overshooting the peak of the season in its
forecast. On the right, a graph during the same period of GFT and CDC data along with forecasts
using lasso, clearly showing lasso’s more accurate results.

Figure 3.4: Graphs showing the number of non-zero coefficients of terms over time, from left to
right showing the methods lasso, OLS, and PCA, respectively, starting in Mar. 2007 through Dec.
2009. ‘Zero’ for each model is defined as any output for that model having an absolute value less
than or equal to 0.01*(max abs value of the outputs) during this period.
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Figure 3.5: Displays which coefficients of search queries used in the lasso method are non-zero over
time, from the weeks of Mar. 18, 2007 through Oct. 14, 2012. The x-axis shows the search queries
obtained from Google Correlate and ordered by correlation to uploaded CDC data from Sep. 28,
2003 to Mar. 11, 2007 (see Table 3.1 for more details). For all the methods, to create these graphs,
a query with a ‘zero’ coefficient is defined as a coefficient value of absolute value less than or equal
to 0.01*(max abs value), in other words, 100 times less than or equal to the maximum coefficient
value over time for any query using the lasso method. These ‘zero’ values are shown in white in the
graph.
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Figure 3.6: Graphs showing the number of non-zero coefficients of terms over time, the top figure of
OLS and the bottom figure of PCA, from Mar. 18, 2007 through Dec. 27, 2009. The y-axis shows
number of weeks since Mar. 11, 2007, and the x-axis shows the search queries from Google Correlate
for OLS, ordered by correlation to uploaded CDC data from Sep. 28, 2003 through Mar. 11, 2007
(see Table 3.1 for more details), and the principal components for PCA. For all the methods, to create
these graphs, a query with a ‘zero’ coefficient is defined as a coefficient value of absolute value less
than or equal to 0.01*(max abs value), in other words, 100 times less than or equal to the maximum
coefficient value over time for any query using the lasso method. These ‘zero’ values are shown in
white in the graph. Note that while significant coefficients for OLS are scattered throughout the
queries, the significant coefficients for PCA are concentrated in the first few principal components.
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Chapter 4

Discussion

4.1 Impact of my Work

In summary, I studied the Google Flu Trends model and noticed two inherent weak-

nesses: first, that it used unreleased private data, and second, that it trained a simple

logit regression on its search query data. Moreover, there was the unproven question

of whether GFT could actually forecast ILI, or whether it simply forecasted spurious

behavior similar to ILI during seasonal influenza’s annual crests and troughs. When

pH1N1 occurred, the original GFT model performed badly, requiring an update and

retraining in its set of search queries from which the model was built. What truly com-

promised this approach, however, was that the update took place during the week of

Sep. 13, 2009, several months after pH1N1 broke out in the United States. Therefore,

GFT essentially admitted defeat in the face of the task of forecasting this off-season

flu epidemic, for it retrained partially with pH1N1 data, perhaps in order to take into

account changing online search behaviors among users in its body of search queries.

However, in machine learning parlance, this decision made what should have been

a holy grail of test data, namely off-season pH1N1 data and therefore untouchable

by the model except for testing, partially available as the training data, altogether
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compromising GFT from showing it could make any crucial accurate predictions of

ILI rates in the United States over time.

I took these questions and issues into consideration as I built my own model of

ILI surveillance. I used Google Correlate and Google Flu Trends to build open-

source datasets of search queries that were highly correlated to ILI data. I tried

several multivariate approaches to forecasting ILI, ultimately settling on lasso both

for its robustness against overfitting and for its ability to zero out certain search

queries while preserving others. I made sure always to keep clear my training from

my predictions. While I displayed in table 3.3 a pre-H1N1* period that included

both training and test data, this column was only meant to replicate the category

used in Cook et. al., and I always focused instead on comparing predictions with

predictions. On this focus, I achieved excellent performance in the two periods since

training when forecasts were most important. First, during pH1N1 (see figure 3.2),

my model achieved Pearson correlation of 0.828 during pH1N1 Wave 1, the most

problematic period for original GFT, which achieved 0.290. Second, during the most

recent influenza season (see figure 3.3), a lot of buzz occurred a few months prior to

this writing that a severe influenza season was in session: it certainly did not turn

out to be a light season, but definitely lighter than the 10%+ that updated GFT

forecasted, versus an actual ILI rate of approximately 6%. In my reported statistics,

this discrepancy and my better performance were reflected in the post-2009 statistics,

where I achieved Pearson correlation of 0.975 and an average relative error of 12.2% in

my forecasts. In contrast, updated GFT achieved correlation of 0.866 and an average

relative error of 31.7%, almost triple my error percentage.

Therefore, I felt my model improvements were substantial. I managed to produce

a model using lesser-quality, open-source data (which I would be more than happy

to release) that over the past six years when it could have hypothetically operated,

would have consistently provided accurate estimates of ILI rates, particularly when
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such alerts were most crucial. Finally, my results showed that improvements to the

underlying regression techniques were sufficient in gaining substantially improved

forecasts, and that the updated queries process Cook et. al. undertook was probably

unnecessary. Public health officials would like accurate, immediate surveillance as

the first step in defending against possible outbreaks of epidemics, whether natural or

man-made, and Google Flu Trends provided an exciting initial model of surveillance

using search queries that could signal the current condition of ILI in the United

States faster than the weekly reports by the CDC, generally delayed by two weeks.

With the two updates I made, while relatively simple and perhaps even rudimentary

compared to Google’s wealth of data and computing capacity, I managed to update

the GFT model to a more mathematically correct and practically relevant tool for

ILI surveillance.

4.2 Remaining Considerations

In this section, I would like to provide more details about issues that may have

occurred to readers while following the methods and results.

4.2.1 Training vs. Forecasting

It may have occurred to readers that while we highlighted Cook et. al.’s update of

GFT as having compromised test data, we also provided an update to our list of

search queries in Oct. 2012, albeit without choice after Google Correlate provided

no more data. However, we would contend that we proceeded carefully throughout

our methodology to provide valid forecasts that were not tainted in some fashion by

the training of our model. Therefore, it would be important at this point to speak

more carefully about the two-tiered training process of an ILI surveillance model using

search queries. Training the ILI surveillance model required two steps. First, data had
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to be collected, and whether GFT or my model, this process always required ILI data

from the CDC be correlated in some way to a database of search queries, taking the

queries with highest correlation as model-worthy search queries. The period during

which this correlation occurred was considered a “training” period, but throughout

our discussions, we tried not to refer to it as training and always either described it

or referred to it as a correlation period. Once data was collected, a model had to be

trained on this search query, and here GFT and our model differed, where GFT used

a simple logit regression, while we used the lasso method.

The key, however, was that both types of training had to occur before

any forecasts could be made. Cook et. al. admitted that the updated model

provided “retrospective estimates from July 2003 through September 2009” [6]. It

was still unclear to us the exact training period used after queries were updated, but

at worst, training of updated GFT’s simple logit model occurred during the same

period as the extended update of search queries, ended Sep. 13, 2009, and at best,

training occurred during the original GFT’s training period, ended Mar. 11, 2007,

with “forecasts” thereafter. Nevertheless, in either case, GFT already updated its

set of search queries with correlated queries from a period after pH1N1 began, which

constituted integrating a portion of the test period into the training period. The

reasoning against this practice was simple: hypothetically, if we could return to Mar.

2009, when pH1N1 began, at best we could have updated our search queries in its

correlation to ILI data up to this time, and not through Sep. 2009. Therefore, the

scheme Cook et. al. proposed for updating their model was impractical in terms

of forecasting. Moreover, our results in the end demonstrated this scheme to be

unnecessary in improving GFT.

In contrast, we sought to maximize the quality of our forecasts while never vio-

lating this hypothetical boundary between past and future. Even when we updated

our search queries after Google Correlate data ended, we were careful to find correla-
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tions between Trends data and ILI data two weeks prior to the period when forecasts

were required, ended Oct. 7, 2012 (with appended forecasts beginning Oct. 21,

2012). Finally, while we constantly retrained lasso with new beta coefficients in a

dynamic process as new data would have hypothetically become available, we always

ended training two weeks prior to our desired week of forecasting, which simulated

the unavailability of ILI data for a given week until two weeks after that time passed.

Therefore, while we maximized the amount of training we could validly perform, we

always kept a careful and solid boundary between training and forecasting.

4.2.2 Future Work: Coefficients, the Ridge Regression, and

Transformations

As I described, we chose the lasso method because of its regularization component

to prevent overfitting, as well as for its ability to preserve some queries while zeroing

out the coefficients of others, because it constrained the L-1 norm. Whether by doing

so, the model found any significant patterns in search behavior over time was left

undetermined. Certainly, as shown in figure 3.4, lasso did not use all of the search

queries over time, and as seen in figure 3.5, some of the queries seemed to remain

zero throughout the trainings and forecasts, while non-zero queries gradually faded

in and out of use. Hence, perhaps there could be some important social cues to be

gathered in analyzing particular search queries over time, but it remained beyond the

current scope of this paper to do so in a rigorous framework, and we avoided merely

speculating on social implications. The results, however, would remain available for

future explorations in this area.

Instead, the results showed empirically that while lasso performed the best, a full

least squares regression (OLS) also performed somewhat well. Therefore, making sure

our model could adapt over time in a smart fashion was crucial. Empirically, lasso

performed this adaptation wonderfully, but from a mathematical perspective in this
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context, we had no reason to prefer the L-1 norm to, say, the L-2 norm. Specifically,

adapting equation 2.3 and 2.4, we could alter the constraint such that the equations

became, respectively (from [15]):

βlasso = arg min
β

N∑
i=1

(
yi − β0 −

M∑
j=1

xijβj

)2

subject to
M∑
j=1

β2
j ≤ t. (4.1)

and in Lagrangian form:

βlasso = arg min
β

1

2

N∑
i=1

(
yi − β0 −

M∑
j=1

xijβj

)2

+ λ
M∑
j=1

β2
j

 (4.2)

Known as the ridge regression, because of the constraint on the L-2 norm, this equa-

tion’s minimization would not generally force beta coefficients to zero. However,

mathematically, since we were not interested in solving the equations analytically or

serving other mathematical purposes where the lasso and ridge differed, the regular-

ization present in the ridge should have forecasted comparably to the lasso. It would

be interesting in future work to see if this would be the case.

Finally, possibly because forecasts were so close to actual ILI values each week, the

forecast values never dipped below 0 nor did they ever exceed 100, the accepted range

of outputs since forecasts were percentages, though nothing in my model actually

prevented these possibilities from occurring. On the one hand, mathematically, this

issue was not particularly grave, because models would always have shortcomings

and could only approximate the true model, if there were such a thing. In fact, this

issue seemed analogous to certain statistical modeling scenarios, where a Gaussian

model with a tight variance would be fitted to a particular set of data and found

to forecast well, when in fact the data could never be negative. Indeed, empirically

our results were fine, so in a sense, this issue with our model could be accepted. On

the other hand, similar to the Gaussian model and how a log-transformation could
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restrict the domain appropriately, in future improvements to our model, we would

explore a transformation similar to the logit regressions performed in GFT in order

to restrict the possible range of our model’s outputs appropriately.

4.3 Concluding Thoughts

While I hope my work was presented clearly, the past few months of exploration

were far from straightforward, and I felt extremely fortunate that careful analysis

and testings yielded substantial improvements to the existing GFT model. Usually

cynical about finding significant results, I nevertheless had to conclude for myself that

the results here were, in fact, significant, having only tried three different methods

with educated motivations for moving onto each, and then having an overwhelming

body of test data post-2009 with which to test my final model. In other words, I was

guarded against philosophical issues concerning data snooping, where even when no

significant results should be found in the data, if a slight probability exists a priori

that a test would find good results anyway, then the total probability that one of my

tests would yield good results anyway increases as more tests are performed.

I felt fortunate as well that I managed to tackle a project from start to finish ac-

cording to my original academic wishes, that I could take a real-world issue and use

data mining and machine learning techniques correctly to make substantial contribu-

tions. For example, even now, I am adapting my research into a separate paper that

hopefully could be published among the public health community. In addition, as this

influenza season played out, some big news sources picked up on GFT’s overestimate

of ILI, and I felt a sense of humble disbelief that my work mattered in the midst of

these stories. Of course, in perspective, my work probably seemed like it mattered

more because I focused on it for these past few months, so any mention in a common

news outlet with minor relevance to it would seem important to me. Still, I would
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say that if my work did not move real mountains in the world, it at least could not

be buried under rugs of irrelevancy. Within the public health community, indeed my

model represented substantial improvements to the original and updated GFT mod-

els, and hopefully over time the issues I addressed and the solutions I proposed could

be further studied, discussed, and implemented. More importantly to me, however,

this process showed me the relevance of my schoolwork to the real world, that I could

continue from this point to adapt these methods for other issues, perhaps to issues

that could move real mountains, to build applications that could inspire still others

with stories as I had been inspired.
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Appendix A

PCA Derivation

Principal component analysis (PCA) uses a combination of statistical and linear al-

gebra methods to break a set of data with possible correlation into uncorrelated

components, each capturing as much of the variance in the original data as possi-

ble. PCA can be performed equivalently either by 1) eigenvalue decomposition of

a covariance matrix of data, or 2) singular value decomposition of the data itself.

Explanations to both, as well as a brief description of the relationship between them,

will be provided.

First, using the covariance matrix, a data matrix A0, the matrix can be presented

as

A0 =


~x1 ~x2 ~x3 ... ~xN


,where ~xn,∀n ∈ N is an M x 1 column vector.

An important step at this point in principal component analysis is to subtract each

entry by the mean of the column. This step ensures the first principal component
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yields the direction of maximum variance. Let A represent this mean-centered

matrix. Of these vectors, an N x N sample covariance matrix Σ between the column

vectors can be derived by:

Σ =
1

N − 1
ATA (A.1)

The orthogonal eigenvectors of this matrix are the principal components if ordered by

decreasing eigenvalues. For large amounts of data, efficient extraction of eigenvalues

and eigvenvectors can be performed using the QR algorithm.

For PCA by singular value decomposition and its relationship to the sample co-

variance method, any MxN matrix A can be decomposed into

A = UΣ0V
T (A.2)

where U is an MxM matrix containing the eigenvectors of AAT , V is an NxN

matrix containing the eigenvectors of ATA, and Σ0 is an MxN matrix containing

what are known as the singular values of A, which lie as diagonal entries in Σ0

and are comprised of the square roots of the non-zero eigenvalues of AAT or ATA.

Therefore, it becomes evident that decomposing the sample covariance matrix to

obtain the eigenvectors is equivalent, up to the constant factor, to finding V. Hence,

singular value decomposition also provides a method to find the principal components.
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