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a b s t r a c t

We study the numerical recovery ofManning’s roughness coefficient for the diffusivewave

approximation of the shallow water equation. We describe a conjugate gradient method

for the numerical inversion. Numerical results for one-dimensional models are presented

to illustrate the feasibility of the approach. Also we provide a proof of the differentiability

of the weak formwith respect to the coefficient as well as the continuity and boundedness

of the linearized operator under reasonable assumptions using the maximal parabolic

regularity theory.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The diffusive wave approximation (DSW) of the shallow water equations (SWE) is often used to model overland flows

such as floods, dam breaks, and flows through vegetated areas [1–3]. The SWE result from the full Navier–Stokes system

with the assumption that the vertical momentum scales are small relative to those of the horizontal momentum. This

assumption reduces the vertical momentum equation to a hydrostatic pressure relation, which is integrated in the vertical

direction to arrive at a two-dimensional system known as the SWE. The DSW further simplifies the SWE by assuming that

the horizontalmomentumcan be linked to thewater height by an empirical formula, such asManning’s formula (also known

as Gauckler–Manning formula [4]) [5,6]. The DSW is a scalar parabolic equation which resembles nonlinear diffusion.

The DSW gives rise to the following initial/boundary value problem for the water height u






∂u

∂t
− ∇ · (k (u, ∇u) ∇u) = f in Ω × (0, T ]

u = u0 on Ω × {t = 0}
(k (u, ∇u) ∇u) · n = h on ΓN × (0, T ]
u = g on ΓD × (0, T ]

(1)

where Ω is an open bounded domain in Rd (d = 1, 2), and ΓN and ΓD are disjoint subsets of the boundary Γ = ∂Ω such

that Γ = ΓN ∪ ΓD. The forcing function (e.g., rainfall acting as a source or infiltration acting as a sink) f : Ω × (0, T ] → R,
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the initial condition u0 : Ω → R, and the Neumann and Dirichlet boundary conditions h : ΓN × (0, T ] → R and g : ΓD ×
(0, T ] → R are given. The diffusion coefficient k(u, ∇u) is given by

k(u, ∇u) = 1

cf
(u − z)α

|∇u|1−γ
= df

(u − z)α

|∇u|1−γ
,

where z : Ω :→ R+
is a nonnegative time-independent function that represents the bathymetric or topographic mea-

surements available for the region under analysis. The parameters γ and α satisfy 0 < γ ≤ 1 and 1 < α < 2. Following

Manning’s formula [7], we set these parameters to γ = 1

2
and α = 5

3
. The function cf (or equivalently df = 1

cf
) represents

Manning’s roughness coefficient, also known as the friction coefficient. The typical values are available in the literature [8,9].

We refer to [10,7] for recent mathematical analysis and to [7,11] for efficient numerical algorithms.

In practice, Manning’s coefficient cf is an empirically derived coefficient, and historically it was expected to be constant

and a function of the roughness only. It is nowwidely accepted that the values of the coefficients cf are only constant within

some range of flow rates, and depends strongly on many factors, including surface roughness, sinuosity and flow reach. The

presence of multiple influencing factors renders a direct measurement of the coefficient values less reliable and the use

of a single-valued coefficient also greatly constrains the practical utility of the DSW model to faithfully capture important

physical features of real open channel flows, for which a spatially-varying coefficient is necessary due to distinct physical

characteristics of different regions.

In this study, we propose to estimate the distributedManning coefficient directly fromwater heightmeasurements using

inversion techniques, that is, formulating an inverse problem for identifying the friction coefficient cf frommeasurements of

thewater-height acquired by sensors and infrared imaging. In comparisonwith directmeasurement, the proposed approach

does not require a knowledge of the physical properties of the overland environment, which might be difficult to directly

incorporate, and moreover, can naturally handle spatially varying coefficients. Therefore, a reliable and efficient estimate of

this coefficient is expected to greatly broaden the scope of the DSWmodel and to facilitate real-time simulation of the flow,

which is of immense significance in a number of applications, for example flood prediction and flood hazard assessment.

The goal of the present study is to propose an inversion algorithm and demonstrate its feasibility on simulation data for

one-dimensional models.

Webriefly comment on relevant studies on the inverse problem.Due to its conceived practical significance, it has received

some attention in the literature [12,13]. For example, Ding et al. [12] estimated Manning’s coefficient in the SWEwithin the

variational framework using the limited memory quasi-Newton method, and compared its performance with several other

optimization algorithms. However, these works have considered only the situation of recovering a few parameters (with a

maximum three), instead of estimating a distributedManning’s coefficient like here. If the number of unknowns is small, the

ill-posed nature of the problem does not evidence directly. Therefore, the present work represents a nontrivial step towards

the important task of estimating distributed Manning’s roughness coefficients.

2. Linearization of the forward map

In this section we describe the linearization of the forward map F : df → u(df ), where u(df ) denotes the solution to

system (1). The linearization is required for solving the forward problem (with a predictor–corrector method) and the in-

verse problem (adjoint and sensitivity problems; see Section 3). Therefore, its derivation is of independent interest. In order

to make the presentation accessible, we choose to derive the derivative operator informally. A rigorous derivation can be

found in Appendix A.

The bilinear form of problem (1) is

B(u, w) =
�

Ω

utwdx +
�

Ω

k(u, ∇u)∇u · ∇wdx

= (ut , w) + (k(u, ∇u)∇u, ∇w) ,

and the linear form is

�(w) =
�

Ω

fwdx +
�

ΓN

hwds = (f , w) + (h, w)ΓN .

The weak formulation of the problem reads: For almost all t ∈ (0, T ], find u with the given Dirichlet boundary condition

and initial data u(0) = u0 such that

B(u, w) = �(w) ∀w ∈ V ,

where V is an appropriate function space [7].

We shall seek the Gâteaux derivative of the bilinear form B at u, that is, d
d� B(u+�v, w)|�=0.We aim at deriving an explicit

formula to facilitate further developments. We proceed as follows. It follows from the product rule for differentiation that

∂B(u + �v, w)

∂�

����
�=0

= ∂

∂�

�
(ut + �vt , w) +

�
df

[(u + �v) − z]α

|∇u + �∇v|1−γ
(∇u + �∇v) , ∇w

������
�=0

= (vt , w) +
�
df

(u − z)α

|∇u|1−γ
∇v, ∇w

�
+ I + II,
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where the terms I and II are respectively given by

I =
�
df

∂[u + �v − z]α
∂�

∇u + �∇v

|∇u + �∇v|1−γ
, ∇w

�����
�=0

=
�
df α

(u − z)α−1

|∇u|1−γ
v∇u, ∇w

�
,

and

II =
�
df [u + �v − z]α ∂|∇u + �∇v|γ−1

∂�
(∇u + �∇v) , ∇w

�����
�=0

=
�
df (u − z)α (γ − 1) |∇u|γ−2

∇u
|∇u| · ∇v ∇u, ∇w

�

=
�
df (γ − 1)

(u − z)α

|∇u|3−γ
∇u · ∇v ∇u, ∇w

�
.

Here the second line follows from the relation |∇u| =
√

∇u · ∇u = (∇u · ∇u)
1

2 that implies

∂|∇u + �∇v|
∂�

����
�=0

= 1

2
((∇u + �∇v) · (∇u + �∇v))−

1

2 2(∇u + �∇v) · ∇v|�=0 = ∇u · ∇v

|∇u| .

Consequently, by combining all these identities, we arrive at the following formula

∂B (u + �v, w)

∂�

����
�=0

= (vt , w) +
�
df

(u − z)α

|∇u|1−γ
∇v, ∇w

�
+

�
df α

(u − z)α−1

|∇u|1−γ
v ∇u, ∇w

�

+
�
df (γ − 1)

(u − z)α

|∇u|1−γ

∇u
|∇u| · ∇v

∇u
|∇u| , ∇w

�

= (vt , w) + (k(u, ∇u) (I − (1 − γ ) η̃ ⊗ η̃) · ∇v, ∇w) +
�
k(u, ∇u)

α

(u − z)
v ∇u, ∇w

�

where I is the identity operator and the vector field η̃ = ∇u
|∇u| is the normalized gradient vector field. The matrix-valued

function η̃ ⊗ η̃ represents a projection operator onto the gradient direction η̃. Hence, the structure of the second term

indicates that, for the linearized problem, the diffusion along the gradient direction is attenuated by 1 − γ , whereas the

tangential component is not affected. To simplify notation we denote this attenuated diffusion tensor as

kηη(u, ∇u) = k(u, ∇u) (I − (1 − γ ) η̃ ⊗ η̃) .

Meanwhile, the linearized problem has a convection term (the third term), as a consequence of the nonlinear term involving

u. These structural terms relate to the underlying physics of the model.

It follows directly from the definition of the Gâteaux derivative, i.e., which is denoted by v = u�(df )d ∈ V and char-

acterizes the perturbation of u(df ) caused by a small perturbation of the coefficient df in the direction d that it (in weak

formulation) satisfies

(vt , w) +
�
kηη(u, ∇u) · ∇v, ∇w

�
+

�
α k(u, ∇u)
(u − z)

v ∇u, ∇w

�
= −

�
d
(u − z)α

|∇u|1−γ
∇u, ∇w

�

and the initial condition is v(0) = 0, since the initial data is not affected by a perturbation of the friction coefficient.

3. Inversion algorithm

Now we turn to the inverse problem of reconstructing the coefficient df from the measurements of water heights. As a

general rule, the inverse problem is ill-posed in the sense that small perturbations in the data can lead to large changes in

the solution. Hence we adopt a regularization strategy by incorporating a penalty term into the cost functional, following

the pioneering idea of Tikhonov and Arsenin [14]. More precisely, we consider the following penalized misfit functional

J(df ) = 1

2

� T

0

�

Ω

(u(df ) − g)2dxdt + δ

2

�

Ω

|∇df |2dx,

where the scalar δ is the regularization parameter, and g denotes the noisy measurements of the water height u(df ). With

minor modifications, the algorithm discussed below can also be applied to other measurements, for example, water height

on the boundary or scattered in the domain. The term �∇df �2

L2(Ω)
enforces smoothness on the sought-for coefficient, and

thereby restores the numerical stability necessary for practical computations. To numerically minimize the functional, we

adopt the conjugate gradient method. The method is of gradient descent type, and it only requires evaluating the gradient

of the functional J(df ) at each step. We note that the conjugate gradient method has been successfully applied to a wide
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variety of practical inverse problems, such as in heat transfer andmechanics; see for example, [15,16] and references therein

for details.

To derive a computationally efficient gradient formula, we first note that, given a (descent) direction d, the misfit term

in the functional J can be approximated using a Taylor expansion and ignoring higher order terms.

1

2

�
T

0

�

Ω

�
u(df + d) − g

�2
dxdt − 1

2

�
T

0

�

Ω

�
u(df ) − g

�2
dxdt

= 1

2

�
T

0

�

Ω

�
u(df + d) − u(df )

� �
u(df + d) − g + u(df ) − g

�
dxdt

≈
�

T

0

�

Ω

u
�(df )d

�
u(df ) − g

�
dxdt.

The approximation is reasonable if the magnitude of the direction d is small.

The last formula can be further simplified with the help of the adjoint problem for p, which in weak form reads

(−pt , w) +
�
kηη(u, ∇u) · ∇p, ∇w

�
+

�
α k(u, ∇u)

(u − z)
∇u · ∇p, w

�
=

�
u(df ) − g, w

�

together with the terminal condition p(T ) = 0. Recall the weak formulation of the sensitivity problem v = u
�(df )d, that is,

(vt , w) +
�
kηη(u, ∇u) · ∇v, ∇w

�
+

�
α k(u, ∇u)

(u − z)
v ∇u, ∇w

�
= −

�
d
(u − z)α

|∇u|1−γ
∇u, ∇w

�
,

togetherwith the initial condition v(0) = 0. Upon setting the test functionw = u
�(df ) d andw = p in theweak formulations

for p and u
�(df ) d, respectively, we arrive at

�
T

0

�
u(df ) − g, u�(df ) d

�
dt = −

�
T

0

�

Ω

d
(u − z)α

|∇u|1−γ
∇p · ∇udxdt −

�
T

0

d

dt
(p, u�(df )d)dt

= −
�

T

0

�

Ω

d
(u − z)α

|∇u|1−γ
∇p · ∇udxdt,

where the last identity follows from the initial condition for u
�(df ) d and terminal condition for p. This relation yields the

following concise gradient formula of the functional J(df )

J
�(df ) = −

�
T

0

(u − z)α

|∇u|1−γ
∇p · ∇udt − δ∆df .

We note that this gradient J
�(df ) is inappropriate for updating the coefficient df directly due to its lack of desired regularity.

The consistent gradient of the functional with respect to H
1(Ω), denoted by J

�
s
(df ), can be calculated as

−∆J
�
s
(df ) + J

�
s
(df ) = J

�(df )

with a homogeneous Neumann boundary condition.

Nowwe can give a complete description of the conjugate gradient method summarized in Algorithm 1. In the algorithm,

one has the freedom to choose the conjugate coefficient βk and the step size θk. There are several viable choices of the

conjugate coefficient [17]. One popular choice is suggested by Fletcher–Reeves, which reads

βk−1 =
�J �

s
(dk

f
)�2

L2(Ω)

�J �
s
(dk−1

f
)�2

L2(Ω)

with the convention β0 = 0, and then update the conjugate direction dk with

dk = J
�
s
(dk

f
) + βk−1dk−1.

Generally, the step size selection is of crucial importance for the performance of the algorithm. We have opted for the

following simple rule. By means of a Taylor expansion of the objective function J(dk
f

− θdk), with the forward solution

u(dk
f

− θdk) linearized around d
k

f
, we arrive at the following approximate formula for determining an appropriate step

size θk

θk =
�rk, u�(dk

f
)dk�L2(0,T ;L2(Ω)) + δ�∇d

k

f
, ∇dk�L2(Ω)

�u�(dk
f
)dk�2

L2(0,T ;L2(Ω))
+ δ�∇dk�2

L2(Ω)

,

where rk = u(dk
f
) − g denotes the misfit (residual). The step size θk is determined to enforce a reduction in the functional

value, that is, J
�
d
k

f
− θk J

�
s
(dk

f
)
�

≤ J(dk
f
). Our experience with other inverse problems indicates that this choice works
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Algorithm 1 Conjugate gradient method.
1: Set k = 0 and choose initial guess d0f .
2: repeat
3: Solve direct problem with df = dkf , and determine residual rk = u(dkf ) − g .
4: Solve adjoint problem with right hand side rk.
5: Calculate gradient J �s(d

k
f ), conjugate coefficient βk, and direction dk.

6: Solve the sensitivity problem with direction d = dk.
7: Compute step length θk in conjugate direction dk.
8: Update coefficient dkf = dkf − θkdk.
9: Increase k by one.

10: until A stopping criterion is satisfied.
11: Output approximation df

Table 1
Numerical results (error e) for different noise levels.

ε 0% 0.5% 1% 2%

Example 1 5.94e−3 2.00e−2 2.90e−2 4.52e−2
Example 2 4.49e−2 6.41e−2 7.49e−2 9.99e−2
Example 3 4.05e−2 5.15e−2 5.94e−2 9.42e−2

reasonably well in practice [16]. Advanced step size selection rules, such as, the Barzilai–Borwein rule with backtracking,
may also be adopted to further enhance the performance. The algorithm terminates if the selected step size falls below
1.0×10−3. Overall, each step of the iteration invokes three forward solves: the (nonlinear) forward solve for computing the
map u(df ), the (linear) adjoint solve for calculating the adjoint p(df ) and consequently the gradient J �(df ) and the (linear)
sensitivity solve for selecting the step size θ . The extra computational effort for computing the smoothed gradient J �s(df ) is
marginal compared with other steps due to its simple structure.

4. Numerical experiments and discussions

Here we present some numerical results for one-dimensional examples to illustrate the feasibility of the proposed
inversion technique. The forward problem is discretized using piecewise linear finite elements in space and the generalized-
α method in time (detailed in Appendix B). The adjoint and sensitivity problems are both solved with the generalized-α
method.

The spatial domain Ω = [−2, 2], and the mesh size h is 1
4 . The time interval is

�
0, 1

2

�
, and the time step size is 1

40 .
This mesh was used for both generating the exact data and used in the inversion step (i.e., adjoint problem and sensitivity
problem). We note that we also experimented with using finer mesh for generating the exact data, and the reconstructions
are identical. Also both the forward solution u(df ) and the coefficient df are represented in this mesh. The initial guess for
the coefficient is df = 1. The noisy data g are generated pointwise as

g = u(dĎf ) + ε max
(x,t)∈Ω×[0,T ]

����u(dĎf )
���
�

ζ ,

where ε is the relative noise level, and the random variable (noise) ζ follows a standard Gaussian distribution. The choice
of the regularization parameter δ is crucial in any regularization strategies [14]. There have been intensive studies on its
appropriate choice which have led to systematical and rigorous rules for choosing an appropriate value; see [18,19] for
recent progress. However, in this preliminary study, we have opted for the conventional trial-and-error approach.

We consider three examples: one with a smooth coefficient, and two with a discontinuous coefficient. First, we consider
the recovery of a continuous coefficient.

Example 1. The forward problem has a homogeneous Neumann boundary condition, and the initial condition u0 is u0 =
− 1

4x + 3
2 . The exact coefficient is dĎf (x) = 1 + 1

16 (x
2 − 4)2.

Fig. 1(a) and Table 1 show the numerical results for Example 1, where e is the relative error of an approximation df ,
defined as e = �df − dĎf �L2(Ω)/�dĎf �L2(Ω). The reconstructions are in reasonable agreement with the exact coefficient dĎf
for up to 2% noise in the data. Hence the proposed method is stable and accurate. We note that the approximation near the
boundary seems less accurate compared to other regions. The error e decreases as the noise level � decreases to zero; see also
Table 1. Overall, the convergence of the inversion algorithm is rather steady; see Fig. 1(b) and (c). While the functional value
J(dkf ) decreasesmonotonically as the iteration proceeds, the convergence of the error e exhibits a clear valley, indicating that
a premature termination of the algorithm might result in sub-optimal reconstructions.

Then we consider the recovery of a discontinuous coefficient.
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Fig. 1. Numerical results for Example 1. Here the convergence of Algorithm 1 is for ε = 2% noise.

Example 2. The boundary condition and the initial condition of the problem are identical to those in Example 1. The exact

coefficient is dĎf = 1 + χ[− 5

4
, 3
4
], where χ denotes the characteristic function.

Fig. 2(a) and Table 1 present the numerical results for Example 2. The convergence of the result with respect to the

noise level ε is again clearly observed. The reconstructions capture the overall shape of the true solution. However, the

discontinuities are notwell resolved, even for exact data, and consequently the results are less accurate comparedwith those

for Example 1. This is attributed to the presence of discontinuities in the sought-for solution dĎf , which cannot be accurately

approximated using the smoothness penalty |∇df |2L2(Ω)
. Discontinuity preserving penalties, such as total variation, might

be employed to improve the resolution. Nonetheless, the conjugate gradient algorithm remains fairly steady; see Fig. 2(b)

and (c).

A last example considers the recovery of a more complex coefficient profile.

Example 3. The boundary condition and the initial condition of the problem are identical with those in Example 1. The exact

coefficient dĎf (x) is given by dĎf = 1 − 1

2
χ[− 7

8
,− 3

8
] + 1

2
χ[ 5

8
, 9
8
].

Here the true solution has more refined details, and hence the spatial mesh size h is accordingly refined to
1

8
for a better

resolution. The results for Example 3 are shown in Fig. 3 and Table 1. The convergence of the numerical reconstruction

with respect to the noise level is again observed; see Table 1. The observations for the previous example remain valid: the

numerical reconstructions roughly capture the profile of the true solution, but fail to resolve accurately the discontinuities,

and the algorithm converges steadily and reasonably quick.

5. Concluding remarks

We have presented an inversion technique for estimating Manning’s coefficient in the diffusive wave approximation of

the shallow water equations. The results show that the proposed approach is capable of yielding an accurate and stable

estimate in the presence of noise. We have also detailed a careful study of the properties of the forward map, in particular,
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Fig. 2. Numerical results for Example 2. Here the convergence of Algorithm 1 is for ε = 2% noise.

we discuss its continuity and differentiability based onmaximal regularity theory for parabolic problems. Themathematical

analysis, such as, convergence and convergence rates, of such an inversion technique remains to be investigated. Also the

evaluation of the method on real data is of significant interest.
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Appendix A. Properties of the forward map

In this part, we briefly discuss the continuity and differentiability of the forward map F : L∞ → L
2(0, T ;H1(Ω)), df �→

u(df ) based on maximal regularity theory for parabolic problems [20]. The conditions in Theorem A.1 impose a certain

regularity constraint on the coefficient df as well as on the boundary and initial conditions. Such mapping properties

are essential for analyzing commonly used regularization schemes, for example, Tikhonov regularization and Landweber

iteration for solving the inverse problem, and for establishing the convergence of numerical algorithms.

We first show the Lipschitz continuity of the forward map F .

Theorem A.1. Assume that �u(df )�L∞ and �∇u(df )�L∞ are uniformly bounded, and that df , |∇u(df )| and (u(df )−z) are strictly

positive, and further the gradient |∇(t u(df ) + (1 − t)u(d̃f ))| is strictly positive for all t ∈ (0, 1) and df , d̃f in the admissible set

A. Then if γ is sufficiently close to unity, the mapping F : L∞ → L
2(0, T ;H1(Ω)) given by df �→ u(df ) is Lipschitz continuous

on A.
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Fig. 3. Numerical results for Example 3. Here the convergence of Algorithm 1 is for ε = 2% noise.

Proof. Wedenote by k
�
u, ∇u; df

�
= df (u−z)α

|∇u|1−γ and ũ = u(d̃f ), and let v = u−ũ. We denote the bilinear formparameterized

by df as

B(u, w; df ) = (ut , w) +
�
k(u, ∇u; df )∇u, ∇w

�
.

By subtracting the bilinear forms B(u, w; df ) = �(w) and B(ũ, w, d̃f ) = �(w) and choosing w = v, we arrive at

0 =
�
ut − ũt , w

�
+

�
k(u, ∇u; df )∇u − k(ũ, ∇ũ; d̃f )∇ũ, ∇w

�
,

which by virtue of the assumptions on u and ∇u can be rearranged into

1

2
∂t�v�2

L2 + CK�∇v�2

L2 ≤ −
�
k(u, ∇u; df − d̃f )∇u, ∇v

�
−

��
k(u, ∇u; d̃f ) − k(ũ, ∇ũ; d̃f )

�
∇ũ, ∇v

�
:= I + II,

where CK is the coercivity constant for the bilinear form B(·, ·). Using the Cauchy–Schwarz inequality and Young’s inequality,

the first summand I on the right hand side can be estimated as follows

I ≤ C(�1)�df − d̃f �2

L∞ + �1�∇v�2

L2 .

Meanwhile, we split the nonlinear term in the bracket in the second summand II into

k(u, ∇u; d̃f ) − k(ũ, ∇ũ; d̃f ) = d̃f

�
(u − z)α

�
|∇ũ|1−γ − |∇u|1−γ

�

|∇u|1−γ |∇ũ|1−γ
+ (u − z)α −

�
ũ − z

�α

|∇ũ|1−γ

�

. (2)

Now the mean value theorem gives

(u − z)α −
�
ũ − z

�α = α (ū − z)α−1 v, (3)
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where ū is an element between u and ũ, and also by means of the Taylor expansion

|∇ũ|1−γ − |∇u|1−γ = (1 − γ ) v · ∇v, (4)

and the function

v =
� 1

0

∇(u − sv)

|∇(u − sv)|1+γ
ds,

which by assumption is bounded in L∞. Consequently by Young’s inequality, we get

II ≤ (1 − γ ) �k(u, ∇u, d̃f )�L∞�v�L∞�∇ũ�γ
L∞�∇v�2

L2 + C
�
�−1
2 �v�2

L2 + �2

4
�∇v�2

L2

�

≤ C ((1 − γ ) + �2) �∇v�2
L2 + C�−1

2 �v�2
L2 .

Since γ is close to unity and for sufficiently small �1, �2, µ := C ((1 − γ ) + �1 + �2) < CK , we obtain

1
2
∂t�v�2

L2 + (CK − µ) �∇v�2
L2 ≤ C�−1

2 �v�2
L2 + C�df − d̃f �2

L∞

Now an application of Grönwall’s inequality leads to

�v�2
L2 +

� T

0
�∇v�2

L2ds ≤ C�df − d̃f �2
L∞

upon noting the condition u(0) = ũ(0). �

Our next result improves the regularity of the map in Theorem A.1 by invoking Gröger’s maximal regularity theory [20],
which is needed for the differentiability.

Theorem A.2. Let the assumptions in Theorem A.1 be fulfilled. Then the mapping F : L∞ → L2(0, T ;W 1,p(Ω)), df �→ u(df ) is
Lipschitz continuous for some p ∈ (2, ∞).

Proof. As before, we denote by

k(u, ∇u; df ) = df
(u − z)α

|∇u|1−γ

and ũ = u(d̃f ), and let v = u − ũ. Then v solves

vt + Av = f

with

Av = −∇ ·
��

k(u, ∇u; d̃f ) − k(ũ, ∇ũ; d̃f )
�

∇ũ + k(u, ∇u; d̃f )∇v
�

and f = ∇ ·
�
k(u, ∇u; df − d̃f )∇u

�
. Clearly, f ∈ Lp(0, T ; (W 1,p)�) for df −d̃f ∈ Lp because the remaining terms are uniformly

bounded in L∞. To apply Gröger’s theorem [20, Theorem 2.1], we only need to show the coercivity and boundedness of the
operator A defined above. By using the Taylor expansions (3) and (4) in the splitting (2), we can rearrange the differential A
into

(Av, w) =
�
k(u, ∇u; d̃f ) (1 − γ ) |∇ũ|γ−1v · ∇v∇ũ, ∇w

�

−
�
d̃f α (ū − z)α−1 |∇ũ|γ−1v∇ũ, ∇w

�
+

�
k(u, ∇u; d̃f )∇v, ∇w

�
.

In view of the strict positivity of the term k(u, ∇u; d̃f ), that the parameter γ is close to one and that the quantities u, ∇u
etc. are uniformly bounded, we deduce that

(Av, v) ≥ cA�∇v�L2 − CA�v�L2

for some constants cA, CA > 0. Hence, the associated matrix-valued coefficient in the differential operator is pointwise
bounded from below and above away from zero. The continuity of the operator follows similarly. Consequently, an applica-
tion of Gröger’s theorem [20] directly yields the desired estimate

� T
0 �v(s)�2

W1,pds ≤ C�d�L∞ for some p ∈ (2, ∞). �

Remark A.1. The exponent p ∈ (2, ∞) in Theorem A.2 depends on the spatial dimension, the pointwise upper and lower
bounds of the conductivity k(u, ∇u; df ) and the smoothness of the domain Ω; see [20] for details.
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Next we show the boundedness of the linearized map.

Theorem A.3. Let the assumptions in Theorem A.1 be fulfilled, and the linear map F
� : L

∞ → L
2(0, T ;H1(Ω)) be defined by

d �→ v, with v given by

(vt , w) + (k(u, ∇u)[I − (1 − γ ) η̃ ⊗ η̃] · ∇v, ∇w) +
�
df α

(u − z)α−1 v

|∇u|1−γ
∇u, ∇w

�
= −

�
d
(u − z)α

|∇u|1−γ
∇u, ∇w

�
,

with the initial condition v(0) = 0. Then the linear map F
�
is bounded.

Proof. Insert w := v to get

1
2
∂t�v�2

L2(Ω)
+

�
k(u, ∇u; df )∇v, [I − (1 − γ ) η̃ ⊗ η̃]∇v

�

= −
�
df α

(u − z)α−1 v

|∇u|1−γ
∇u, ∇v

�
−

�
d
(u − z)α

|∇u|1−γ
∇u, ∇v

�
:= I + II.

Using the Cauchy–Schwarz inequality and Young’s inequality, the term I can be bounded by

I ≤ C(�1)�df �2
L∞� (u − z)α−1 |∇u|γ �2

L∞�v�2
L2 + �1�∇v�2

L2 ,

where �1 > 0 is arbitrary. Similarly, the term II can be bounded by: for any �2 > 0

II ≤ C(�2)�d�2
L∞�df �2

L∞� (u − z)α |∇u|γ �2
L2 + �2�∇v�2

L2 .

Recall that γ is strictly less than unity, and hence I − (1 − γ ) η̃ ⊗ η̃ is strictly positive definite, and the diffusion coefficient
k(u, ∇u; df ) is strictly positive (independent of df ). Therefore, these estimates altogether give

1
2
∂t�v�2

L2(Ω)
+ �∇v�2

L2 ≤ C

�
�v�2

L2 + �d�2
L∞

�
.

Applying Grönwall’s inequality and noting that v(0) = 0, the desired assertion follows. �

Remark A.2. The condition that the parameter γ is close to 1 is not required in TheoremA.3. A direct application of Gröger’s
theorem indicates that the map F

� : L∞ �→ L
p(0, T ;W 1,p(Ω)) is also bounded.

Finally, we show the Fréchet differentiability of the forward map.

Theorem A.4. Let the assumptions in Theorem A.1 be fulfilled, and the bounded linear map u
�(df )d be defined in Theorem A.3.

Then u
�(df )d is the Fréchet derivative of the map df → u(df ), i.e.,

lim
�d�

L∞→0

�u(df + d) − u(df ) − u
�(df )d�L2(0,T ;H1(Ω))

�d�L∞
= 0.

Proof. We denote by k(u, ∇u; df ) = df
(u−z)α

|∇u|1−γ and d̃f = df + d, ũ = u(d̃f ), u = u(df ) and ū = u
�(df )d and let v = ũ − u,

w = ũ − u − ū. We also denote D(u) = (1 − γ ) η̃ ⊗ η̃. Then it directly follows from the weak formulations for ũ, u and ū

that

(wt , w) +
�
k(ũ, ∇ũ; d̃f )∇ũ − k(u, ∇u; d̃f )∇u, ∇w

�

=
�
k(u, ∇u; df ) (I − D(u)) ∇ū, ∇w

�
+

�
df α

(u − z)α−1
ū

|∇u|1−γ
∇u, ∇w

�
,

which upon rearrangement and noting the assumptions on u and ∇u yields

(wt , w) + (k(u, ∇u; d̃f )∇w, ∇w) = ((k(u, ∇u; d̃f ) − k(ũ, ∇ũ; d̃f ))∇ũ, ∇w)
� �� �

I

−(k(u, ∇u; d)∇ū, ∇w)� �� �
II

− (k(u, ∇u; df )D(u)∇ū, ∇w)
� �� �

III

+
�
df α

(u − z)α−1
ū

|∇u|1−γ
∇u, ∇w

�

� �� �
IV

.

It suffices to estimate the four terms on the right hand side. First, by means of the Cauchy–Schwarz inequality and Young’s
inequality, the term II can be estimated by

|II| ≤ C�d�L∞�∇ū�
L2�∇w�

L2 ,
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To bound the first term I , we further split it into

I =
�
k(u, ∇u; d̃f )

(|∇ũ|1−γ − |∇u|1−γ )

|∇ũ|1−γ
∇ũ, ∇w

�
+

�
d̃f

(u − z)α − (ũ − z)α

|∇ũ|1−γ
∇ũ, ∇w

�
:= V + VI.

Now we employ the Taylor expansion

|∇ũ|1−γ = |∇u|1−γ + (1 − γ )|∇u|−γ−1∇u · ∇v + K∇v2

with the matrix-valued function K given by

K = −
� 1

0
(1 − t)

�
(1 − γ 2)φ(t)φ(t)t |φ(t)|−γ−3 + (1 − γ )|φ(t)|−1−γ I

�
dt

and φ(t) = ∇(u + tv). With the help of this expansion, we derive that

V − III = (k(u, ∇u; df )D(u)∇w, ∇w) + (1 − γ )

�
k(u, ∇u; df )

∇u · ∇v

|∇u|

� |∇u|1−γ ∇ũ
|∇ũ|1−γ |∇u| − ∇u

|∇u|

�
, ∇w

�

� �� �
VII

+ (1 − γ )

�
k(u, ∇u; d)∇u · ∇v

|∇u|1+γ

∇ũ
|∇ũ|1−γ

, ∇w

�

� �� �
VIII

+
�
k(u, ∇u; d̃f )

K∇v2

|∇ũ|1−γ
∇ũ, ∇w

�

� �� �
IX

.

Next we estimate the terms on the right-hand side one by one. First, let p be the exponent from Theorem A.2 and choose
q > 2 such that 1

p + 1
q = 1

2 . Then by the uniform L∞ boundedness of u and ∇u (also ũ, ∇ũ etc.)

VII =
�
k(u, ∇u; df )

∇u · ∇v

|∇u|2 |∇ũ|γ−1 �
|∇u|1−γ ∇v + ∇u(|∇u|1−γ − |∇ũ|1−γ )

�
, ∇w

�

≤ C�∇v�Lp�∇v�Lq�∇w�L2 + C�|∇v|(|∇u|1−γ − |∇ũ|1−γ )�L2�∇w�L2

≤ C�∇v�Lp�∇v�Lq�∇w�L2 + C�|∇v|2�L2�∇w�L2

≤ C�∇v�Lp�∇v�Lq�∇w�L2 ≤ C�∇v�1+δ
Lp �∇w�L2 ,

where in the third line we have utilized the expansion (4), and the last line follows from the fact that either �∇v�Lq ≤
C�∇v�Lp holds for q < p or �∇v�Lq ≤ C�∇v�δ

Lp holds for some 0 < δ < 1 due to the L∞-boundedness of ∇u and ∇ũ.
Similarly, the terms VIII and IX can be bounded by

VIII ≤ C�d�L∞�∇v�L2�∇w�L2 and IX ≤ C�∇v�1+δ
Lp �∇w�L2 .

Next we combine the terms VI and IV . To this end, we employ the Taylor expansion

(ũ − z)α = (u − z)α + α(u − z)α−1v + 1
2
α(α − 1)(û − z)α−2v2

with û being some function pointwise between u and ũ we can estimate. With the help of this identity, we arrive at the
following splitting

VI + IV = −
�
df α

(u − z)α−1w

|∇u|1−γ
∇u, ∇w

�
+

�
df α(u − z)α−1v

� ∇u
|∇u|1−γ

− ∇ũ
|∇ũ|1−γ

�
, ∇w

�

� �� �
X

−
�
dα

(u − z)α−1

|∇ũ|1−γ
v∇ũ, ∇w

�

� �� �
XI

− 1
2

�
d̃f α(α − 1)

(η − z)α−2

|∇ũ|1−γ
v2∇ũ, ∇w

�

� �� �
XII

.

Consequently, by the uniform boundedness of the quantities u, ∇u (and ũ, ∇ũ etc.) and Sobolev’s embedding theorem, we
have

X ≤ C�v�1+δ

W1,P �∇w�L2 , XI ≤ C�d�L∞�v�W1,p�∇w�L2 , XII ≤ C�∇v�1+δ

W1,p�∇w�L2 .

These estimates, Young’s inequality and that γ is close to unity (hence D(u) can be made arbitrarily small for γ close to
unity) yield

1
2
∂t�w�2

L2 + CK

2
�∇w�2

L2 ≤ C
�
�d�2

L∞�v�2
W1,p + �v�2+2δ

W1,p + �w�2
L2

�
.
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Finally, an application of Grönwall’s inequality and Theorem A.2 lead to

�w�2
L2 +

� T

0
�∇w�2

L2ds ≤ C�d�2+2δ
L∞

upon noting the initial condition w(0) = 0. This concludes the proof. �

Remark A.3. An inspection of the proof indicates that the assumptions on the solution u(df ) and gradient can be greatly
relaxed if the parameter γ = 1. The latter case is analogous to the porous media equation, and thus the results are of
independent interest.

Appendix B. Generalized-α method

In this Appendix, we describe the generalized-α method. Note that for the full discretization of the forward problem, each
time step involves solving a highly nonlinear (and possibly also stiff) system. Hence a careful treatment of the time stepping
is required. To this end, we employ the so-called generalized-α method together with a predictor–correctormethod [21,11].
For a first-order system, the method can be stated as follows: given (un, u̇n), find (un+1, u̇n+1, un+αf , u̇n+αm) such that






R(un+αf , u̇n+αm) = 0,
un+αf = un + αf (un+1 − un),
u̇n+αm = u̇n + αm(u̇n+1 − u̇n),
un+1 = un + ∆t((1 − γ )u̇n + γ u̇n+1),

where ∆t = tn+1 − tn is the time step size, αf , αm and γ are real valued parameters of the method, and R(un+αf , u̇n+αm)
denotes the (discrete) residual of the nonlinear system. For a linear model problem, unconditional stability of the scheme is
attained if αm ≥ αf ≥ 1

2 , and a second-order accuracy can be achieved with the choice γ = 1
2 + αm − αf [21]. The method

can be succinctly parameterized by the spectral radius ρ∞ into a one-parameter family. Then the parameters αm, αf and γ
can be expressed as [21]

αf = 1
1 + ρ∞

, αm = 3 − ρ∞
2(1 + ρ∞)

, γ = 1
1 + ρ∞

.

Algorithm 2 Generalized-α method.

1: Compute predictor u(0)
n+1 = un and u̇(0)

n+1 = γ−1
γ

u̇n, and set i = 0.

2: Set the initial guess of u(0)
n+αf and u(0)

n+αm as

u(0)
n+αf = un + αf (u

(0)
n+1 − un) and u̇(0)

n+αm = u̇n + αm(u̇(0)
n+1 − u̇n).

3: while i < MaxIter do
4: Evaluate the Newton residual R(i)

n+1 = R(u(i)
n+αf , u̇

(i)
n+αm).

5: Calculate the Jacobian

K (i)
n+1 =

∂R(u(i)
n+αf , u̇

(i)
n+αm)

∂un+αf

+ αm[αf γ∆t]−1
∂R(u(i)

n+αf , u̇
(i)
n+αm)

∂ u̇n+αm

.

6: Solve Newton system for the corrector ∆u(i)
n+1 from K (i)

n+1∆u(i)
n+1 = −R(i)

n+1.
7: Update the solutions u(i+1)

n+αf and u̇(i+1)
n+αm by

u(i+1)
n+αf = u(i)

n+1 + ∆u(i)
n+1,

u̇(i+1)
n+αm = (1 − γ −1αm)u̇(i)

n+1 + αm[γ∆tαf ]−1(u(i+1)
n+αf − un).

8: Check the stopping criterion: if �R(i)
n+1� ≤ ��R(0)

n+1�, stop iteration.
9: Increase index i = i + 1.

10: end while
11: Output the solutions un+1 and u̇n+1 by

un+1 = un + α−1
f (u(MaxIter)

n+αf − un) and u̇n+1 = u̇n + α−1
m (u̇(MaxIter)

n+αm − u̇n).
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A complete description of the generalized-α method is given in Algorithm 2. It is of predictor/corrector type with correctors
computed by a Newton method, where the superscript indices indicate the corrector steps within the loop. In our
implementation, we have set ρ∞ = 0.1, and the tolerance � in the stopping criterion to 1.0 × 10−6 and the maximum
number of iterations (MaxIter) to 20. The major computational effort of Algorithm 2 lies in calculating the Jacobian matrix
K (i)
n+1 for the Newton system, i.e., step 5. For large-scale problems, iterative solvers, e.g., GMRES or BiCGstab, which requires

only matrix-vector multiplication, are preferable [21].
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