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Abstract

Many epidemiological approaches have been proposed to forecast the incidence of

infectious diseases such as influenza, malaria, or dengue fever. However, little has

been done in the literature to thoroughly understand the accuracy of the forecasts

produced by these approaches. Thus, in general the extent to which one model may be

more effective than another at forecasting specific diseases is not clear. Additionally,

further investigation is required to understand, whether gathering local information

such as climate data or connectivity and human mobility across geographic regions

will significantly improve predictions across models. In this thesis, two modeling

approaches were developed, implemented, and validated to predict dengue fever in-

cidence in Mexico. Namely, a set of statistical models and a dynamic deterministic

model were designed and implemented to identify their abilities to forecast dengue.

A comparative analysis was performed amongst the constructed statistical and de-

terministic models to understand their forecasting power. While findings may be

expected to change across geographic locations at finer spatial scales, the results of

this national analysis indicate that the autoregressive and deterministic approaches

are capable of predicting the dengue incidence very well, and producing compara-

ble forecasts for a one month time window. While extensions of the autoregressive

models that included seasonality further improved model forecasts, it was found that

adding climate covariates, such as temperature and precipitation, as predictors in

our autoregressive models did not show consistent improvements. This suggests that

further work needs to be pursued in order to understand the potential implications

of climate changes in dengue fever incidence.
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Chapter 1

Introduction

1.1 Motivation

John Snow, the physician credited with the removal of a water pump on Broad

Street in London, is widely recognized in the field of public health. During September

of 1854, in the vicinity of Broad Street, 127 people had died from cholera. Within

the next 10 days, the number of deaths had reached to an astounding 500. Snow

took the initiative to gather information about the use of particular water pumps

in the neighborhood and connected the deaths of individuals to the infamous pump

on Broad Street; thus establishing a causal relationship between polluted water and

cholera transmission. [30]

Using data analysis as a tool to track diseases has been around for over 100 years.

The significance behind Snow’s story relates to using data, the number of cholera

incidents within the vicinity of the Soho district in London, to target and eliminate

the spread of an infectious disease. Since 1854, we have come a long way with the

development of sophisticated epidemiological models only to be met with the challenge

of further mutations and development of the diseases we are trying to monitor.

1



In this research project, we aim to use quantitative analysis to understand the

patterns of dengue fever in Mexico. Dengue, an illness transmitted by mosquitoes,

is endemic to many South Asian and Latin American countries and affects millions

of people every year. Using effective modeling approaches to monitor and forecast

dengue trends would allow us to measure epidemics before they occur – giving public

health officials time to prepare with the necessary supplies and task force. Multiple

modeling techniques, such as statistical and deterministic approaches, are capable

of capturing dengue trends efficiently. Certain models incorporate climate variables

and the interaction of mosquito vectors to enhance their predictions. However, to

what extent is one model more effective than the other? To address this question,

it is necessary to construct, implement, and perform a comparative analysis of the

predictive models.

In literature, there exists a plethora of dengue models applied to many geographic

regions. Comparing all these models is a large task and outside the scope of this thesis;

therefore, we wish to explore our question by specifically focusing on the country of

Mexico. The goal of this project is to use Mexico as a case study to construct and

evaluate the predictive abilities of two complementary epidemiological models for

dengue fever; namely the deterministic and statistical approaches.

1.2 Biological Information about Dengue

Dengue fever is a common vector borne illness that afflicts approximately 50-

100 million people per year and its incidence has grown by 30-fold over the past 50

years – making it one of the most important viral disease spread by mosquitoes. [31]

Symptoms of this mosquito-borne infection may range from a severe flu-like illness

to hemorrhagic fever, which could potentially lead to death. [31] The Aedes aegypti

and Aedes albopictus species of the mosquito are known to be the principal vectors
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responsible for spreading the dengue virus. [4] Dengue is found in 4 different strains

(DENV 1, DENV 2, DENV 3, DENV 4) which are spread to humans through the

mosquito vector. Additionally, an infected human has the potential to spread the

disease to other locations if an uninfected mosquito bites the individual and becomes

an infected vector. This infected vector can continue the cycle by biting other unin-

fected humans. Once a human has been infected by one specific strain, he or she is

immune to future infections from this particular strain. However, repeated infections

from different dengue virus strains can put individuals at risk of developing a severe

case of dengue hemorrhagic fever (DHF). [4]

Dengue fever and DHF are commonly present in areas such as Latin America

and Thailand, where the suitable environmental conditions allow for the growth and

reproduction of the mosquito vectors. This includes many areas with high levels of

precipitation, humidity, and temperature. [22, 23, 2] These climate factors influence the

conditions that help to foster breeding grounds for vectors capable of spreading the

dengue virus. [11] In addition to the climate effects on dengue incidences, geographic

locations play a role in the number of dengue strains present, which can determine

the severity of dengue in a particular location. For example, since the 1950s there

have been dengue strains specific to areas such as the Caribbean Islands, Mexico, and

South Asia. However, over time, these dengue strains are also expanding their reach

by invading other geographical regions where they did not originally exist. [17]

Without a vaccine capable of preventing dengue, the only tactic used to prevent

infections is to decrease the risk of mosquito bites. [4] It is essential to monitor the

prevalence of dengue over time, especially in countries with a history of dengue epi-

demics since we lack an option to curtail future infections. Much research is being

conducted to develop predictive models to monitor the spread of dengue fever in

particular geographical areas. Multiple approaches can be taken to develop these
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models; however, it is also important to evaluate and question whether the results

are accurate and provide us with useful information.

1.3 Dataset Information

Obtaining an extensive set of reliable dengue cases is important for building and

validating models. Therefore, to address the main research question of a comparative

analysis of dengue prediction models, we used the best available set of dengue cases.

Mexico’s Ministry of Health provided monthly counts of dengue cases for various

states from January of 1985 to December of 2011. Using this dataset, we assessed the

quality of two different forecasting strategies: autoregressive deterministic modeling.

The autoregressive models were additionally extended to include covariate data such

as: temperature, precipitation, and relative humidity. Climate data from January of

1985 to December of 2011 were obtained from the National Oceanic and Atmospheric

Administration (NOAA). Monthly temperature averages were measured in Celsius

and obtained over a gridded area of Mexico. Precipitation, measured as average

millimeters per day, and relative humidity, measured as a percentage, were obtained

in the same manner as temperature. Finally, statistical models were built using R

statistical software while deterministic models were built using MATLAB.

1.4 Summary of Model Analysis

In Chapter 2, we construct 32 different autoregressive models and their covari-

ate extensions to study whether there is a significant improvement in their predictive

ability. Generally, complex autoregressive models, which factor in seasonality, showed

the greatest improvement in model prediction. Then to draw comparisons to the de-

terministic models, we developed a system of differential equations based on our own

set of assumptions, found in Chapter 3. The result of the deterministic model is com-
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parable to the simpler autoregressive models, indicating that further modifications of

the deterministic model could lead to improved predictions. The autoregressive or

statistical approach requires a few years worth of data to construct and train a model,

where as the deterministic approach only requires the initial values to generate dy-

namic predictions for the immediate future. We will touch more upon the evaluation

of the two methods in Chapter 4 of this work.
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Chapter 2

Autoregressive Models

The current chapter presents the construction of 32 different simple and complex

autoregressive models in addition to their covariate extensions. Section 2.1 provides

background information about the applications of autoregressive models to predict

dengue cases in different regions of the world. In Sections 2.2 - 2.4, we continue by

describing components of an autoregressive model and the steps taken to construct

them. Finally, in 2.5, we present the results of the regular autoregressive models and

their covariate extensions.

2.1 Overview of Autoregressive Models

Autoregressive models are applicable to phenomena where future predictions are

influenced by lagged terms of a particular variable of interest. Under the assumption

that present time points are dependent on past time lags, autoregressive models

have been used to study a wide range of topics from seismo-volcanic activity to

meteorological patterns. [14, 16] Specifically, in the field of public health, incidence of

dengue fever has been modeled using autoregression and its extensions. [19, 9, 27, 28, 21]

Extensions of these models incorporate external meteorological covariates to improve

the accuracy of dengue case predictions. [9]
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This project uses the main assumption of autoregressive analysis to construct

regular autoregressive models (AR), seasonal autoregressive models (SARIMA), and

autoregressive models with climate covariates by utilizing reported monthly dengue

cases in Mexico from January 1985 to December 2011. Overall, the SARIMA model

has been found to generate the most accurate predictions in various countries since

the additional seasonal component is able to capture the cyclic pattern of dengue

cases across many years. [19, 27, 28] Although studies are able to construct the best

fitting models for each country, there is a large discrepancy amongst these optimal

models. There is no universal autoregressive model that can be applied to many

countries or even smaller geographic regions within a country. For example, in both

Thailand and Indonesia monthly dengue cases were used to develop SARIMA models

for particular regions of the country; however, the best-fitting models changed along

with the specific geographic regions within each country. [27, 28]

The latter models indicate that autoregression is sensitive to geographic locations,

since we focus our efforts on predicting dengue cases at the national level, we do not

explore the potential geographic heterogeneities in models that may arise at finer

spatial scales. Therefore, we aim to compare the predictive abilities of different AR

and SARIMA models and their extensions applied to national dengue cases in Mexico.

2.2 Components of Autoregressive Models

2.2.1 Lagged Terms

Autoregressive models assume that correlations exist between the value of a vari-

able at a particular time point and lagged terms of the same variable. In the same

manner used to construct linear regression models, the response variable is regressed

against lagged terms of the variable itself. While constructing these models, it is

important to methodologically establish whether or not there exists a relationship

7



between the explanatory and response variables by screening for the correlation of

the variables against its lagged terms. In section 2.2.2, we illustrate how the autocor-

relation function can be used to determine the number of lagged terms, denoted by

the letter p. The notation AR(p) denotes a pth order autoregressive model consisting

of p lagged terms.

yt =
n∑

i=1

βiyt−i + εt (2.1)

In the equation above, yt represents the variable at time t as a representation of

the combination of i time lags given by βiyt−i and an error term, εt. Data is used to

solve the system of equations to determine each βi coefficient using some version of

the least squares approach. For example, if we are constructing an AR(2) model, the

system of linear equations in matrix notation would be as follows:



yt−1 yt−2

y(t+1)−1 y(t+1)−2

... ...

y(t+n)−1 y(t+n)−2


β1
β2

 =



yt

yt+1

...

yn+1


The equation for this model would be:

yt =
2∑

i=1

βiyt−i + εt (2.2)

Many statistical approaches such as maximum likelihood, method of least squares,

and the Whittle estimation are used for estimating the parameters of time series

models; we utilized the conditional-sum-of-squares (CSS) approach to determine the

values for the coefficients of our autoregressive model terms. [25]
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2.2.2 Moving Average

Autoregressive models can further incorporate a moving average term to describe

lagged random errors as part of a time series model. Similar to an AR model, it is

a linear regression model of the variable of interest against lagged white noise error

terms. The number of lagged moving average terms is denoted by the letter q . The

notation MA(q) denotes q th order moving average model consisting of q lagged error

terms.

yt =
n∑

i=1

αiψt−i + µ (2.3)

In the equation above, yt represents the variable at time t as a representation of

the combination of i time lags of its random error given by αiψt−i and the expected

mean, µ. Data is used to solve the system of equations to determine each αi coefficient

using some version of a least squares approach. For example, if we are constructing

an MA(2) model, we would have the following equation:

yt =
2∑

i=1

αiψt−i + µ (2.4)

2.2.3 Differencing Term

Combining autoregression and moving average terms, we can build an autoregres-

sive moving average (ARMA) model. This model is able to describe a stationary time

series where the data is centered around a constant mean and variance. [7] However,

with the case of modeling dengue fever, there are many fluctuations in the data over

time – corresponding to epidemic and endemic periods. Dengue trends have seasonal

effects since mosquitoes effectively reproduce under suitable conditions leading to an

increase in their ability to spread the disease. [4] To account for the non-stationary

nature of dengue cases, we use the autoregressive integrate moving average model
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(ARIMA) by incorporating a differencing term which removes the trend in the time

series and provides a stationary mean and variance. In the case of 1st order differ-

encing, we have: y′t = yt − yt−1. If we use D to represent the differencing factor, as a

backshift operator then we have:

y′t = yt − yt−1 = yt −Dyt = (1 −D)yt (2.5)

This differencing term then allows us to define a particular variable based on

a specified time lag. Utilizing the autoregressive, moving average, and differencing

terms to build a model that captures the time series of lagged terms of a particular

variable, we can develop the following ARIMA(p,d ,q) model with autoregressive lags

of p, difference terms d, and moving average lags of q. [3]

(1−φ1D−φ2D
2− ...−φpD

p)(1−D)pyt = c+ (1−ψ1D−φ2D
2− ...−ψqD

q)εt (2.6)

2.3 Extensions

2.3.1 Seasonality

Utilizing a seasonal component may help to capture the trends in our data ef-

fectively because the dengue season in Mexico starts around August of one calendar

year and extends into January of the next calendar year. In constructing a SARIMA

model, the seasonal autoregressive and moving average terms are multiples of the

lagged terms according to the seasonality factor selected. In the case with monthly

dengue counts, a seasonality factor of 12 for an AR(2) model would include time

lags from xt−12 and xt−24. A SARIMA model incorporates the original non-seasonal

components defining the model, in addition to the new seasonal terms based on the

periodicity selected.
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2.3.2 Covariates

In many endemic areas, a constant seasonal dengue trend is disrupted by a larger

unexpected epidemic during a particular year. SARIMA models depend only on

dengue cases and may not provide the best estimate for years with abnormally

high number of cases. For certain datasets, SARIMA models have been further im-

proved by incorporating time lags that reflect the climate-disease transmission sys-

tem. Although there has been a noticeable improvement in the predictive abilities,

the results were not statistically significant than the initial SARIMA models without

covariates. [18, 10, 19]

Covariates can also be included in the autoregressive models to enhance their pre-

dictive abilities. In general cases, other time series or seasonal trends such as climate

or atmospheric data can be appended as a linear regression variable to construct pre-

dictions based on autoregression of the variable of interest and additional predictor

variables. Specifically with diseases such as dengue or influenza, climate variables

play a role because they influence the rate at which infections can spread. [29] One

prime example of dengue modeling that incorporates seasonality and covariates is

proposed by Gharbi et al. as a three month forecast that included lagged covariates

of humidity and temperature to improve the accuracy for a surveillance system in

Guadeloupe. [9]

2.4 Model Construction

2.4.1 Dividing the Dataset

To construct our models, we separated our original dataset of dengue cases from

1985 - 2011 into two separate groups: a training data set, consisting of dengue cases

from January 1985 to December 1999 and a testing data set, consisting of dengue
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cases from January 2000 to December 2011. All of the autoregressive models con-

structed used the same initial training period data set. This means that for any

model constructed, the regression included dengue cases from 1985 to 1999 in addi-

tion to dengue cases up to the prior month of prediction. For example, if predicting

for March 2003, the regression model built used data from January 1985 to February

2003. Thus, predictions were generated using dynamic models that incorporated the

most current information to forecast into the future. Therefore, as the autoregressive

model incorporates each subsequent value of dengue cases, it constructs a different

autoregressive model to account for the new data point, but also maintains the in-

formation from the training period used to construct the model. Relative to a static

model, using dynamic models will provide the most accurate models because they in-

corporate the most recent and accurate case counts released by the Mexican Ministry

of Health. If static models were used, predictions well into the future, for example

six months out, would rely on predictions made for the prior five months leading to

an aggregation of errors for forecasts far into the future. For the remainder of the

autoregressive models discussion, we use the notation AR(p,d)S(p,d) to refer to AR

models with p lagged terms and d differencing terms and SARIMA models with p

lagged seasonal terms and d differencing seasonal terms.

2.4.2 Autocorrelation Function

As stated earlier, our primary assumption for developing AR models is that we

expect future counts of dengue cases to be related to observed counts from previous

time lags. To identify the particular time lags, we apply the autocorrelation func-

tion(ACF) to the data. The ACF visually represents the coefficients of correlation

between the time series variable and its lags. Default correlations out to 25 time steps

were determined by using the acf function in R. Even though the ACF plot provides

useful information about selecting significant time lags, they do not control for the
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propagated correlations that accumulate in higher order lags. The partial autocor-

relation function (PACF) corrects for this to generate partial correlations between

the variables and its lags. At particular lags, it calculates the difference between the

actual correlation at that lag and the expected correlation due to the propagation of

correlations at that lag. [26]

Figure 2.1, below, shows the ACF of the national dengue cases from January 1985

to December 1999 in Mexico. The single peaks are the correlation coefficients and the

blue dashed lines indicate the threshold for significance. Correlation values below this

line are not considered to be statistically significant. The dampened sinusoidal pattern

of the correlation values suggests including a seasonality component to effectively

capture the trends in the data.

The PACF plot, Figure 2.2, eliminates the mutually correlated terms and indicates

statistically significant peaks at lags 1,2,10,11,12, and 13. The extension of the first

two lags into lags 10-13 indicates that future dengue cases have a relationship with

case counts approximately a year earlier. To account for this, the best approach to

modeling our data is to start off with 1-2 autoregressive terms and extend it to a

seasonal model.
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Figure 2.1: Autocorrelation Function Output for Dengue Cases 1985-1999

Figure 2.2: Partial Autocorrelation Function Output for Dengue Cases

1985-1999

The results of the ACF and PACF plots indicate that autoregressive terms of 1 or

2 lags will be suitable for analysis of the data as there is a strong correlation between
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time steps of 1 and 2 lags. Although our initial analysis suggests that 1-2 lags will

be the most suitable for the data set, we explored the effects of these lags out to

four for the non-seasonal terms and out to 6 lags for the seasonal terms. Addition-

ally, we decided to explore the effects of adding a 1 order of seasonal differencing

assuming that this may remove any trends in the time series. In all, we considered

32 models ranging from simple autoregressive models with 1 lagged term to seasonal

autoregressive models with 6 lagged terms.

2.4.3 Model Evaluation

To determine the best AR and SARIMA models, root mean square error (RMSE)

and correlations (COR) of the predictions from 2001 to 2011 were recorded for each

model. All predictions were compared to the recorded data obtained from the Mexican

Ministry of Health. For assessment, the best models will have a low RMSE value

and high COR values indicating that prediction errors are minimized and follow the

general trend of observed dengue cases over time, respectively.

2.5 Results for AR and SARIMA Models

2.5.1 Shorter Lagged Terms

We first fitted an autoregressive model with 1 lag term to determine the prediction

of dengue cases from January 2000 to December 2011. Figure 2.3 below displays

the results of the predictions 1 month, 3 months, and 6 months into the future.

It is noticeable that the more short-term predictions produce accurate results as

indicated by higher correlation values of 0.85, for the 1-month predictions, versus

0.04 for the 6-month predictions and lower root mean square values of 2843 for the

1 month prediction, versus 5185 for the 6 month prediction. This indicates that the

autoregressive models produce better immediate predictions for the succeeding month
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rather than predictions of six months into the future. Figure 2.3 indicates the decline

in accuracy with the blue line representing the 1 month predictions, yellow line as the

3 month predictions, and the red line as the 6 month predictions. All of these results

can be compared to the observed values noted by the black line.

Figure 2.3: Monthly Predictions for AR(1) Model from Jan 2000 to Dec

2011

To improve the initial AR(1) and AR(2) models, we implemented seasonal au-

toregressive and seasonal integrated autoregressive models. This extension improved

the initial models as the RMSE values decreased relative to the AR(1) and AR(2)

models and there was an increase in the correlation values. Extending the regular

autoregressive models to include a seasonal component helps to improve our initial

AR(1) model, which is represented in the decrease of the RMSE values and an in-

crease of the COR values of the seasonal models. Specifically, the AR(1)S(1,1) and

AR(1)S(2,1) produced results with the lowest RMSE values along with AR(1)S(2)

and AR(1)S(2,1) producing the highest correlation values. Table 2.1 below presents

the results of the RMSE and COR values for the initial set of AR and SARIMA mod-
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els. Each row indicates the number of AR, SAR, and differencing terms and whether

all coefficients in the model were statistically significant at the 0.05 level.

Terms RMSE COR

AR SAR Diff. Sig. 1 Mo. 3 Mo. 6 Mo. 1 Mo. 3 Mo. 6 Mo.

AR(1) 1 0 0 Yes 2843 4797 5185 0.85 0.31 0.04

AR(2) 2 0 0 No 2609 4971 5280 0.92 0.49 0.18

AR(1)S(1) 1 1 0 Yes 2357 4112 4467 0.90 0.60 0.50

AR(2)S(1) 2 1 0 No 2349 4134 4496 0.90 0.60 0.50

AR(1)S(1,1) 1 1 1 No 1852 3338 3668 0.92 0.72 0.65

AR(2)S(1,1) 2 1 1 No 1965 3277 3567 0.91 0.73 0.67

AR(1)S(2) 1 2 0 Yes 1976 3666 4055 0.93 0.73 0.65

AR(2)S(2) 2 2 0 Yes 2007 3533 3882 0.92 0.74 0.67

AR(1)S(2,1) 1 2 1 No 1828 3215 3494 0.93 0.75 0.69

AR(2)S(2,1) 2 2 1 No 1938 3148 3353 0.91 0.76 0.72

Table 2.1: Values of RMSE and COR for 1 month, 3 month, and 6 month

predictions for shorter lagged autoregressive models

Figures 2.4 and 2.5 compare the RMSE and COR values of the top 3 models along

with the basic AR(1) model. There is a clear improvement in the RMSE values for the

1 month predictions as it decreases from an error of 2843 for the AR(1) model to an

error of 1852 for the AR(1)S(1,1) model. Likewise, the correlation values increase from

0.85 to 0.92 for the latter models. The black line represents the AR(1) model, blue

line is the AR(1)S(1,1) model, yellow line is the AR(1)S(2) model, and the red line

is the AR(1)S(2,1). The results also indicate that there is a significant improvement

from the regular AR models to the SARIMA models with a decrease of approximately

1000 dengue cases for the RMSE values and an increase of approximately 0.07 for the

COR values. However, amongst the SARIMA models, there is a small discrepancy in
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the RMSE values within the range of 50-100 cases and the range of 0.01 for the COR

values.

Figure 2.4: Comparison of RMSE values from Jan 2000 to Dec 2011 for

Autoregressive Models
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Figure 2.5: Comparison of Correlation from Jan 2000 to Dec 2011 for

Autoregressive Models

In Figure 2.6 below, we are visually able to represent the comparisons of the

AR and SARIMA models to indicate the increase in the accuracy of the predictive

ability of the SARIMA models. The red line, representing the AR(1)S(2,1) model,

captures the trend of the observed dengue values (in black) rather closely compared

to the other AR(1)S(1,1) model represented by the yellow line and the AR(1) model

represented by the blue line.
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Figure 2.6: Comparison of Top Autoregressive Models to AR(1)

2.5.2 Covariate Extension

We further explored whether the addition of climate explanatory variables such as

temperature, precipitation, and relative humidity could improve the original autore-

gressive models – under the expectation that climate variables influence the mosquito

population, which in turn can influence the number of dengue cases. For construct-

ing these models, the optimal lags of the covariates were determined by selecting the

covariate lags that corresponded to the highest correlation against the dengue cases

from 1985 to 1999. The optimal lags are as follows: temperature of lag 4, precipitation

of lag 2, and humidity of lag 6. Although these optimal lags have the highest corre-

lations, we also tested for models with 1 and 2 monthly lags under the assumption

that more recent climate data could have more influence on the future predictions

of dengue. Overall, the inclusion of climate variables does not significantly improve

the original AR and SARIMA models. In Tables 2.2-2.4, we are specifically com-

paring the original AR(1) and the top two models - AR(1)S(1,1) and AR(1)S(2,1)
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to their covariate counterparts Climate AR(1), Climate AR(1)S(1,1), and Climate

AR(1)S(2,1).

The RMSE values of the climate AR(1) models have decreased approximately 200-

400 cases across all the 3 covariates. This suggests an improvement in the predictive

abilities of the climate AR(1) model. Likewise, the correlation values for the lagged

climate variables have improved for all models except for the relative humidity at lag

6. Table 2.2 below indicates that the temperature and precipitation models contained

all significant terms, as they are highlighted in bold.

Covariate AR(1)

Temp (4)

RMSE 2138 3734 4635 5110

COR 0.93 0.69 0.38 0.08

Precip (2)

RMSE 2657 4000

COR 0.84 0.58

Rel Hum (6)

RMSE 2460 3799 4731 5149 5306 5379

COR 0.86 0.64 0.32 0.08 -0.06 -0.15

Table 2.2: Comparison of RMSE and COR Values for AR(1) Covariate

Models with Temperature, Precipitation, and Relative Humidity

When comparing the RMSE and COR values from the regular AR(1)S(1,1) model

to its covariate model, there is no improvement in the predictive ability. Compar-

ing Table 2.1 to Table 2.2 shows that RMSE values have increased and correlation

is consistent across the models. This indicates that for complex SARIMA models,

adding the climate covariates does not improve the predictive ability of the models.

Although comparing the RMSEs of the climate AR(1)S(1,1) to the regular AR(1)
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model, there is a decrease of approximately 900 cases. This may suggest improved

predictability; however, it is not clear if it is in relation to the addition of seasonal

lags or climate variables. These same results also extend to the comparison between

the regular AR(1)S(2,1) model and its climate model, please see Tables 2.3 and 2.4.

Covariate AR(1)S(1,1)

Temp (4)

RMSE 1860 2820 3368 3651

COR 0.92 0.81 0.72 0.66

Precip (2)

RMSE 1954 2849

COR 0.91 0.81

Rel Hum (6)

RMSE 1946 2858 3409 3673 3751 3801

COR 0.91 0.81 0.72 0.65 0.63 0.62

Table 2.3: Comparison of RMSE and COR Values for AR(1)S(1,1) Co-

variate Models with Temperature, Precipitation, and Relative Humidity
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Covariate AR(1) S(2,1)

Temp (4)

RMSE 1859 2876 3379 3714

COR 0.92 0.80 0.74 0.68

Precip (2)

RMSE 1916 2787

COR 0.92 0.82

Rel Hum (6)

RMSE 1895 2796 3277 3520 3589 3646

COR 0.92 0.82 0.742 0.70 0.68 0.67

Table 2.4: Comparison of RMSE and COR Values for AR(1)S(2,1) Co-

variate Models with Temperature, Precipitation, and Relative Humidity

Although climate variables have been found to improve certain autoregressive

models in literature, our results indicate that the improvement was only found in

the simplest AR(1) model. [9] Therefore, adding climate variables to the best models

AR(1)S(1,1) and AR(1)S(2,1) from the set of initial autoregressive models does not

indicate any improvement suggesting that utilizing only the seasonality factor may

be sufficient to capture a significant portion of the dengue trends.

2.5.3 Longer Seasonal Lagged Terms

Building autoregressive models involves more exploration than utilizing only the

number of lagged terms determined from the ACF and PACF plots. In this project,

we decided to extend the seasonal lags out to 6 terms. Doing so produced results

with significant model improvement where RMSE values decreased by approximately

100 cases while the correlations or predictions further out (3 months and 6 months)

improved by approximately 0.1. Table 2.5 represents the results of the longer sea-
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sonal lagged models. Although the extended lags look promising, the only concern

is evaluating the simplicity of the model balanced with its improvement in predictive

abilities. Since this project has the availability dengue data from 1985, it may be

worth considering models with longer seasonal lags because it may be better able to

use the plethora of data to construct a better fitting model. In Table 2.5, Each row

indicates the number of AR,SAR, and differencing terms and whether all coefficients

in the model were statistically significant at the 0.05 level.

Terms RMSE COR

AR SAR Diff. Sig. 1 Mo. 3 Mo. 6 Mo. 1 Mo. 3 Mo. 6 Mo.

AR(1)S(4) 1 4 0 No 1742.30 3307.77 3525.25 0.94 0.76 0.72

AR(1)S(5) 1 5 0 No 1739.00 2735.52 3284.44 0.94 0.76 0.71

AR(1)S(6) 1 6 0 No 1722.89 3238.05 3456.61 0.94 0.76 0.71

AR(1)S(3,1) 1 3 1 No 1711.35 3190.20 3307.04 0.94 0.75 0.73

AR(1)S(4,1) 1 4 1 No 1709.64 3195.13 3358.21 0.94 0.75 0.72

Table 2.5: Values of RMSE and COR for 1 month, 3 month, and 6 month

predictions for longer lagged autoregressive models

2.5.4 Model Evaluations

The results from this analysis indicate that the seasonal autoregressive models

are able to capture the trends of the dengue cases reasonably well. The graphical

representation of the predictions in Figure 2.6 indicate how closely the AR(1)S(2,1)

model follows the trend of the observed dengue cases from 2000 to 2011. When peak

dengue cases are on the scale of 7000 to 32000 an error of 1700-1800 is reasonable

to guide public health officials with an idea of the expected number of dengue cases

during a particular season. Likewise, all one month prediction correlations are above

0.9 with the exception of the AR(1) model. This indicates that there is a strong
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relationship between the comparisons of predictions to their corresponding observed

values. Additionally, the autoregressive models applied to Mexican dengue data help

to qualify the assumption that dengue cases in the future are dependent of lagged

cases in the past. As we saw that modification of this assumption to include seasonal

terms helps to improve its predictive ability and adding climate covariates do not

seem to improve the predictive ability in any substantial way.

Furthermore, we applied these models to selected states in Mexico and discovered

that there is an inconsistency in the best models across the examined states. It is not

surprising that adding climate variables to our national autoregressive model did not

improve the models because it is difficult to accurately apply the effects of climate

to a country as a whole when there is a wide range of climates specific to different

geographical regions across the country. We believed that applying climate variables

to specific states may show improvement in predictive abilities since we have localized

the climate factors and dengue case counts. Surprisingly, the results indicated that

there was no significant improvement in the model indicating that the dengue trends

are sufficiently captured with the autoregression and seasonal factors.
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Chapter 3

Deterministic Modeling

In the previous chapter, we presented the applications of autoregressive models

to forecast dengue cases in Mexico. In the following sections we discuss the applica-

tions an alternative approach – namely the deterministic model to forecast dengue.

First, we explain the elements of the SIR model, a common deterministic model

applied to infectious diseases. Then, we modify elements of this general model to

build assumptions applicable to the dengue transmission cycle. Finally, we present

results indicating that the deterministic model is comparable to simpler autoregres-

sive models. This suggests that deterministic models have the same predictive power

as autoregressive models, without the need of a training period.

3.1 Background to Deterministic Models

The Kermack-McKendrick Model, also known as the SIR model, was originally

used as a means to monitor and determine the magnitude of the incidences of infec-

tious diseases. Since its origin in 1927, it has been applied to model various infectious

diseases including dengue, influenza, malaria, and varicella. [13, 20, 5] The original SIR

model is based on a fixed population group divided into three smaller subgroups:

susceptible, infected, and recovered. To determine the number of individuals in these

26



three subgroups at a particular time point, it is necessary to solve a system of dif-

ferential equations that models the rates of change for the number of individuals in

each group. Figure 3.1 below is a visual representation of the transmission cycle used

by the Kermack-McKendrick model. Individuals are able to move forward from the

susceptible to the infected stage once they have become infected with the disease.

Likewise, infected individuals can only move forward to the recovered stage once they

are cured from the disease. A recovered individual is assumed to be fully immune to

the disease and permanently remains in this group.

Figure 3.1: Representation of the Stages of a Simple SIR Model

Under these assumptions, the rates of change for individuals within each subgroup

at a particular time point can be represented with the following set of equations:

dS

dT
= −βS(t)I(t) (3.1)

dI

dT
= βS(t)I(t) − γI(t) (3.2)

dR

dT
= γI(t) (3.3)

In these sets of equations, we have a fixed population N which at every time

point is equivalent to S(t) + I(t) + R(t). S(t) represents the number susceptible at

time t, I(t) represents the number infected at time t, and R(t) represents the number

recovered at time t. β is the rate of transmission or infection of the disease. It can

be regarded as the average number of transmissions from an infected person during
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a particular time period. Therefore, its units would be in terms of per people-time.

γ represents the rate of recovery for an infected individual with units of per time. [15]

Since there is no simple analytic solution to the system of Equations 3.1-3.2, numerical

methods need to be implemented to obtain an approximate solution. For this specific

project, we use the ode45 solver in MATLAB to determine our dengue case estimates.

This basic model does not take into account realistic events such as dynamic

changes in the population in the form of births and deaths or the chance that death

may be an additional stage resulting from infection. Under alternative assumptions,

modifications to this model have extended to include vector-to-host transmission cy-

cles, which require another set of differential equations describing the susceptible,

infected, and recovered populations for the individuals in the vector population. [13, 1]

3.1.1 Applications to Dengue

As mentioned in the Introduction, dengue fever consists of 4 different strains. In-

fection from one dengue strain, for instance DENV-1, does not result in immunity

to the other 3 dengue strains. Therefore individuals who have not been exposed to

the DENV-2, DENV-3, or DENV-4 strains will be classified as susceptible. Addi-

tionally, repeated infections place humans at a higher risk of contracting the dengue

hemorrhagic fever and resulting in death. [4] Complexities such as the ones mentioned

above can be amended to the simple SIR model by incorporating additional stages of

susceptibility and infection. Figure 3.2 is an example of a multistage SIR models that

can be applied to the dengue cycle. A review by Johansson et al. provides an exhaus-

tive set of approaches taken to model the dengue transmission cycle. The advanced

models are able to incorporate the human-vector transmission cycle by modeling the

additional mosquito vector population. [13]

28



Figure 3.2: Representation of the Stages of an Advanced SIR Model

One of the major challenges with developing deterministic models is calculating

accurate parameter estimations. With the case of dengue, we need to define the values

for β, the rate of infection, and for γ, the rate of recovery. Without appropriate tools

to measure these quantities, many models use parameterization to obtain a range of

reasonable values for these terms. [1] For the purposes of this thesis, we used the ranges

of parameters from Andraud to build our predictive models. Values of β ranged from

0.9 to 22.5 people
time

and values of γ ranged from 2.14 to 10 1
month

.

3.2 Deterministic Model Construction

By imposing additional assumptions to the original Kermack-McKendrick model,

we were able to construct the following system of equations to represent the change

over time for the three subgroups of susceptible, infected, and recovered populations.

As with the original model, S(t) represents the number susceptible at time t, I(t)

are the number infected at time t, and R(t) are the number recovered at time t.

The parameters β and γ represent the rate of infection and the rate of recovery,

respectively. Section 3.2.1 provides a list of assumptions for this particular model.

dS

dT
=

−βS(t)I(t)

N(t)
(3.4)
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dI

dT
=
βS(t)I(t)

N(t)
− γI(t) (3.5)

dR

dT
= γI(t) (3.6)

3.2.1 Assumptions

1. Change in population dynamics can be implemented directly into the SIR model

by adding an additional parameter to account for the fluctuations. In equation

3.7, µ is added to the original susceptible rate to account for the birth in the

population. Likewise to handle the death in a population a constant population

death rate term, α, can be added to all three groups in the population since

death can occur during any stage of the the dengue transmission cycle. [12]

dS

dT
=

−βS(t)I(t)

N(t)
+ µ− α (3.7)

dI

dT
=
βS(t)I(t)

N(t)
− γI(t) − α (3.8)

dR

dT
= γI(t) − α (3.9)

Instead of adding an additional parameter, which would require further estima-

tion, we were able to account for the change in population by mimicking the

population growth in Mexico. Population trends in Mexico from 1985 to 2011,

provided by the World Bank, indicated that Mexico’s population growth has

an upward quasi-linear trend. [33] Using this as the framework, we constructed

a linear model with an intercept equal to the 5 times the maximum number of

individuals infected in 1986 and a slope of 2042
12

. The population growth rate was

determined by constructing a linear regression model with population data from

1986 to 1999, as shown in equation 3.10. The idea behind utilizing the linear
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growth model to calculate the total population at a particular time removed

the obstacle of parameterizing the unknown µ and α rates.

N(t) = 31000 +
2042

12
× Months Elapsed from January 1986 (3.10)

2. To develop and compare the optimal estimate of the β and γ parameters, we

needed to make the units of the quantities comparable to the ones in published

literature. [1] This can be modified by dividing the original −βS(t)I(t) by the

total population N(t). Therefore, the units of β are per time and there is no

need to adjust for the units of γ.

3. The model does not account for the 4 strains of dengue because we did not

have access to incidence data to validate our approach. Instead, we aggregated

infections from all dengue strains as one instance of a dengue infection. [8] Since

dengue serotypes range from one state to the next in Mexico, and individuals

rarely develop immunity to all 4 strains, we chose to let all recovered individuals

become susceptible at any given point in time. [8] Computationally, every month

we determined the initial number susceptible S(t) by subtracting the number

of infected from the total population: S(t) = N(t) − I(t). In other words, we

solved for the number of recovered individuals, R(t), within the month, but we

always reset it to 0 at the beginning of a new prediction period. All calculations,

were performed using the built-in Matlab command: ode45.

4. Finally, we use a host-to-host transmission cycle to best predict dengue on a

national scale. For example, if an individual from one region of a country was to

travel to another region and become bitten by an uninfected mosquito, then this

vector will become infected and is able to spread the virus to other uninfected

humans. In a larger population it is difficult to control for the movement of

infected and uninfected individuals; therefore to simplify this phenomena, we
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assume that there is host-to-host transmission. If we were to model a local

region within Mexico, it is reasonable to integrate a vector-to-host transmission

cycle because it may be easier to control for the movement of the infected

individuals by adding an additional removal rate for these individuals to our

deterministic equations. However, when incorporating any vector interaction,

we need to implement the subgroups of the vector population, giving rise to the

obstacle of estimating more parameter values.

3.2.2 Model Forecasting

Similar to autoregressive models, the deterministic approach also uses a dynamic

model by incorporating the most recent information from the latest counts of dengue

cases. The key parallel between the autoregressive and deterministic models is that

the number of dengue cases at a particular time point for the autoregressive models

is equivalent to the number of infected individuals at a particular time point in the

deterministic model. One major difference of the deterministic model is that it does

not require a training period for model construction. Therefore, in order to compare

the two approaches, we chose to analyze their performance only for the years 2000 to

2011.

As stated before, one of the major obstacles for constructing a deterministic model,

using differential equations, is to accurately determine parameters that best describe

the rate of infection, β and the rate of recovery, γ. The best way to approach this

problem was to first construct a model where the units of β and γ are comparable

to the ones in literature and to optimize with respect to the parameter values for

each predictive time step. Optimization can be done in multiple fashions; however,

we decided that minimizing the RMSE of the predicted and the observed cases per

time step with respect to the β and γ parameters would be the best route. In short,

we chose to solve this problem as a non-linear least squares problem.
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To better understand how the predictions from this model are constructed, the

algorithm below walks through the steps to determine the predicted number of dengue

cases for March 1986.

1. Set the initial conditions of I0 equal to the number of dengue cases from Febru-

ary 1986 and N0 equal to 5 times the maximum number of infected cases in 1986

plus 2042
12

times the number of months elapsed from January of 1986, in this case:

2. With these two initial conditions, we can set R0 = 0 and S0 = N0 − I0

2. Provide the initial parameter values for β and γ. When assigning the initial

parameters for March of 1986, we use the optimal values of β and γ that were

obtained from minimizing the RMSE between the predicted and observed value

from February 1986. Note: When starting the model initially, we do not have

any information to set the parameter values for the January 1986 prediction so

we set the values to be 10 for both β and γ.

3. Using the ode45 solver in MATLAB, we determine the predicted value (number

of infected individuals) for March 1986 by entering the initial conditions from

step 1 and parameter values from step 2 to run the deterministic model.

4. The fmincon function in MATLAB was used to minimize the RMSE between

the predicted value of dengue cases in March 1986 and the recorded number of

dengue cases from March 1986. With optimization, it is necessary to provide

an upper and lower bound on the β and γ parameters to get reasonable values.

These bounds were determined from the range of parameter values by Andraud

2012.

5. We expect that the optimal value from the RMSE should be as close to 0

as possible since we are optimizing at every single time point. Therefore, we

relaxed the upper bound on the γ parameter if the optimal RMSE value was
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above 2. During this process, we recorded the optimal values of both β and

γ and noticed that in many instances, the γ values tend to reach its upper

bound. Relaxing the upper limit on gamma by 10 units helped to account for

this problem.

6. The optimal β and γ values determined from the fmincon search for the March

1986 prediction will be stored as the initial parameter values for the generat-

ing the prediction for April 1986. This process continues for each subsequent

monthly prediction.

3.3 Model Evaluations

The deterministic model is a well-defined approach taken to model dengue cases

in Mexico. This preliminary model with crude assumptions is comparable to the

simple autoregressive models. Although parameterization proves to be a challenge,

the benefits of the deterministic model is that we do not require a large data set to

train it; rather, we are able to construct our model from the first set of initial values

and predict for every subsequent time step. Further enhancement of the deterministic

model to include the host-to-vector interaction or multiple stages of susceptibility may

enhance its predictive ability.

Figure 3.3 below presents a comparison of the predicted values, in red, from the

deterministic model to the observed dengue cases, in black, from 2000 to 2011. Over-

all, the dynamic deterministic model is able to capture the trend of the dengue cases

over time. The RMSE for the evaluation period is 2750 cases and the COR is 0.84.

This is comparable to the simple AR(1) model constructed earlier with a RMSE value

of 2843 and a COR value of 0.85 along with the AR(2) model with an RMSE value

of 2609 and a COR value 0.92.
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Figure 3.3: Prediction of Dengue Cases from Jan 2000 to Dec 2011 for

Deterministic Model

Without the use of any seasonality factor or climate covariates in our determin-

istic approach, we were able to construct models that are comparable to the simple

autoregressive models. However, extending the results from the deterministic model

for comparison to the climate and seasonal models may not be strictly fair. Future

work could involve the expansion of the simple deterministic model to incorporate

seasonality, climate covariates, or interactions with the vector population to further

reduce the RMSE.
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Chapter 4

Conclusion

In this thesis, we showed that the statistical and deterministic approaches can be

used to predict monthly dengue cases in Mexico from January 2000 to December 2011.

For the autoregressive modeling, a training data set from 1985 to 1999 was used to

develop predictive models for the years 2000 to 2011. However, for the deterministic

model, we only required information from the previous time step, December 1999,

to determine our predictions from 2000 to 2011. With these two approaches, we

have shown that their RMSE values are within the same order of magnitude and

comparable to one another. In this section, we will briefly summarize the significance

of this project and provide a thorough comparative analysis of the two modeling

approaches.

4.1 Significance

Dengue is a widespread virus that puts approximately more than one-third of the

world’s population at risk for infection. [4] Although there have been many campaigns

to curtail the spread of dengue in regions across Asia, Brazil, and Mexico, it is difficult

to determine the years when an epidemic will occur. [6, 24, 32] However, if we were able

to forecast years when high volumes of dengue cases were expected, it would alleviate
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much of the concern for public health officials. Prior knowledge would allow them to

allocate their resources efficiently and plan interventions accordingly.

Effective modeling approaches are helpful for monitoring and forecasting dengue

trends. Currently, there are numerous models from the statistical and deterministic

approaches used to predict future dengue cases; however, there is not a clear answer to

the relative effectiveness of the models to one another. A thorough understanding of

the effectiveness of predictive models is more involved since it would require analyzing

the multiple models across many geographic locations where dengue is prevalent. This

project aims to explore the main question by focusing on the country of Mexico and

comparing the applications of the autoregressive to deterministic based models there.

4.2 Comparative Analysis

Chapter 2 indicates that AR and SARIMA models are plausible methods that can

be used to forecast dengue fever in Mexico. After using a training period data set from

1985-1999 we were able to construct a dynamic model to make predictions from 2000

- 2011. We understand that immediate predictions, such as 1 month predictions, are

more accurate than 6 month predictions due to the aggregation of errors as we predict

further into the future. Utilizing seasonal components in our models reduced the

error of dengue cases by approximately 1000 cases compared to the simple AR(1) and

AR(2) models. When we added climate covariates, we expected to further improve

our estimates; however, we were surprised that there was no significant improvement.

This may be due to a significant portion of the dengue trends being captured by the

seasonality of the models. When we further pushed our exploration to use longer lags

– out to 6 terms – the models only improved with a decrease of approximately 100

cases for the RMSE, relative to the shorter lag SARIMA models. This may indicate

that for the purposes of obtaining forecasts using only 1-2 lag terms may be sufficient.
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For our deterministic model, we only required the previous time point from Decem-

ber 1999 to start making our predictions from January 2000 onwards. One advantage

to the deterministic model is that we did not require an extensive data set to train

the model; however, we are faced with the challenge of estimating parameters. Fig-

ure 4.1 below presents a visual comparison of the predictions from the deterministic

approach, in blue, as well as the top two SARIMA models - AR(1)S(1,1), in yellow,

and AR(1)S(2,1), in red.

Figure 4.1: Comparison of Prediction for Dengue Cases from Jan 2000 -

Dec 2011 for Deterministic, AR(1)S(1,1) and AR(1)S(2,1) Models

All three models indicate that they are able to capture the peaks of the dengue

epidemics pretty well; however, the deterministic approach tends to overestimate

these peaks more, relative to the SARIMA models. In Section 4.3 below, we discuss

the further improvements that can be extended from this project.
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4.3 Future Work

To fully understand and evaluate predictive dengue models for comparison, it

is necessary to do a thorough analysis by building and comparing the predictive

abilities of various models across multiple geographic locations. In general literature,

autoregressive and deterministic modeling are two common approaches taken to model

infectious disease, and this work was able to construct preliminary models to apply

to dengue incidence in Mexico. This research project was only able to cover a portion

of the analysis required to answer the question of the effectiveness of models. It

may be worthwhile exploring the climate autoregressive models by modeling specific

geographic regions rather than states within Mexico. States are a convenient way

to select particular locations within Mexico; however there still exists a geographical

variability within each state since it is just an arbitrary political boundary. Since

dengue may not be found in remote areas of Mexico where the population is scarce,

it could be insightful to focus these geographic specific models on urban areas where

dengue has a higher prevalence.

The deterministic approach has the potential to be further improved by consider-

ing stricter assumptions with the dengue transmission cycle. As mentioned previously,

forming stricter assumptions requires further parameter estimations for the model.

Although this may be resolved by experimentally estimating the parameters, it may

be an extensive process to determine these values. One improvement may be to in-

clude multiple stages of infected and susceptible populations or add the interaction

of the mosquito vector population. Additionally, accounting for connectivity and

mobility within the larger population could enhance the accuracy of these models.

This thesis project has been able to provide a portion of the analysis for com-

paring the predictive abilities of models used to forecast dengue fever in Mexico.

The results suggest that deterministic and statistical models are capable of predict-

ing dengue fever which can be helpful to public health officials. Understanding the
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plethora of models constructed and comparing their effectiveness is essential to us as

mathematicians to consider whether the models we are constructing are improving

our prior knowledge or comparable to the knowledge that we already have. By con-

sidering these types of analyses can we seek to further improve the predictive abilities

of epidemiological models.
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