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Abstract

We present a realistic capital non-intensive investment strategy that was found
to consistently outperform the S&P 500 by up to 38% in average annual re-
turns. This strategy is created by combining pre-Hilbert space theory, a well-
established financial result, real-world investment restrictions, and quantita-
tive decision-making methods of our own creation. Specifically, the strategy is
created in four steps. First, using the formal mathematical framework of the
appropriate pre-Hilbert space we prove in a way, that to the best of our knowl-
edge is original, the well-known financial result that given a fixed set of assets,
known expectations, variances, and pairwise covariances of the returns thereof,
and a fixed overall return, there always exists a unique portfolio of these assets
that is expected to achieve this overall return with minimum variance. Second,
we create an investment decision-making support tool by combining the ability
to create such fixed-return minimum-variance portfolios with a general invest-
ment procedure and an accurate method of calculating real-world returns that
accounts for all fees and investment regulations. This tool, upon specifying
values for a set of parameters, produces a comprehensively defined investment
strategy. Subsequently, third, we devise several different parameter-choosing
strategies, all of which both learn from the past to draw inferences about the
future and learn from the past in order to determine exactly how much of the
past to learn from. We combine the decision-making support tool with these
parameter-choosing strategies to create several different investment strategies
that all dynamically learn from historical data. Finally, we backtest these in-
vestment strategies to see how well they would have performed in past years
using only data that would have been available at the time and then inspect
the results to determine which of the investment strategies is best.
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0 Introduction

Consider someone who has very little financial knowledge and somewhere be-
tween $2000 and $5000 that he is seeking to invest. Perhaps he is in his 20s
and has a real job and thus disposable income for the first time in his life;
perhaps he is in his 70s with plenty of cash saved away but has never invested
before. He may seek modest returns that are just a bit higher than what he
could earn by putting his money in the bank, aggressive returns that would
substantially increase his disposable cash, or anything in between. Regardless,
our potential investor is not content with doing nothing with his cash as in-
flation erodes its value.

The fact that the investor has very little financial knowledge classifies him
as an “unsophisticated” investor. Specifically, he has little, if any, understand-
ing of financial markets, is familiar with stocks and perhaps bonds but no
other assets, and wouldn’t know how to begin making an informed, strategic
investment decision. Furthermore, the fact that he only has a few thousand
dollars of initial capital to invest precludes him from hiring an investment
manager or the like which generally require larger initial investments.

Help has arrived: in this paper we construct from scratch an investment
decision-making support tool and use it to devise a profitable and capital non-
intensive investment strategy that is practical for an unsophisticated investor
to implement. This strategy would have returned, on average and including
all fees and regulatory considerations, 64% in 2009, 26% in 2010, and 30% in
2011, beating the S&P 500,1 a standard benchmark, by 38%, 11%, and 28%,
respectively.

1The S&P 500 is an index that tracks the combined performance of 500 large-
capitalization U.S. stocks. The capitalization of a stock is its share price multiplied by
the number of shares outstanding and is one measure of a company’s value.
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0.1 Investment Decision-Making Tool,
Parameter-Choosing Strategies,
and Investment Strategies

The investment decision-making support tool consists of a general investment
method that is only uniquely specified with the specification of a number
of parameters. So, only upon combining the decision-making tool with a
parameter-choosing strategy is an investment strategy defined. The utility
of the distinction is that, whereas there is one and only one decision-making
tool, various different parameter-choosing strategies can be devised. Com-
bining the decision-making tool with different parameter-choosing strategies
results in different investment strategies. In this way, the decision-making tool
can be used to generate different investment strategies.

We only formally present a set of parameter-choosing strategies – the ones
we devised that result in the best-performing investment strategies. We then
narrow this optimal set down to a single best parameter-choosing strategy by
selecting the one that results in the single best-performing investment strategy.
This best-performing investment strategy is the main deliverable of this paper.
We also briefly discuss a number of inferior parameter-choosing strategies that
we devised en route to the above-mentioned optimal set of parameter-choosing
strategies.

0.2 Financial Understanding

Given our lack of expertise in financial markets, we neither claim nor attempt
to understand financial markets well enough to predict anything having to
do with future asset prices. In fact, it can be argued that, because financial
markets are systems driven by human behavior, it is impossible to truly and
fundamentally understand them. Specifically, the price of an asset does not
necessarily accurately reflect its value; rather, any asset price is driven by the
possibly-irrational decisions of all the market actors that trade the asset. The
asset price is simply the price at which market actors agree to buy and sell
the asset. If more people buy the asset than sell it then the price goes up;
if more people sell the asset than buy it than the price goes down. So, a
true fundamental understanding of financial markets would require an accu-
rate understanding of how people make investment decisions. Whether this is
impossible or merely difficult, it is certainly well-beyond our expertise.

Playing to our strengths, we will devise and present an investment decision-
making support tool and resultant investment strategy that don’t rely on any
financial or economic arguments. Instead, We use only mathematical and
logical reasoning.
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0.3 Backtesting

Regardless of what sort of reasoning leads to an investment strategy and re-
gardless of how sound this reasoning is, the strategy still needs to be tested in
order to determine whether or not it’s successful and consequently whether or
not the underlying reasoning is justified. We will test the investment strategy
that we devise by observing how well it would have performed in past years,
a technique known as backtesting.

It is important to note that backtesting does not cheat by effectively look-
ing into the future and using now-known information about past years’ asset
returns to retroactively change the investment strategy and improve how well
it would have performed. For example, backtesting results for 2009 are com-
puted as follows. Even though we now know exactly what asset returns were in
2009, we hide this data from the investment strategy: we construct the portfo-
lio that the investment strategy would have suggested using only information
that would have been available to the investor on the first day of 2009, which
is all data from 2008 or earlier. Only after this 2009-blind construction do we
use 2009 data to compute how well this portfolio would have performed in 2009.

As described above, only upon confirming that our strategy would have per-
formed well during the past several years are the decisions that went into
constructing it justified. This is more than “guess and check” because we use
math and logic to make very specific, educated decisions, but the “check” is
still paramount: we can only say that the various elements of the strategy
work because we can test the strategy and observe that it would have been
sufficiently profitable in each of the past several years.

0.4 Learning from History

The fundamental assumption behind both the decision-making tool and the
resultant investment strategy is that the past is indicative of the future and
thus past data can be used to make predictions about the future. This as-
sumption is logical in the sense that historical data is all we have to learn
from so we might as well attempt to learn from it, but, as described in the
previous section’s discussion of backtesting, this logic alone is not enough to
make the assumption necessarily true. Rather, we simply logically speculate
that the past may be indicative of the future and then test this hypothesis by
backtesting the investment strategy. Because it turns out that the investment
strategy would have performed consistently well the past several years, the
ways in which the strategy uses past data to draw inferences about the future
are valid and we can conclude that, at least when done in specific ways, the
past can be used to predict the future.
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So, the investment strategy is dynamic in that it learns from the past to choose
investments for the future. It suggests a different portfolio this week than it will
next week because more information is available next week. Furthermore, not
only does the investment strategy learn from the past, it also learns from the
past in order to determine how much of the past to learn from. In summary,
it is a dynamic tool that analyzes historical data to decide for the investor
exactly how much he should invest in what.

0.5 Roadmap

In section 1, General Mathematical Theory, we present the formal mathemat-
ics that will be necessary for creating the investment decision-making support
tool. A close reading of this entire section, though instructive, is not essential
to understanding the rest of the paper; the reader can simply take the final
result of the section, the dual approximation theorem (section 1.6), as proved
and move on.

In section 2, Mathematical Theory of Minimum-Variance Portfolios, we define
the appropriate pre-Hilbert space and apply the dual approximation theorem
to prove that, given a fixed set of assets and known expectations, variances,
and pairwise covariances of the returns thereof, for any fixed return there is
a unique portfolio of these assets that is expected to achieve said return with
minimum variance. We will use this result in section 4 as the basis of the
investment decision-making support tool. It is important to note that this
result is not new: it is a well-known concept of modern portfolio theory. Our
proof of the result with the dual approximation theorem, on the other hand,
is, to the best of our knowledge, novel.

In section 3, Building Towards a Practical Application, we work through var-
ious technical aspects that must be addressed before we can weaponize the
minimum-variance result proved in section 2 into the decision-making support
tool and subsequently a profitable, practical, and capital non-intensive invest-
ment strategy. As a result of some of these technical aspects being unrelated,
parts of section 3 have no logical flow; the reader is warned that the section
as a whole reads like a list.

In section 4, Investment Strategies, we devise and present the decision-making
support tool using the fixed-return minimum-variance result from section 2
and various technical aspects from section 3. We also devise and present
the optimal set of parameter-choosing strategies. The combinations of the
decision-making support tool with these optimal parameter-choosing strate-
gies result in an optimal set of investment strategies.

In section 5, Results, we present the results obtained by backtesting each
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investment strategy in the optimal set of investment strategies to see how well
they would have performed in each of the last several years. We then inspect
these results to select a single optimal investment strategy and we confirm
that this is the profitable, practical, and capital non-intensive strategy for
an unsophisticated investor we seek by verifying that it outperforms various
benchmarks.

In section 6, Conclusions, we summarize the accomplishments of this project
and discuss further applications of the investment decision-making support
tool.
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1 General Mathematical Theory

This section presents the formal mathematics that will be necessary for con-
structing the investment decision-making support tool. A close reading of this
entire section, though instructive, is not essential to understanding the rest of
the paper; the reader can simply take the final result of the section, the dual
approximation theorem (section 1.6), as proved and move on.

David G. Luenberger’s Optimization by Vector Space Methods1 was used as
a guide but all the proofs here are written in original language and some are
of our own creation though are likely not new.

1.1 Norms

In a normed vector space V , the norm of any vector x ∈ V , denoted ||x||, is
a generalization of distance or length. For example, R3 has the well-known

Euclidean norm ||(x1, x2, x3)|| = (x1
2 + x2

2 + x3
2)

1/2
. The following properties

are necessary and sufficient for defining a norm:

1. ||x|| ≥ 0 ∀x ∈ V and ||x|| = 0 only if x is the zero vector,

2. ||αx|| = |α| · ||x|| ∀α ∈ R, x ∈ V ,

3. ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ V .

Note that the specific norm used in any given space is a property of the space
itself. For example, R3 is the space of all 3-component vectors of real numbers
with the Euclidean norm. One could also define another space that is the space
of all 3-component vectors of real numbers with the norm ||(x1, x2, x3)|| =

(x1
5 + x2

5 + x3
5)

1/5
, which is, indeed, a valid norm according to the properties

above.

1[1] in the sources section.



Arthurs 7

1.2 Inner Products

Along with a norm, a vector space V may have an inner product defined on
it. As with the norm, the specific inner product is an intrinsic property of
the space itself. If there is an inner product defined, it takes any two vectors
in V and returns a scalar: any inner product is a function from V × V to R.
The inner product of x and y is denoted (x | y). The following properties are
necessary and sufficient for defining an inner product on any vector space for
which the underlying field is the reals2:

1. (x | y) = (y |x) ∀x, y ∈ V ,

2. (x+ y | z) = (x | z) + (y | z) ∀x, y, z ∈ V ,

3. (αx | y) = α(x | y) ∀α ∈ R, x, y ∈ V ,

4. (x |x) ≥ 0 ∀x ∈ V and (x |x) = 0 only if x is the zero vector.

1.3 Pre-Hilbert Space

Theorem: Cauchy-Schwarz Inequality. For any vector space V with an inner
product, ∀x, y ∈ V , it holds that

|(x | y)|2 ≤ (x |x) · (y |y) . (1.1)

Proof. If y is the zero vector, the inequality holds trivially as the equality
0 = 0. Otherwise, note that the properties of an inner product imply that 0 ≤
(x−αy |x−αy) = (x |x)−2α(x | y)+α2(y | y) ∀α ∈ R, x, y ∈ V . Substituting
α = (x | y)/(y | y) into the previous expression gives 0 ≤ (x |x)− (x | y)2/(y | y)
which can be rearranged into (1.1), the desired result.

Theorem. For any valid inner product, the following function is a valid norm:

||x|| =
√

(x |x) . (1.2)

Proof. The numbers below correspond to the norm properties from section
1.1.

1. Follows trivially from inner product property 4.

2. Follows from inner product property 3: ||αx|| =
√

(αx |αx) =
√
α2(x |x) =

|α| · ||x||.

3. Follows from (1.1) and inner product properties 1 and 2: ||x + y||2 =
(x + y |x + y) = (x |x) + 2(x | y) + (y | y) ≤ ||x||2 + 2||x|| ||y|| + ||y||2 =
(||x||+ ||y||)2 ⇒ ||x+ y|| ≤ ||x||+ ||y||.

2If the underlying field is the complex numbers as opposed to the reals, the first property
changes to (x | y) = (y |x) and the other properties are unchanged.
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By definition, a vector space is a pre-Hilbert3 space if and only if it is normed,
has an inner product, and the inner product invokes the norm as per (1.2).

1.4 Finite-Dimensional Pre-Hilbert
Space Projection Theorem

Theorem. ∀ finite-dimensional real pre-Hilbert space H, subspace M ⊂ H, and
vector x ∈ H, it holds that ∃m0 ∈M such that ||x−m0|| ≤ ||x−m|| ∀m ∈M
and this m0 is unique. In other words, in finite-dimensional pre-Hilbert space,
for any subspace and vector x, there is a unique vector in the subspace that
is closest to x.

Proof. ∀y, z ∈ H, if (y | z) = 0 then

||y + z||2 = (y + z | y + z) = ||y||2 + 2(y | z) + ||z||2 = ||y||2 + ||z||2 . (1.3)

Now, using the notation presented in the theorem statement above, suppose
that ∃m0 ∈M such that (x−m0 |m) ∀m ∈M . Then, ∀m ∈M it holds that

||x−m||2 = ||x−m0 +m0 −m||2 = ||x−m0||2 + ||m0 −m||2 (1.4)

where the second equality is from (1.3) which can be invoked because (m0 −
m) ∈ M as a result of M being a subspace and so the fact that (x −
m0 |m) ∀m ∈M implies that (x−m0 |m0−m) = 0. Noting that ||m0−m|| > 0
if m 6= m0 and ||m0 − m|| = 0 if m = m0, it holds that ||x − m|| >
||x − m0|| ∀m ∈ M for which m 6= m0, and thus m0 is the unique vector
in M that is closest to x. So, if ∃m0 ∈ M such that (x −m0) is orthogonal
to every vector in M then this m0 is the unique vector in M that is closest
to x. Thus, if we have a fail-safe method for constructing such a m0 then the
finite-dimensional pre-Hilbert space projection theorem is proved.

H is finite-dimensional and thus any subspace M ⊂ H must also be finite
dimensional so M must have a finite number n of basis vectors {y1, ..., yn}. By
definition of a basis, every vector in M can be expressed as a linear combina-
tion of these basis vectors, and thus (x−m0) is orthogonal to every vector in
M if and only if it is orthogonal to each of {y1, ..., yn}. So, ∀i ∈ {1, ..., n},

(x−m0 | yi) = 0 ⇒ (m0 | yi) = (x | yi) . (1.5)

3A Hilbert space has the additional requirement of being complete (every Cauchy se-
quence converges to an element of the space). As it turns out, the space S that we will be
working with is not only pre-Hilbert but also Hilbert. However, we avoid proving that it is
Hilbert because we can get all the necessary results with fewer proofs using only pre-Hilbert
space.
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But m0 ∈ M so it, too, can necessarily be expressed as a linear combination
of the basis vectors: ∃{α1, ..., αn} ⊂ R such that

m0 =
n∑

j=1

αj yj . (1.6)

Substituting (1.6) into the left side of (1.5) for any fixed i ∈ {1, ..., n} gives

n∑

j=1

αj(yj | yi) = (x | yi) . (1.7)

The set of equations (1.7) for each i ∈ {1, ..., n} can be written as



(y1 | y1) (y1 | y2) . . . (y1 | yn)
(y1 | y2) (y2 | y2) . . . (y2 | yn)

...
...

...
(y1 | yn) (y2 | yn) . . . (yn | yn)




︸ ︷︷ ︸
G




α1

α2
...
αn


 =




(x | y1)
(x | y2)

...
(x | yn)


 (1.8)

where the matrix on the left is known as the Gram matrix and is denoted
G. For any basis {y1, ..., yn} for M , it is possible to perform the Gram-
Schmidt procedure on these basis vectors in order to create an orthonormal
basis {e1, ..., en} for M such that, ∀i, j ∈ {1, ..., n},

(ei | ej) =

{
1 i = j

0 i 6= j
. (1.9)

Substituting {e1, ..., en} into G instead of {y1, ..., yn} gives the identity matrix
I which is invertible. Because it is always possible to use Gram-Schmidt to
choose an orthonormal basis for M , it is true that G is always invertible.

Because G is invertible then there is necessarily a unique set of {α1, ..., αn}
that solves (1.8), and via (1.6) we have a fail-safe method of constructing an
m0 ∈ M such that (x − m0) is orthogonal to every vector in M . Thus, this
m0 is the unique vector in M that is closest to x and the finite-dimensional
pre-Hilbert space projection theorem is proved.

1.5 Modified Finite-Dimensional
Pre-Hilbert Space Projection Theorem

Theorem. ∀ finite-dimensional real pre-Hilbert space H, subspace M ⊂ H,
and vector x ∈ H, construct the linear variety N ⊂ H that is M translated
by x:

N = M + {x} =
{
m+ x

∣∣∣ m ∈M
}
. (1.10)
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It holds that there is a unique vector in N of minimum norm and that this
vector is orthogonal to every vector in M .

Proof. According to the above-proved regular version of the finite-dimensional
pre-Hilbert space projection theorem, there is a unique vector in M that is
closest to (−x): ∃ a unique m0 ∈M such that, ∀m ∈M ,

||m0 + x|| ≤ ||m+ x|| . (1.11)

Define n0 = (m0 + x) ∈ N ; then, ∀n ∈ N , ∃m ∈M such that

||m0 + x|| = ||n0|| ≤ ||n|| = ||m+ x|| (1.12)

where the first equality is by definition of n0, the inequality is via (1.11),
and the last equality and the existence of m are via (1.10). So, via (1.12)
and m0 being unique, it holds that n0 is the unique vector in N for which
||n0|| ≤ ||n|| ∀n ∈ N . Furthermore, recall that in the proof of the regular
version of the theorem it was proved that (x − m0) is orthogonal to every
vector in M . Here, we’re using (−x) instead of x so it holds that (−x−m0) is
orthogonal to every vector in M . Switching the sign preserves orthogonality,
so n0 = (x+m0), the unique vector in N of minimum norm, is orthogonal to
every vector in M and the modified version of the theorem is proved.

1.6 Dual Approximation Theorem

Theorem. Given a real pre-Hilbert space H of finite dimension, a set of k
linearly independent vectors {y1, ..., yk} ⊂ H, and a set of k real numbers
{α1, ..., αk} ⊂ R, form the set K of vectors x ∈ H that satisfy the k constraints
(y1 |x) = α1, ..., (yk |x) = αk:

K =
{
x ∈ H

∣∣∣ (yi |x) = αi ∀i ∈ {1, ..., k}
}
. (1.13)

It holds that

arg min
x∈K
||x|| =

k∑

i=1

βi yi (1.14)

where



(y1 | y1) (y1 | y2) . . . (y1 | yk)
(y1 | y2) (y2 | y2) . . . (y2 | yk)

...
...

...
(y1 | yk) (y2 | yk) . . . (yk | yk)







β1
β2
...
βk


 =




α1

α2
...
αk


 . (1.15)

In other words, the vector of minimum norm subject to a set of inner product
constraints must be a linear combination of the constraint vectors. Further-
more, this solution must exist and is unique: the matrix on the left side of
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(1.15) is necessarily invertible.

Proof. Let H be n-dimensional and let M be the k-dimensional subspace
that has {y1, ..., yk} as a basis. The orthogonal subspace to M , denoted M⊥,
is the (n− k)-dimensional subspace of all vectors in H that are orthogonal to
M :

M⊥ =
{
p ∈ H

∣∣∣ (m | p) = 0 ∀m ∈M
}

=
{
p ∈ H

∣∣∣ (yi | p) = 0 ∀i ∈ {1, ..., k}
}
. (1.16)

Comparing (1.13) to the right side of (1.16), it’s clear that if α1 = α2 =
... = αk = 0 then K = M⊥. With arbitrary {α1, ..., αk}, it holds that K
is a translation of the subspace M⊥: ∃v ∈ H such that K = M⊥ + {v} ={
p+ v

∣∣ p ∈M⊥}. As it turns out, any v ∈ K does the job. This can be
proved by showing that, ∀ fixed v ∈ K, it holds that K ⊆ (M⊥ + {v}) and
(M⊥ + {v}) ⊆ K and thus it must be the case that K = (M⊥ + {v}).

∀v, x ∈ K, define p = x − v such that x = p + v. Then, ∀i ∈ {1, ..., k},
it holds that (yi | p) = (yi |x − v) = (yi |x) − (yi | v) = αi − αi = 0 where the
second to last equality is via (1.13), and thus p ∈M⊥ via (1.16). So, x = p+v
where p ∈M⊥ which means that x ∈ (M⊥ + {v}). Hence, K ⊆ (M⊥ + {v}).

∀v ∈ K, x ∈ (M⊥ + {v}), it holds by definition of (M⊥ + {v}) that ∃p ∈M⊥

such that x = p+ v. Then, ∀i ∈ {1, ..., k}, it holds that (yi |x) = (yi | p+ v) =
(yi | p) + (yi | v) = 0 + αi = αi where the second to last equality is via (1.16)
and (1.13), and thus x ∈ K via (1.13). Hence, (M⊥ + {v}) ⊆ K.

So, K is the linear variety K = M⊥ + {v} where v is any vector in K and
M is the subspace that has {y1, ..., yk} as a basis. We can now apply the
modified finite-dimensional pre-Hilbert space projection theorem to K: there
exists a unique vector in K of minimum norm and this vector is orthogonal
to every vector in M⊥. By definition, the space of vectors orthogonal to M⊥

is M . Thus, the unique vector in K of minimum norm, call it x0, must be
in M and so must be a linear combination of {y1, ..., yk}, which proves (1.14).
Furthermore, x0 ∈ K so x0 must satisfy the constraints in (1.13). Substituting
(1.14) into these constraints gives, ∀i ∈ {1, ..., k},

(yi |x) =

(
yi

∣∣∣∣∣
k∑

j=1

βj yj

)
=

k∑

j=1

(yi | yj)βj = αi (1.17)

which is equivalent to (1.15). The dual approximation theorem is now proved.
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1.7 Geometric Intuition of the
Dual Approximation Theorem

Using the notation established in the proof of the dual approximation theorem,
let H = R2 where the inner product is the well-known dot product such that
orthogonal vectors are at right angles to each other. As per the proof, for any
fixed v ∈ K it holds that K = M⊥ + {v}. To establish geometric intuition,
choose v ∈M∩K such that M⊥, K = M⊥+{v}, and v are as shown in Figure
1.1. In this example, M is one-dimensional and thus M must be the subspace
that has {v} as a basis. Accordingly, there can only be one constraint that
defines K and it must be of the form (v |x) = α. We seek the x that satisfies
this constraint (i.e. is in K) of minimum norm. From the diagram, it’s clear
that the vector in K that is closest to the origin is v. So, in this example,
x0 = v is, indeed, a linear combination of the constraint vectors {v}.

Figure 1.1: Illustration of the
dual approximation theorem with
one constraint embedded in two

dimensions.

This geometric intuition generalizes to arbitrary dimensions. K = M⊥ + {v}
where we choose, without loss of generality, v ∈ M ∩K. M is defined as the
subspace that has the constraint vectors as a basis and thus v must be a linear
combination of the constraint vectors. Furthermore, it’s clear geometrically
that, always, x0 = v, and thus the vector in K of minimum norm is a linear
combination of the constraint vectors.
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2 Mathematical Theory of
Minimum-Variance Portfolios

This section works through the details of how the appropriate pre-Hilbert
space and the dual approximation theorem can be used to show that, given
fixed r ∈ R, a fixed set of assets, and known expectations, variances, and
pairwise covariances of the returns thereof, there always exists a unique port-
folio of these assets that is expected to return r with minimum variance. This
result is important to us because we will ultimately use it as the basis for the
investment decision-making support tool.

It must be noted that the existence and uniqueness of the minimum-variance
isn’t original: it is known as the efficient portfolio frontier1 in modern portfo-
lio theory. What is original, to the best of our knowledge, is our proof of the
result using the dual approximation theorem.

2.1 Portfolio Space

Suppose it is 12:01am on the first business day of time period 1 and there
is a set of N assets that the investor has somehow chosen to invest in. The
investor will enter into a specific portfolio of these assets when the markets
open at 9:30am, hold this portfolio all time period, and then cash out of the
portfolio when markets close on the last business day of the time period. The
investor seeks the portfolio that is expected to achieve a return of r over this
time period with minimum variance.

Let X i
y be the random variable that is the rate of return of the i-th asset

1See “An Analytic Derivation of the Efficient Portfolio Frontier” by Robert Merton, [2]
in the sources section.
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during time period m:

X i
m =

closing price of asset i on the last business day of time period m

opening price of asset i on the first business day of time period m
.

(2.1)

Given the date it holds that X i
m is known ∀m ∈ {0,−1,−2, ...} and unknown

∀m ∈ {1, 2, 3...}. However, assume that E(X i
1) and cov(X i

1, X
j
1) are known

∀i, j ∈ {1, ...n}. As will be discussed in section 3.2, this is a reasonable as-
sumption because we can compute these values from X i

m ∀m ∈ {0,−1,−2, ...}
under the premise that the past may be indicative of the future.

Represent the investor’s portfolio as the N -dimensional vector

x = [x1 x2 . . . xN ]T (2.2)

where xi is the fraction of the total dollar amount invested that is invested in
the i-th asset.2 Accordingly, it must hold that

N∑

i=1

xi = 1 . (2.3)

The random variable Ym that is the rate of return of the entire portfolio during
time period m can be written

Ym =
N∑

i=1

xiX
i
m . (2.4)

We are concerned with Y1, the return over the upcoming time period. Let S
be the space of all N -dimensional portfolio column vectors such that x ∈ S.
Let C be the N by N covariance matrix of asset returns: the element in the
i-th row and j-th column of C is

Ci,j = cov(X i
1, X

j
1) . (2.5)

Via (2.4) and the formula for the variance of a sum of random variables:

var(Y1) = var

(
N∑

i=1

xiX
i
1

)
=

N∑

i=1

N∑

j=1

xi xj cov(X i
1, X

j
1) = xTCx . (2.6)

Theorem. The following function is a valid inner product over S:

(y | z) = yTCz ∀y, z ∈ S . (2.7)

2Note that each xi can be negative (as well as positive, of course) because the investor
can short any asset. Shorting an asset is the exact opposite of buying it. If you buy an
asset: if its price increases by $1 then you make $1 and if its price decreases by $1 then you
lose $1. If you short an asset: if its price increases by $1 then you lose $1 and if its price
decreases by $1 then you make $1. The mechanics of shorting an asset are as follows: the
investor borrows the asset from a lender, immediately sells it to the market, and then buys
it back from the market at a later time and returns in to the lender.
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Proof.

• cov(X i
1, X

j
1) = cov(Xj

1 , X
i
1) and thus, via (2.5), C is symmetric, so

[(z | y)]T = (zTCy)T = yTCz = (y | z). Any 1 by 1 matrix (a scalar) is
symmetric so [(z | y)]T = (y | z) and thus (y | z) = (z | y) ∀y, z ∈ S.

• (x + y | z) = (x + y)TCz = (xT + yT )Cz = xTCz + yTCz = (x | z) +
(y | z) ∀x, y, z ∈ S.

• (αx | y) = (αx)TCy = αxTCy = α(x | y) ∀α ∈ R, x, y ∈ S.

• (x |x) = xTCx = var(Y1) via (2.6) and variances are nonnegative so
(x |x) ≥ 0 ∀x ∈ S. Furthermore, var(Y1) = 0 if and only if Y1 is a
constant. It is assumed that there is no nontrivial linear combination
of the {X i

1} that is a constant3 and thus var(Y1) = 0 if and only if
x1 = x2 = ... = xn = 0, which is equivalent to x being the zero vector.
Thus, (x |x) = 0 if and only if x is the zero vector.

Thus S is a pre-Hilbert space with the norm

||x|| =
√

(x |x) =
√
xTCx =

√
var(Y1) . (2.8)

2.2 Constraints

There are two constraints on x. The first is (2.3). The second is that the
investor wants a return of exactly r on average:

E(Y1) = E

(
N∑

i=1

xiX
i
1

)
=

N∑

i=1

E(X i
1)xi = r (2.9)

where the first equality is via (2.4) and the second equality is via the linear-
ity of expectation. In order to facilitate an imminent application of the dual
approximation theorem, these constraints are rewritten as inner product con-
straints in pre-Hilbert space S.

For (2.3), we seek u ∈ S such that

(u |x) = uTCx =
N∑

i=1

xi (2.10)

at which point the constraint could be written as (u |x) = 1. Examining the
second equality in (2.10), it’s clear that we require uTC = [1 1 . . . 1] and thus

3If none of the N assets is a financial derivative of one of the others then this “asset
independence” is a very safe assumption: there are, in general, no perfect linear relationships
between returns of distinct assets so it is impossible to linearly combine distinct assets to
create a risk-free return. Furthermore, no asset is risk-free (none of the Xi

1 is a constant)
so a single-asset portfolio can never be risk-free.
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(uTC)T = CTu = Cu = [1 1 . . . 1]T which gives u = C−1[1 1 . . . 1]T . So, the
first constraint can be written in inner product form as

(u |x) = α1 , u = C−1[1 1 . . . 1]T , α1 = 1 . (2.11)

For (2.9), we seek v ∈ S such that

(v |x) = vTCx =
N∑

i=1

E(X i
1)xi (2.12)

at which point the constraint could be written as (v |x) = r. Following
the same steps as above, we require vTC = [E(X1

1 ) E(X2
1 ) . . . E(XN

1 )] and
thus (vTC)T = CTv = Cv = [E(X1

1 ) E(X2
1 ) . . . E(XN

1 )]T which gives v =
C−1[E(X1

1 ) E(X2
1 ) . . . E(XN

1 )]T . So, the second constraint can be written in
inner product form as

(v |x) = α2 , v = C−1[E(X1
1 ) E(X2

1 ) . . . E(XN
1 )]T , α2 = r . (2.13)

Because S is pre-Hilbert there does not exist a nonzero vector x ∈ S such that
Cx = 0 (else (x |x) = xTCx = 0 with x 6= 0) and thus C−1 necessarily exists.

Note that it’s technically possible for u and v to be multiplies of each other,
which would make the constraints (2.11) and (2.13) either redundant or contra-
dictory. However, this only occurs if [1 1 . . . 1] and [E(X1

1 ) E(X2
1 ) . . . E(XN

1 )]
are multiplies of each other which, because different assets have different av-
erage returns, is extremely unlikely.

2.3 Minimum-Variance Portfolio

We seek the portfolio x ∈ S that minimizes var(Y1) = ||x||2 while satisfying
the constraints (2.11) and (2.13). The square root function is monotonically
increasing so minimizing ||x|| is equivalent. Thus, the investor seeks the x ∈ S
of minimum norm subject to two inner product constraints.

This is a straightforward application of the dual approximation theorem. Let
y be the minimum-variance r-returning portfolio that we seek. Via (1.14), a
simple rearrangement of (1.15), and the definition of the portfolio space inner
product (2.7), it holds that

y = β1u+ β2v ,

[
β1
β2

]
=

[
uTCu uTCv
uTCv vTCv

]−1 [
1
r

]
(2.14)

where C is defined by (2.5) and constructed from the known expectations
and covariances of the N assets, u and v are defined in (2.11) and (2.13)
respectively, and r is the average rate of return we demand. Then, via (2.8),
the minimum variance is

min var(Y1) = ||y||2 = yTCy . (2.15)
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2.4 Lagrange Multipliers

This solution could have been determined solely with Lagrange multipliers
without any mention of norms, inner products, pre-Hilbert space, etc. Ac-
cordingly, the pre-Hilbert space method is necessary not because it provides a
method for finding the solution if one exists, but rather because it proves that
one always exists. Lagrange multipliers are not up to this task because they
provide a necessary but not sufficient condition for an extremum.
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3 Building Towards a
Practical Application

In this section we work through various technical topics that must be addressed
before we can weaponize the minimum-variance result proved in section 2 into a
decision-making support tool and ultimately a profitable, practical, and capital
non-intensive investment strategy. As a result of some of these technical topics
being unrelated, parts of this section has no logical flow; rather, it reads like
a list.

3.1 Variance as Risk

Given a set of n assets, known values of E(X i
1) and cov(X i

1, X
j
1) ∀i, j ∈

{1, ..., N}, and a requested return r, we now know how to construct the unique
portfolio of these N assets that is expected to return r during time period 1
with minimum variance. But what is variance? var(Y1) measures how far the
random variable Y1 is likely to be from the mean of Y1, which is r. Accord-
ingly, variance is a good measure of the financial risk in the time period 1
return: a low variance indicates that Y1 is likely to be near its mean, which
we know to be r, whereas a higher variance indicates more uncertainty in that
Y1 is more likely to be far from its mean. In the extreme, a variance of zero
means no risk: we know ahead of time that the return during time period 1 is
going to be r. So, from now on, the words “variance” and “risk” will be used
interchangeably.

3.2 Calculating Expectations and
Covariances From Historical Data

It would be a mistake to assume that past asset returns are necessarily in-
dicative of future returns; for two reasons it is nonetheless reasonable to use
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historical data to calculate each E(X i
1) and cov(X i

1, X
j
1). First, in the absence

of a strong understanding of financial markets, historical data is all we have
to go by. Second, we can simply speculate that the past may be indicative of
the future and then test this hypothesis by checking how well the resultant
investment strategies perform (see section 5.1).

Specifically, we compute asset expectations and covariances1 using the pre-
vious k time periods of data:

E
(
X i

1

)
= mean

({
X i
−k+1, ..., X

i
0

})
, (3.1)

cov
(
X i

1, X
j
1

)
= cov

({
X i
−k+1, ..., X

i
0

}
,
{
Xj
−k+1, ..., X

j
0

})
. (3.2)

Note that (3.1) and (3.2) constitute one way in which any resultant investment
strategy learns from the past to draw inferences about the future. Specifically,
we use past data to compute metrics (expectations and covariances) that give
us insight into both the future values of the {X i

1} and the pairwise relationships
thereof.

3.3 Investment Restrictions

We assume that our investor has roughly $5000 that he is able to invest,2

access only to an online stock brokerage,3 and has only very limited financial
knowledge.

Online brokerages have transaction costs of roughly $10 per trade for most
assets,4 meaning that entering into a portfolio of n assets costs $10n and cash-
ing out of that portfolio costs another $10n, resulting in total transaction costs
of $20n. For our tastes, transaction costs should be no more than a percent or
two of the initial cash invested per year: we don’t want transaction costs to de-
tract any more than 2% per year of any return. Noting that 20 · 5/5000 = 2%,
we see that one way to keep transaction costs less than or equal to 2%/year
is to set n = 5 and trade only once per year: the investor sinks $50 in trans-
action costs to enter into a portfolio of n = 5 assets, holds this portfolio for
exactly one year without doing any other trades, and then sinks another $50
in transaction costs to cash out of the portfolio. We fix n = 5 and annual
trading for the rest of the paper. So, the investor’s true return is the nom-
inal return he earns on his assets during the year minus transaction fees of 2%.

Of course, n = 5 with annual trading is not the only strategy that results
in transaction costs less than or equal to 2%/year. The investor could let

1And therefore also variances: var(Xi
1) = cov(Xi

1, X
i
1).

2The strategies presented here will work given as little as $2000 initial capital, but, as
will be described, lower initial capital implies lower returns due to fixed transaction costs.

3E-Trade (www.etrade.com), for example.
4See sources [3], [4], and [5].
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n = 4 and still trade only once per year resulting in lower transaction costs, or
he could let n = 2 and trade twice per year, etc. Furthermore, the restriction
that transaction costs cannot exceed 2%/year is not well-justified; as afore-
mentioned, it’s simply personal preference. Accordingly, the restriction of the
portfolio to n = 5 assets traded annually is rather arbitrary and we have no
reason to believe that it is optimal. However, as will be shown in the results
section, this restriction, along with other elements of the investment decision-
making support tool and the appropriate parameter-choosing strategy, gives
profitable results: it is a configuration that works and that is justification
enough.

Another result of the $5000 investment limit is that fixed income assets are
off limits: almost all fixed income assets (bonds & CDs) that are available
to trade through online brokerages have a $5000 investment minimum5 and
we need to invest in more than one asset (n = 5). Furthermore, because the
investor has very limited financial knowledge, we will assume that the only
assets he understands, or at least feels comfortable investing in, are stocks and
bonds. Because bonds are off limits we are left with only stocks. We proceed
given the restrictions that the investor must invest in n = 5 stocks, hold this
portfolio for one year, and then cash out.

3.4 Time Scale

As just described, the investor enters into a portfolio, holds it for a year, and
then cashes out. Accordingly, we will express the return of any portfolio as
percentage per year: it doesn’t make sense to use a shorter time scale (i.e. per
month) because the investor cannot invest for less than a year and it doesn’t
make sense to use a longer time scale because the investor doesn’t have to in-
vest for any longer than a year. Furthermore this facilitates easy comparison
between the strategies presented here and various benchmarks because returns
are almost always expressed yearly.

However, we define the length of one time period to be one month: X i
m is

the rate of return of the i-th asset during month m. We do so for two reasons.

• As will be described in the subsequent sections, returns of portfolios are
path dependent. Suppose, as we will be doing here, that you enter into a
portfolio today, hold it for a year, and then cash out. Path dependence
means that you cannot determine the return of the portfolio simply from
asset prices today and asset prices in one year. The path the asset prices
follow over the next year matter. To be completely accurate we would
need daily asset prices, but, as will become evident in the subsequent sec-
tions, this would be too computationally intensive. Using monthly asset
prices is a good balance between accuracy and computational efficiency.

5See sources [3], [4], and [5].
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• Recall from section 3.2 that we calculate each E(X i
1) and cov(X i

1, X
j
1)

using the last k time periods of historical data. If we set each time period
to be one year then we would be constrained to using the last integer
number of years of historical data. However, what if it is optimal to
use some non-integer number of years of historical data? To account for
this, we require finer than yearly resolution. Again, monthly resolution is
a good compromise between computational feasibility and accuracy: we
will calculate each E(X i

1) and cov(X i
1, X

j
1), the expectations and pairwise

covariances of asset returns over the next month, using the last k months
of data as per (3.1) and (3.2).

So, the investment decision-making support tool that we present in section
4 will produce investment strategies that involve calculating the minimum-
variance portfolio for the next month (month 1), immediately entering into
this portfolio, and then holding it for an entire year (months 1 through 12).
Given that we restrict trading to once per year, this is justifiable: we have no
knowledge of the future so the minimum-variance portfolio for the next month
must be identical to the minimum-variance portfolio for the next year.

For the purpose of constructing the minimum-variance portfolio and actually
entering into it, it doesn’t matter what year it is; we use the last k months
of historical data to construct the minimum-variance r-returning portfolio for
the upcoming month (month 1) and then hold this portfolio for 12 months
independent of what year it happens to be. However, in the upcoming sec-
tions we compare how different investment strategies would have performed
in different calendar years so we need notation to distinguish between years.
Accordingly, let the year be t: we suppose that it is currently 12:01am on the
first business day of month 1 of year t. For our purposes, t always denotes the
calendar year such that the first business day of month 1, which is when we
enter into a portfolio, is always the first business day of January. However, the
strategies presented here could be used to invest from, say, April 22nd 2012 to
April 21st 2013 simply by redefining a year to start on April 22nd. So, we let
t denote the calendar year without loss of generality.

3.5 Long and Short Positions

The following function is well-defined:

yt(G, r, k) = [x1 x2 . . . xN ]T (3.3)

which returns the unique minimum-variance portfolio (as per (2.14) along with
(2.5), (2.11), and (2.13)) that:

• uses the set of N stocks G,

• is for the upcoming month 1 of year t,
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• is expected to return r during the time period it is intended for, which
is the upcoming month 1 of year t,

• uses only the last k months of historical data to calculate the E(X i
1) and

cov(X i
1, X

j
1) (as per (3.1) and (3.2)).

For example, yt=2011(G, r, k = 3) returns the minimum-variance r-returning
portfolio for January 2011 using only data from October, November, and De-
cember of 2010 and using the N stocks in set G.

Given a portfolio y = yt(G, r, k), define P to be the number of components of
y that are positive; formally:

P =
∣∣{i ∈ {1, ..., N}

∣∣xi > 0
}∣∣ (3.4)

where the absolute value of a set is the number of elements in it. Note that
(N − P ) is the number of non-positive components of y. Define αi to be the
index of the i-th positive component of y and βi to be the index of the i-th
non-positive component of y; formally:

∣∣{j ∈ {1, ..., αi}
∣∣xj > 0

}∣∣ = i ∀i ∈ {1, ..., P} , (3.5)∣∣{j ∈ {1, ..., βi}
∣∣xj ≤ 0

}∣∣ = i ∀i ∈ {1, ..., N − P} . (3.6)

So, {xα1 , ..., xαP
} are the dollar proportional of the investor’s long positions in

assets α1, ..., αp and {xβ1 , ..., xβN−P
} are the dollar proportional of the investor’s

short positions in assets β1, ..., βN−P . Define `m to be the total value at the
end of month m of all assets bought long and sm to be the total value at the
end of month m of all assets sold short, both per overall dollar invested. The
end of month 0 is the beginning of month 1 so `0 (or s0) is, simply, the sum
of the investor’s initial long (or short) positions:

`0 =
P∑

i=1

xαi
, (3.7)

s0 =
N−P∑

i=1

xβi . (3.8)

Note that (2.3) along with (3.7) and (3.8) imply that

`0 = s0 + 1 . (3.9)

The value at the end of month m is equal to the value at the end of month
(m− 1) plus the change that occurred during month m, so, ∀m ∈ {1, ..., 12}:

`m = `m−1 +
P∑

i=1

xαi
Xαi
m = `0 +

m∑

n=1

P∑

i=1

xαi
Xαi
n , (3.10)

sm = sm−1 +
N−P∑

i=1

xβiX
βi
m = s0 +

m∑

n=1

N−P∑

i=1

xβiX
βi
n (3.11)

where `0 and s0 are defined by (3.7) and (3.8), respectively.
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3.6 Cash, Debt, and Equity

Let cm be the non-negative amount of usable cash the investor has in his
account at the end of month m and let dm be the non-negative amount of debt
to the online brokerage that the investor has accumulated by the end of month
m. Define the investor’s equity at the end of month m as

qm = `m + cm − dm (3.12)

which is the dollar value per overall dollar invested of the assets in the portfolio
that the investor actually owns. The intuition is as follows: if the investor has
no cash, a long position of `m, but he funded this long position by borrowing
from the brokerage such that he now owes dm, then he only actually owns
(`m−dm) of the long position. In other words, if he were to pay back his loans
at the end of month m then he would have exactly qm of value remaining.
Define the investor’s percentage equity at the end of month m as

pm =
qm

`m + cm
=
`m + cm − dm
`m + cm

(3.13)

which can be interpreted as the percentage of his entire portfolio that the
investor actually owns. It will become clear in the next section why we need
to define these quantities. Rearranging (3.13) gives

dm = (1− pm)(`m + cm) . (3.14)

Note that both (3.12) and (3.13) seem to ignore the investor’s short position
because sm appears in neither. This is not the case: as will be described in
section 3.7, the “short covering requirement” requires the investor to imme-
diately realize any gains or losses of the short position in cash, and thus the
value of the short position is encapsulated in cm and dm.

3.7 Regulations and Requirements

Whereas in section 3.3 we discussed soft, somewhat arbitrarily imposed re-
strictions that result from our investor’s particular situation ($5000 to invest,
access only to an online brokerage, very limited financial knowledge), in this
section we discuss regulations and requirements that apply to all investors who
choose to use an online brokerage. Some of these regulations and requirements
are laws imposed by the Financial Industry Regulatory Authority (FINRA);
others are rules that all online brokerages impose on their customers; all are
firm and carry consequences if broken.6

6We gleamed the information in this section from countless phone calls with E-Trade
customer support representatives as well as sources [6] and [7].
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3.7.1 Margin Requirements for Borrowing

The investor can borrow cash from the brokerage either just to have on hand
or for the purpose of buying stocks subject to the following restrictions. In
order to take out a new loan at the end of month m, thus increasing dm−1 by
(dm−dm−1) to dm, it must be the case that pm would be greater than or equal
to 50% after taking out the new loan. So, via (3.14) we’re allowed to increase
dm−1 to dm > dm−1 by taking out a new loan at the end of month m if and
only if

dm ≤ 0.5(`m + cm) . (3.15)

This is the 50% “initial margin requirement” for borrowing. Furthermore, at
all times (not just in order to borrow more cash), it must hold that pm is
greater than or equal to 30%. So, via (3.14), we require

dm ≤ 0.7(`m + cm) (3.16)

∀m ∈ {1, ..., 12} whether or not a new loan is being taken out at any particular
m. This is the 30% “maintenance margin requirement” for borrowing.

The cash is borrowed at a predetermined compounding frequency and rate
of interest. Here, we will use E-Trade’s lending terms: daily compounding at
an annual rate of 8.44%. Given that there are approximately 21 business days
per month resulting in approximately 252 business days per 12 months, we
simulate daily compounding of the monthly debt by, at the end of each month
m after all other transactions, multiplying the debt dm by

(
1 +

0.0844

252

)21

. (3.17)

3.7.2 Short Covering Requirement

The short covering requirement necessitates that at any time the investor needs
to have enough cash in his so-called margin account to buy back (a.k.a. close
out; cover) his entire short position. So, when the investor shorts s0 of stock
yielding him s0 in cash, all of that cash is automatically moved to his mar-
gin account such that the margin account contains exactly the amount of cash
necessary to buy back his short (which for the moment would cost him s0). He
cannot use any portion of this s0 to fund his long positions or to do anything
else; all cash in the margin account is untouchable, distinct from the investor’s
cm (at the end of month m) of usable cash, and so does not contribute to the
investor’s equity qm.

So, in general, as time progresses and the value of the shorted assets changes,
∀m ∈ {1, ..., 12} the investor must have sm of cash (the amount necessary to
cover the short at the end of month m) in his margin account at the end of
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month m. If the value of the shorted assets decreases then some portion of the
margin account cash is freed up and transferred to the investor’s usable cash
cm. For example, if sm < sm−1 then, at the end of month m, (sm−1 − sm) of
the sm−1 of cash in the margin account becomes usable and is transferred to
the investor’s free cash so cm = cm−1 + sm−1 − sm, and the other sm of cash
in the margin account has to stay in the margin account in order to cover the
short position which is currently worth sm.

On the other hand, if the value of the shorted assets increases then the in-
vestor must somehow input cash into the margin account in order to cover his
short position. For example, if sm > sm−1 then, at the end of month m, the
investor needs to somehow add (sm − sm−1) of cash into the margin account
which would combine with the sm−1 of unusable cash already there to give a
total of sm of (unusable) margin account cash, exactly the amount necessary
to cover the short position. If cm−1 ≥ sm − sm−1 then it’s easy: the investor
simply moves sm − sm−1 of his free cash to his margin account, resulting in
the short position being covered and cm = cm−1 − (sm − sm−1). However, if
the investor does not have enough free cash to move into his margin account
to cover the short position then he must borrow from the brokerage.

Accordingly, before he is allowed to take a short position in the first place,
the investor must agree to let his brokerage automatically lend him cash
at a predetermined interest rate if he ever needs additional cash to cover a
short position. As per the above, this happens if sm > sm−1 and cm−1 <
sm − sm−1. In this case the brokerage would automatically lend the investor
sm − sm−1 − cm−1 directly into his margin account at the end of month m, so
dm = dm−1 + sm− sm−1− cm−1, and the investor would eventually have to pay
back this amount plus interest. The investor is allowed to borrow as much as
he needs to cover his short position for as long as he needs, provided that the
initial and maintenance margin requirements for borrowing, as described in
section 3.7.1, are met.

In effect, this short covering requirement requires the investor to immediately
realize any gains or losses from the short position such that, at all times, the
net value of the short position is zero. In other words, when it’s time to cash
out of the portfolio at the end of month 12, the short covering requirement ne-
cessitates that the investor have s12 in cash just sitting in his margin account,
exactly the amount necessary to close out the short position. So, gains and
losses of the short position aren’t realized at the end of month 12 when the
investor cashes out (as they are for the long position); rather, they are realized
monthly as cm and dm fluctuate as the short position goes in the investor’s
favor and he gets margin account cash freed up, increasing cm, or the short
position goes against the investor and he has to borrow to meet the short
covering requirement, increasing dm. Accordingly, the net value of the short
position at any given time is (cm − dm).
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3.7.3 Margin Requirements for Shorting

In addition to this short covering requirement that mandates the investor al-
ways have enough cash in his margin account (that can’t be used for anything
else) to buy back his short position, the brokerage also imposes initial and
maintenance margin requirements for shorting assets. As with the margin re-
quirements for borrowing presented in section 3.7.1, the initial requirement
is 50% and the maintenance one is 30%. However, these requirements have
slightly different meanings in the context of shorting as opposed to borrowing.

The initial margin requirement for short selling is the mandate that, in or-
der to initially short the s0 dollars of assets, the investor needs to have 0.5s0 of
equity in his account (separate from the s0 of cash he must have in his margin
account immediately after entering into the short). So, in order to enter into
the short position in the first place, we require

0.5s0 ≤ q0 = `0 + c0 − d0 . (3.18)

It will be shown in section 3.8 that (3.18) is always necessarily satisfied and
so we don’t have to worry about the initial margin requirement for shorting.

The maintenance margin requirement for short selling is that, at all times
after a short position has been entered into, the investor needs to have 30%
of the value of the shorted assets of equity in his account (separate from the
100% of the value of the shorted assets in cash that must be in his margin
account). So, ∀m ∈ {1, ..., 12}, we require

0.3sm ≤ qm = `m + cm − dm . (3.19)

Note that, whereas the short covering requirement can only be satisfied by cash
in the margin account that cannot be used for anything else, these additional
margin requirements can be satisfied by all of the investor’s equity including
his long position. So, the combination of the short covering requirement and
the maintenance margin requirement for shorting is the mandate that, at any
time, were the investor to liquidate his long position and pay back any debt
he owes to the brokerage, he would have at least 130% of the cash necessary
to close out his short position. He needs at least 100% of this at least 130% in
cash in his margin account and the rest is the cash left over after liquidating
the long position and paying back all debt.

If the maintenance margin requirement for shorting is ever not satisfied then
the brokerage automatically lends the investor the amount of cash necessary
to satisfy the requirement, quite similarly to what happens if the short cov-
ering requirement is ever not satisfied as described in section 3.7.2. The only
difference is as follows: in the short covering case the additional funds are
loaned from the brokerage directly into the investor’s margin account (where
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he is required to have them), whereas in this maintenance margin requirement
for shorting case the additional funds are lent to the investor as usable cash.
Explicitly, if (3.19) is not satisfied at the end of month m then the brokerage
would automatically lend (0.3sm− qm) to the investor, instantaneously adding
this amount to both cm and dm such that it now holds that 0.3sm = qm.
Of course, this lending is subject to the margin requirements for borrowing
explained in 3.7.1.

3.7.4 Margin Call

What happens if either the investor needs to borrow cash (to satisfy the short
covering requirement and/or the maintenance margin requirement for short-
ing) but the necessary loan would violate (3.15) or (3.16)? Or what if (3.16) is
suddenly violated without a new loan being taken out? In either case, an event
termed a “margin call” occurs. In a margin call, the brokerage will notify the
investor that he needs to immediately deposit enough cash into his account
such that (3.15) and (3.16) are once again both satisfied. The investor can-
not borrow the additional cash because either (3.15) was violated, which by
definition means that the investor cannot borrow any more, or (3.16), which
is more lenient than (3.15) was violated which would imply that (3.15) is also
violated. So, the investor needs outside funds. If the investor is able to procure
enough outside cash and deposit it then all is well. If he is not able to then the
brokerage can, without further notice, liquidate the investor’s entire portfolio
and pay itself back any debt the investor owed.

Accordingly, if a margin call ever occurs, we assume that the entire port-
folio is liquidated, all debt that is owed is paid back to the brokerage, and the
investor doesn’t trade for the remainder of the 12 months. We do this because
we don’t want to require the investor to have any extra cash on hand outside
his account: when we say the investor needs $5000 of initial cash, we mean
that he only needs $5000 of initial cash, margin call or no margin call.

3.8 Cash and Debt Management Strategy

On the first day of month 1, the investor buys long a proportion `0 dollars
of assets and sells short a proportion s0. The short covering requirement as
detailed in section 3.7.2 mandates that the investor cannot use any part of
the s0 cash proceeds from the short to buy assets. However, this does not
necessarily mean that the investor needs a proportion `0 of cash to start with.
Let b be the so-called borrowing parameter such that, on the first day of month
1, the investor borrows `0b of cash which he combines with `0(1− b) of his own
cash in order to enter into the `0 long position. This means that the investor
immediately accumulates `0b of debt: d0 = `0b. We set c0 = 0 because having
extra cash initially would be inefficient returns-wise (see (3.21) in the next
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section), so the initial margin requirement for borrowing (3.15) mandates that

`0b ≤ 0.5`0 ⇒ b ≤ 0.5 . (3.20)

The investor cannot borrow a negative amount of money so 0 ≤ b ≤ 0.5. We
will seek to optimize over b in upcoming sections.

We are now in position to show that the initial margin requirement for shorting
(3.18) is necessarily satisfied. Substituting c0 and d0 = `0b into (3.18) shows
that the requirement is equivalent to 0.5s0 ≤ (1− b)`0. Because b ≤ 0.5 as de-
scribed above and s0 ≤ `0 as per (3.9), this equivalent condition is necessarily
satisfied and thus we don’t have to worry about the initial margin requirement
for shorting.

We also specify what the investor will do with any extra cash: if cm > 0
after any required cash has been moved to the margin account (to cover the
short) and if the shorting maintenance margin requirement is satisfied then
the investor pays back as much debt as possible. Note that paying back debt
will never violate the borrowing maintenance margin requirement if it wasn’t
already violated because if dm and cm are decreased by the same amount then
the left side of (3.16) decreases by more than the right side decreases.

3.9 Calculating Returns

As previously discussed, the investor somehow chooses r, k, and a group G
of N = 5 stocks (how he chooses these parameters is the subject of the next
several sections), calculates the minimum-variance portfolio yt(G, r, k), buys
into this portfolio on the first business day of year t, and cashes out of it on
the last business day of year t. If we observe the returns of the investor’s
5 stocks over this year, we should be able to calculate the investor’s overall
return. Specifically, given known values of X i

m ∀m ∈ {1, ..., 12}, i ∈ {1, ..., 5},
we seek to calculate the investor’s annual return subject to all the regulations
and requirements presented in section 3.7. The investor’s true annual return
using borrowing parameter b is

ab ≡
(output cash on last day of month 12)− (input cash on first day of month 1)

(input cash on the first day of month 1)

=
(`12 + c12 − d12)− (1− b)`0

(1− b)`0
− 0.02 (3.21)

where the first equality is by definition of return and the second is via the
facts that the investor initially inputs (1− b)`0 of his own cash (as per section
3.8), that at the end of month 12 the investor liquidates his long position and
pays back all debt, and that transaction costs necessarily detract 2% from the
return as discussed in section 3.3.
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Note that ab as defined in (3.21) is qualitatively different from the return
Ym defined in (2.4) because (2.4) does not take into account regulations and
transaction fees. Thus, even if the portfolio does perform exactly according
to expectation, it doesn’t actually return r per month. Still, it’s justifiable to
use the minimum-variance portfolio that is expected to “return” r because, as
will be shown later, this strategy works.

Note that the smaller the {`m} are and the larger the {sm} are the worse
it is for the investor. Accordingly, to conservatively account for the fact that
we only use monthly resolution but ab is technically path-dependent on daily
asset prices, we do the following. Define, ∀m ∈ {1, ..., 12},

¯̀
m = min(`m−1, `m) , (3.22)

s̄m = max(sm−1, sm) , (3.23)

and assume that:

• an instant after markets open on the first business day of month m, the
value of the long position instantaneously changes from `m−1 to ¯̀

m and
the value of the short position instantaneously changes from sm−1 to s̄m;

• the long position is worth ¯̀
m and the short position is worth s̄m for the

rest of month m;

• an instant before the markets close on the last business day of month
m, the value of the long position changes from ¯̀

m to `m and the value
of the short position changes from s̄m to sm.

In other words, we know that the value of the investor’s long and short posi-
tions go from `m−1 and sm−1, respectively, at the beginning of month m to `m
and sm, respectively, at the end of month m, and to account for the fact that
we don’t know what happens in between we assume that the worst endpoint
for each position holds all month.

Note that, though this is very conservative, it is not a strict lower bound.
It is possible, though unlikely, that the value of the long position could, an
instant after the markets open on the first business day of month m, drop
down from `m−1 to a value lower than ¯̀

m, remain there all month, and then,
an instant before the markets close on the last business day of month m, shoot
up to `m.

An algorithm for calculating ab for any portfolio y given X i
m ∀m ∈ {1, ..., 12},

i ∈ {1, ..., 5} is as follows, where `m, sm, ¯̀
m, and s̄m are defined for any y as

per (3.10), (3.11), (3.22), and (3.23).
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1: c0 ← 0
2: d0 ← `0b
3: for m = 1→ 12 do
4: cm ← cm−1 − (s̄m − s̄m−1)
5: if cm > 0 then
6: if dm > 0.7(¯̀

m + cm) then

7: margin call: return
¯̀
m + cm − dm − (1− b)`0

(1− b)`0
− 0.02

8: end if
9: if cm > dm then

10: cm ← cm − dm
11: dm ← 0
12: else cm ≤ dm
13: dm ← dm − cm
14: cm ← 0
15: end if
16: else cm ≤ 0
17: dm ← dm − cm
18: cm ← 0
19: if dm > 0.5¯̀

m then

20: margin call: return
¯̀
m + cm − dm − (1− b)`0

(1− b)`0
− 0.02

21: end if
22: end if
23: if 0.3s̄m > ¯̀

m + cm − dm then
24: dm ← dm + 0.3s̄m − (¯̀

m + cm − dm)
25: cm ← cm + 0.3s̄m − (¯̀

m + cm − dm)
26: if dm > 0.5(¯̀

m + cm) then

27: margin call: return
¯̀
m + cm − dm − (1− b)`0

(1− b)`0
− 0.02

28: end if
29: end if
30: dm ← (1 + 0.0844/252)21dm
31: end for
32: c12 ← c12 + s̄12 − s12

33: return
`12 + c12 − d12 − (1− b)`0

(1− b)`0
− 0.02

Algorithm 3.1: Algorithm for calculating ab for any portfolio y.

In words the algorithm is as follows, where the numbers are the lines of the
algorithm.

• 1-2: Set the initial cash and initial debt as per section 3.8.

• 3: Loop through the twelve months of the year and do the following for
each year.
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• 4: Transfer between margin account and cash to exactly satisfy the short
covering requirement as described in section 3.7.2.

• 5: If this results in a positive cash balance then no borrowing is required
to cover the short.

• 6-7: If the maintenance margin requirement for borrowing (3.16) isn’t
satisfied then liquidate the portfolio and terminate the algorithm, result-
ing in a return analogous to (3.21). However, to calculate the return we
use ¯̀

m instead of `m because the investor liquidates his position as soon
as the margin call occurs, whether or not that’s at the end of the month.

• 9-11: As per section 3.8, if there is enough cash to payoff all the debt
then do so.

• 12-14: As per section 3.8, if there is only enough cash to payoff some of
the debt then payoff as much as possible.

• 16-18: If transferring between margin account and cash to exactly satisfy
the short covering requirement results in a negative cash balance, then
borrow exactly the difference such that the short covering requirement
is satisfied.

• 19-20: If this act of borrowing violates the initial margin requirement
for borrowing (3.15) then liquidate the portfolio and terminate the algo-
rithm, resulting in a return identical to the one described in the above
description of lines 6-7.

• 23-25: If the shorting maintenance requirement (3.19) is violated then
borrow exactly the amount of cash necessary to satisfy it.

• 26-27: If this act of borrowing violates the initial margin requirement
for borrowing (3.15) then liquidate the portfolio and terminate the algo-
rithm, resulting in a return identical to the one described in the above
description of lines 6-7.

• 30: Increase debt to include a month of daily compounded interest at
8.44% per year as per (3.17).

• 32: Update the amount of cash in hand at the end of the year to account
for the facts that s̄12 ≥ s12 as per (3.23) and that the investor liquidates
his position at the very end of month 12.

• 33: Liquidate the portfolio and collect the return (3.21) where we use
`12 not ¯̀

12 because the investor liquidates his position at the very end of
month 12.
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So, the following function is well-defined:

ab(yt(G, r, k)) (3.24)

which first calculates yt(G, r, k) as described in section 3.5 using only data
from the k months prior to January of year t and then, using algorithm 3.1
and X i

m ∀m ∈ {1, ..., 12}, i ∈ {1, ..., 5} for year t, calculates what the portfolio
yt(G, r, k) actually would have returned in year t, with all fees and regulations
taken into account, had the investor borrowed a percentage b of the cash nec-
essary to enter the portfolio. In other words, given r and k, ab(yt(G, r, k))
constructs the minimum-variance portfolio of the stocks in G that the investor
would have constructed on the first business day of January of year t with only
data that was been available to him at that time, and then, given borrowing
parameter b, calculates how this portfolio would have actually performed in
terms of return, with all regulations and associated costs considered, over the
12 months of year t, which are the 12 months the investor would have held
the portfolio for. So, ab(yt(G, r, k)) is a true, all-things-considered, real-world,
unbiased measure of how well the portfolio yt(G, r, k) would have actually per-
formed during the year it was constructed to be a minimum-variance portfolio
for. Note that ab(yt(G, r, k)) is only defined if it is January 1st of year (t+ 1)
or later. Accordingly, at the time of writing of this paper, ab(yt(G, r, k)) is
only defined ∀t ∈ {2011, 2010, ...}.
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4 Investment Strategies

In this section, with yt(G, r, k) and ab(yt(G, r, k)) in hand, we devise and
present the decision-making support tool using the fixed-return minimum-
variance result from section 2 and various technical aspects from section 3.
We also present the optimal set of parameter-choosing strategies along with
the progression of parameter-choosing strategies that led to this optimal set.
The combinations of the decision-making support tool with these optimal
parameter-choosing strategies result in an optimal set of investment strate-
gies.

4.1 Decision-Making Support Tool

Suppose that it is the first business day of year t. Given an exogenously
chosen group of 5 stocks G and exogenously chosen values for b, r, and k,
the minimum-variance portfolio for the upcoming year yt(G, r, k) is uniquely
specified and the investor can simply enter into this portfolio with borrowing
parameter b, hold the portfolio all year, and then cash out on the last business
day of year t. Furthermore, with ab, as defined in section 3.9, in hand, the
investor can calculate the true, all-things-considered return of any minimum-
variance portfolio for any year before t.

We define the decision-making support tool as consisting of the following three
elements:

1. yt(G, r, k): the ability to construct the minimum-variance portfolio of
the stocks in G that is expected to return r during month 1 of year t
according to historical data from the prior k months;

2. ab(yt(G, r, k)): the ability to calculate the all-things-considered return of
any minimum-variance portfolio assuming that a fraction b of the initial
cash required to enter into the portfolio is borrowed from the broker;
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3. the general strategy of, given G, b, r, and k, entering into yt(G, r, k) on
the first business day of year t with borrowing parameter b, holding this
portfolio all year, and then cashing out on the last business day of year
t.

With this investment decision-making tool in hand, all the investor has to do
is choose G, b, r, and k and he has a comprehensive and uniquely specified
investment strategy. But how should he choose these parameters? We need to
devise a parameter-choosing strategy. Then, the combination of the decision-
making tool with this parameter-choosing strategy is a comprehensive and
uniquely specified investment strategy.

Note that the investment decision-making tool is kept distinct from the
parameter-choosing strategy because, with the decision-making tool in hand,
we can devise several different parameter-choosing strategies, resulting in sev-
eral different investment strategies. In fact, this is what we will do in the
following section: devise a set of parameter-choosing strategies and hence a
set of investment strategies.

While it is the case that, given a set of parameters, only elements 1 and 3, as
numbered above, of the decision-making support tool are required to invest,
element 2 is useful in that it will help us choose the parameters in the first
place. That is, element 2 is an important element of the parameter-choosing
strategies presented in the next section.

4.2 Optimal Set of Parameter-Choosing Strategies

Several different parameter-choosing strategies were devised and tested. The
ones presented in this section are optimal in that they resulted in the best-
performing investment strategies. Section 4.3 describes the progression of
parameter-choosing strategies that yielded these optimal ones.

In these parameter-choosing strategies, we define two additional parameters
in order to choose the parameters G, r, and k: the initial long position cutoff
L and the return cutoff A, both of which will be defined below. Note that b
was not mentioned: each of these parameter-choosing strategies selects values
for G, r, and k but not b and not L or A either; b, L, and A must be exoge-
nously chosen. Accordingly, we have a different parameter-choosing strategy
for each different exogenously chosen triple of (b, L,A) values. This is why we
have been referring to these optimal parameter-choosing strategies collectively
as the optimal set of parameter-choosing strategies; they are fundamentally
identical, only differing in their (b, L,A) triples. So, we have one parameter-
choosing strategy defined by (b = 0, L = 2, A = 0.3), another defined by
(b = 0.25, L = 3, A = 0.6), etc. They are all optimal in that, essentially
regardless of the (b, L,A) triple, each one, when combined with the decision-
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making support tool, results in an investment strategy that is superior to any
of the investment strategies created from any other parameter-choosing strate-
gies.

The parameter-choosing strategy for any (b, L,A) triple is as follows. De-
note by Cn the n-combination function such that Cn(Z) is the set of all unique
subsets of Z that have n elements:

Cn(Z) =
{
B ⊂ Z

∣∣ |B| = n
}
∀n ≤ |Z| . (4.1)

For example, C2({1, 2, 3}) = {{1, 2}, {1, 3}, {2, 3}}.

Exogenously choose a master set G of more than 5 stocks. Define discrete
grids1 in r and k:

R = {0.005, 0.01, 0.015, ..., 0.095} (in units of monthly return) , (4.2)

K = {5, 10, 15, ..., 95} (in units of months of historical data) . (4.3)

Then, for each group of 5 stocks that can be created from G, that is ∀G ∈ C5(G),
define the G-specific (r, g) pair that gave the highest return last year with
borrowing parameter b:

(rG, kG) = arg max
(r,k)∈R×K

ab (yt−1 (G, r, k)) . (4.4)

If

ab (yt−1 (G, rG, kG)) ≥ A (4.5)

and yt (G, rG, kG) is such that

`0 ≤ L (4.6)

(where `0 is defined2 by (3.7)) then “accept” G. In words, if last year’s G-
specific highest return is at least A and if this year’s portfolio with last year’s
G-specific optimal (r, g) pair has an initial long position worth no more than
L, then “accept” G. Otherwise, if either (4.5) or (4.6) is violated then “reject”
G. Denote by Ct(b, L,A) the set of all year-t accepted groups using the triple
of parameters (b, L,A):

Ct(b, L,A) =
{
G ∈ C5(G)

∣∣∣ ab (yt−1 (G, rG, kG)) ≥ A ,

yt (G, rG, kG) has `0 ≤ L
}
. (4.7)

Choose G by randomly selecting an element of Ct(b, L,A).

1See section 4.2.4 for a discussion of these discrete grids. Also, in the more-easily-
interpretable units of annual return, we have 12R = {0.06, 0.12, 0.18, ..., 1.14}.

2Recall from section 3.5 that `0 ≥ 1 is the per-dollar initial value of all the assets the
investor buys long.



Arthurs 36

4.2.1 Optimal Set of Investment Strategies

Now, if we can exogenously choose G, for any (b, L,A) triple we have an in-
vestment strategy that is the combination of the decision-making support tool
with the (b, L,A) parameter-choosing strategy described above. This invest-
ment strategy is to, recalling that the parameter-choosing strategy chooses G
and defines rG and kG, randomly enter into yt(G, rG, kG) on the first business
day of year t with borrowing parameter b, hold this portfolio all year, and cash
out on the last business day of year t. The set of all such investment strate-
gies for all possible3 (b, L,A) triples is the optimal set of investment strategies.

In the upcoming results and conclusions sections, we will determine the best
(b, L,A) triple, which is equivalent to determining the single best parameter-
choosing strategy out of the optimal set of parameter-choosing strategies and
hence the single best investment strategy out of the above-defined optimal
set of investment strategies. We will do so by testing the different invest-
ment strategies that result from different (b, L,A) triples and choose the best-
performing one.

We will not outline a method for choosing G; it is the only parameter that
truly needs to be chosen exogenously. However, the G used in this paper, as
defined in the results section, worked well and thus the interested investor is
encouraged to use this same G, though any sufficiently large G should do the
job.

4.2.2 Learning from History

Note that the method by which this parameter-choosing strategy selects G and
r is one way in which the resultant comprehensive investment strategy learns
from the past to make predictions about the future. Specifically, the strategy
uses past data to predict which G and r will be optimal in the future. The
same is done with k and thus not only does the strategy learn from the past
to make predictions about the future, it also learns from the past in order to
decide how much of the past to learn from.

4.2.3 Return and Initial Long Position Cutoffs

The reasoning behind limiting `0 to L is to prevent from needing too much
cash up front. Even if we max out how much the investor initially borrows
(b = 0.5), he still needs 0.5`0 of his own cash to enter the portfolio. So, if
`0 is unbounded which it otherwise would be because the minimum-variance
portfolio could have any `0, then the amount of cash the investor needs is
unbounded. This, of course, can be detrimental to returns (see (3.21)). That

3As will be described in 5.5, it is necessary to limit (b, L,A) triples to those on a discrete,
finite grid. So, we don’t really consider all possible (b, L,A) triples; only certain ones.
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being said, there’s no reason to believe a certain L value should be better than
any other. We will test several different L values, including L = ∞ which is
equivalent to having no restriction at all.

The reasoning behind accepting a set G of 5 stocks only if its best return
last year was at least A is that last year’s best return isn’t desirable if, for
example, it’s −90%. So, ∀G ∈ C5(G) we choose the r and k that gave the best
return last year, but we only accept this best return from last year as “good
enough” if it is at least some cutoff A. As is the case with L, there’s no reason
to believe that a certain A value is optimal and so we will test several different
values, including A = −∞ which is equivalent to having no restriction at all.

4.2.4 Optimization over a Discrete Grid

In defining rG and kG, we lack a closed-form expression for ab(yt(G, r, k)) that
we can analytically maximize, either by differentiation with respect to r and
k or by other methods, to find a true (r, k) maximum. So, we must rely on
numerical methods: we must optimize over a discrete grid as done in (4.4) as
opposed to a continuous region in (r, k)-space, hence the necessity of defining
R and K. Note that we cannot be sure that we’ve chosen the best grids for R
and K. We could have made the resolution of K finer to the point of including
every positive integer in a certain range, we could have made the resolution
of R infinitely finer, and we could have made the range of each wider. The
specific bounds and resolutions in (4.2) and (4.3) were chosen as a balance
between computational feasibility, resolution, and range.

4.3 Evolution of Parameter-Choosing Strategies

As previously mentioned, the optimal parameter-choosing strategies presented
in the previous section were neither the only nor the first ones developed. This
section discusses the progression of parameter-choosing strategies that resulted
in this optimal set.

All of these parameter-choosing strategies involve exogenously choosing the
master group of stocks; we never devised a method to choose G.

The first type of parameter-choosing strategy that was devised is to set b = 0,
exogenously choose an (r, k) pair, and randomly choose G ∈ G. So, unlike the
optimal parameter-choosing strategies from the previous section, these strate-
gies don’t set G-specific r and k values. This results in a set of parameter-
choosing strategies and thus a set of investment strategies with each defined
by a (r, k) pair. Not only did these investment strategies perform poorly over-
all, it was also the case that there was no optimal (r, k) pair: no one strategy
clearly outperformed the others.
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The next step was to let b vary as well and keep everything else the same, re-
sulting in a set of parameter-choosing strategies and thus a set of investment
strategies with each defined by a (b, r, k) triple. The results were similarly
disappointing: the investment strategies performed poorly and there was no
clearly optimal (b, r, k) triple.

The next step was to introduce the initial long position cutoff L exactly as
defined in the optimal parameter-choosing strategies from the previous sec-
tion, the return cutoff A, almost exactly as defined in said optimal parameter-
choosing strategies, and G-specific (b, r, k) triples analogous to the G-specific
(r, k) pairs defined in said optimal parameter-choosing strategies. Specifically,
the G-specific triples were defined as, analogous to (4.4),

(bG, rG, kG) = arg max
(b,r,k)∈B×R×K

ab(yt−1(G, r, k)) (4.8)

for some grid B in b-space, and the return-cutoff was, analogous to (4.5), to
accept a G ∈ G if and only if

abG(yt−1(G, rG, kG)) ≥ A . (4.9)

Accordingly, L and A were the only exogenously chosen parameters, resulting
in a set of parameter-choosing strategies and thus a set of investment strategies
with each defined by a (L,A) pair. Note that L = ∞, equivalent to having
no initial long position cutoff, and A = −∞, equivalent to having no return
cutoff, were values included in the (L,A) grid. These investment strategies
performed significantly better than those that came before them, but were
still not quite as historically profitable as desired.

Finally, we arrived at the optimal set of parameter-choosing strategies and
thus the optimal set of investment strategies, each defined by a (b, L,A) triple,
by making b exogenously chosen as opposed to G-specific by changing (4.8) to
(4.4) and (4.9) to (4.5). These investment strategies performed well enough
that we settled with them and didn’t devise any further parameter-choosing
strategies. However, an even better set of parameter-choosing strategies could
exist; we call the set here “optimal” because it was the optimal set that we
tested, not because it is necessarily globally optimal.
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5 Results

In this section we present the results obtained by backtesting each strategy
in the optimal set of investment strategies to see how well they would have
performed in each of the last several years. We then inspect these results to
select a single optimal investment strategy and we confirm that this is the
profitable, practical, and capital non-intensive strategy for an unsophisticated
investor we seek by verifying that it outperforms various benchmarks.

5.1 Backtesting

Recall that it is the first business day of year t. We want to test how well
some investment strategy performs but we don’t want to wait a full year to see
what return the strategy achieves during year t. In other words, we don’t want
to wait a full year until ab(yt(G, r, k)) is defined. However, ab(yt−1(G, r, k)),
ab(yt−2(G, r, k)), ab(yt−3(G, r, k)), etc. are currently defined so we can test the
strategy by observing exactly how much it would have returned in each of
the past several years. This method is known as backtesting and is what we
will employ in the upcoming results section to gauge the effectiveness of the
investment strategy. Specifically, for various different triples of (b, L,A) val-
ues, we will observe the distribution of possible returns for each of 2008, 2009,
2010, and 2011 by calculating ab(yt(G, r, k)) ∀t ∈ {2008, 2009, 2010, 2011} and
∀G ∈ Ct(b, L,A).

More explicitly, in order to check how well the strategy would have performed
in year t ∈ {2008, 2009, 2010, 2011} for any triple of (b, L,A) values, we con-
struct the distribution of possible year-t returns:

Dt(b, L,A) =
{
ab (yt (G, rG, kG))

∣∣∣ G ∈ Ct(b, L,A)
}

(5.1)

where, recall, Ct(b, L,A) as defined by (4.7) is the set of all year-t accepted
groups of stocks using (b, L,A). Dt(b, L,A) is simply a set of values; we call
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it a distribution to emphasize the fact that the strategy randomly selects a
G ∈ Ct(b, L,A) to trade with and thus the year-t return of the strategy is a ran-
dom variable on a uniform distribution with discrete sample space Dt(b, L,A).
Accordingly, in the upcoming results section, for each (b, L,A) triple and each
t ∈ {2008, 2009, 2010, 2011}, we present a number of metrics that summarize
the distribution Dt(b, L,A).

Recall from section 3.9 that each ab(yt(G, r, k)) value is a true, unbiased, all-
things-considered measure of historical performance. Even though we now
know exactly what asset returns were in, for example, 2009, the function
y2009(G, r, k) constructs the minimum-variance portfolio with only informa-
tion that would have been available to the investor on the first business day
of 2009, and only after then does ab apply the knowledge of what returns ac-
tually were in 2009 to see how y2009(G, r, k) would have actually performed in
2009. Furthermore, as also discussed in 3.9, ab(yt(G, r, k)) takes into account
all transaction costs as well as all fees associated with any rules and regula-
tions that apply over the course of holding the portfolio yt(G, r, k) during year
t. So, all in all, we can be completely confident in using ab(yt(G, r, k)) values
as the basis of our results.

5.2 Not Using 2008 as a Guide

The financial crisis of 2008 was a particularly bad and truly anomalous1 time
to be long the stock market,2 and, as per (2.3), any investment strategy gener-
ated by the decision-making support tool is necessarily long the stock market.
A result of this, as it turns out, is that 2008 is a poor guide for choosing pa-
rameters for 2009: using (4.4) to set the 2009 values for r and k for each stock
group G ∈ C5(G) as the best 2008 values of r and k for that G results in a
terrible 2009 return distribution D2009(b, L,A) for all (b, L,A) triples that were
tested. Accordingly, we adjust the strategy such that, for 2009, it chooses the
best r and k from 2007 as opposed to 2008. This manifests in the following
adjustment to (4.4) that only applies when t = 2009:

(rG, kG) = arg max
(r,k)∈R×K

ab (yt−2 (G, r, k))

= arg max
(r,k)∈R×K

ab (y2007 (G, r, k)) . (5.2)

1The S&P 500 has yielded a mean annual return of 8.47% with standard deviation
15.69% over the last 62 years. In 2008 the index returned -37%, the lowest return in the last
62 years and nearly three standard deviations away from the mean. Accordingly, it is safe
to label 2008 as an anomalous year for the stock market. On the other hand, the index’s
annual returns during 2009, 2010, and 2011 are, in order, 26.46%, 15.06%, and 2.05%, which
are, respectively, roughly one, one half, and one half standard deviations from the mean.
So, it is safe to label 2009, 2010, and 2011 as more typical years for the stock market. See
source [8].

2Among other assets. See source [9].
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In the spirit of accurately regarding 2008 as an anomaly that does not help
us choose parameters for 2009, we also adjust the return cutoff to skip 2008
such that we only use a group of stocks G in 2009 if the optimal return for
that group in 2007, as opposed to 2008, was at least A. This manifests in the
following adjustment to (4.5) that only applies when t = 2009:

ab (yt−2 (G, rG, kG)) = ab (y2007 (G, rG, kG)) ≥ A . (5.3)

Because it’s after 2009 we can observe various D2009 distributions both with
and without the adjustments and conclude that the 2009 return distributions
are better with them. However, if, for example, it’s the first business day of
year t and we observed year (t − 1) to be an anomaly similar to 2008, we
cannot be sure that various Dt distributions will ultimately be more favorable
if we adjust the strategy to “skip” year (t− 1) as we “skipped” 2008.

Regardless, we make it the official policy of the optimal set of parameter-
choosing strategies to do so: as an addendum to section 4.2, in the optimal
set of parameter-choosing strategies make adjustments analogous to (5.2) and
(5.3) in order to not use any anomalous year (t− 1), like 2008, as a guide for
choosing r and k and enforcing the return cutoff in year t. The justification for
this is that the main underlying premise of the decision-making support tool,
the optimal set of parameter-choosing strategies, and thus the optimal set of
investment strategies is to use historical data to make educated guesses about
the future. Albeit with unit sample size (t − 1 = 2008), we observe that, in
the past, any anomalous year does not serve as an accurate guide for choosing
(r, k) and enforcing the return cutoff in the following year. Thus, from this
historical observation, we make the educated guess that in the future, too,
any anomalous year will not serve as an accurate guide for choosing (r, k) and
enforcing the return cutoff in the following year.

Of course, an exact definition of “anomalous year” remains to be specified.
As per footnote 1, perhaps a metric based on how many standard deviations
away from the mean the annual S&P 500 return was would work well.

5.3 Distribution Metrics

The metrics we will use in the upcoming sections to summarize any return
distribution Dt(b, L,A) are as follows.

We can express the number of returns in Dt(b, L,A), which is equivalent to the
number of elements of C5(G) that were deemed acceptable groups of stocks,
both in absolute terms, as

|Dt(b, L,A)| , (5.4)
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and as a fraction of the maximum possible number of acceptable groups of
stocks, as

|Dt(b, L,A)|% =
|Dt(b, L,A)|
| C5(G)| =

|Dt(b, L,A)|(|G|
5

) . (5.5)

The fraction of the returns in Dt(b, L,A) that are profitable (don’t lose money)
is

|Dt(b, L,A) ≥ 0|% =

∣∣{a ∈ Dt(b, L,A)
∣∣ a ≥ 0

}∣∣
|Dt(b, L,A)| . (5.6)

Denote the mean and standard deviation of Dt(b, L,A) by, respectively,

µt(b, L,A) = mean (Dt(b, L,A)) , (5.7)

σt(b, L,A) =
√

var (Dt(b, L,A)) . (5.8)

The P% percentile of Dt(b, L,A), denoted by QP%
t (b, L,A), is the return in

Dt(b, L,A) such that as close as possible to exactly P% of all returns in
Dt(b, L,A) are less than or equal to it; formally QP%

t (b, L,A) is the element of
Dt(b, L,A) that best approximates

∣∣{a ∈ Dt(b, L,A)
∣∣ a ≤ QP%

t (b, L,A)
}∣∣

|Dt(b, L,A)| ' P% . (5.9)

Q75%, Q50%, and Q25% are known, respectively, as the upper quartile, median,
and lower quartile. Furthermore, note that

Q100%
t (b, L,A) = max (Dt(b, L,A)) , (5.10)

Q0%
t (b, L,A) = min (Dt(b, L,A)) . (5.11)

Dt(b, L,A) can be summarized by the set of values QP%
t (b, L,A)

∀P ∈ {100, 75, 50, 25, 0}.

5.4 Benchmarks

In order to accurately evaluate the results we obtain from backtesting and
thus label the strategy as “successful” or “unsuccessful”, we need benchmark
returns for comparison. For example, a yearly return of 50% seems impressive
but it’s not if the stock market as a whole averaged the same 50% during that
year. This section discusses how to create benchmark values that will be used
for comparison in upcoming sections.

As described in section 5.1, given a triple (b, L,A) we have a distribution
of possible returns Dt(b, L,A) for each year t. Accordingly, we compare this
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distribution to a benchmark distribution of returns which is created as fol-
lows. For each G ∈ C5(G), randomly create a portfolio by randomly and
independently choosing x1, x2, x3, and x4 from a uniform distribution on3

(−0.8, 1.2) and setting x5 = 1− x1 − x2 − x3 − x4 such that (2.3) is satisfied.
For each G and for all4 t, denote this random portfolio by ỹt(G). For each
year t ∈ {2008, 2009, 2010, 2011}, calculate what each of these portfolios would
have returned with borrowing parameter5 b = 0, thus generating a distribu-
tion of random returns for each year. Formally, define the year-t distribution
of random returns as

Et =
{
ab=0 (ỹt(G))

∣∣∣ G ∈ C5(G)
}
. (5.12)

Given that we will want to compare the standard deviation of Dt(b, L,A) to a
benchmark standard deviation, for each (b, L,A) triple and for each t we need
to create a benchmark distribution that has the same number of returns6 as
Dt(b, L,A). So, for each (b, L,A) triple and for each year t, randomly select
|Dt(b, L,A)| elements of Et to put into the benchmark distribution for that

(b, L,A) and that t. Formally, call this benchmark distribution D̃t(b, L,A)
such that

D̃t(b, L,A) = a random element of C |Dt(b,L,A)| (Et) . (5.13)

Define the “benchmark mean” and “benchmark standard deviation” as, re-
spectively,

µ̃t(b, L,A) = mean
(
D̃t(b, L,A)

)
, (5.14)

σ̃t(b, L,A) =

√
var
(
D̃t(b, L,A)

)
. (5.15)

Note that the only exogenous choice that needs to be made to execute the
investment strategy is choosing the stocks that compose G. Accordingly, to
construct the benchmark distributions, we use the same G but then random-
ize everything else, paralleling the fact that the investment strategy chooses
everything else. So, comparing Dt(b, L,A) to D̃t(b, L,A) is a true test of the
investment strategy – it allows us to determine if the decisions the strategy

3The uniform distribution is centered around 0.2 such that, on average, each portfolio
has uniform proportions: x1 = x2 = x3 = x4 = x5 = 0.2. The distribution has lower bound
−0.8 and upper bound 1.2 such that the portfolio weights vary up to a unit proportion away
from the mean of 0.2.

4For a fixed G, we use the same random portfolio for each year.
5We choose b = 0 to construct the distribution of random returns because setting b 6= 0

is one of the tricks of the parameter-choosing strategies and thus the investment strategies
used here; an unsophisticated investor certainly wouldn’t think to set b 6= 0 on his own.

6This is because if we take n independent samples of a random variable, the variance of
the set of samples increases with n. For example, if n = 1 then the variance is necessarily
zero, whereas if n > 1 (and the sample space is non-finite) then the variance is nonzero with
probability one.
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makes are actually beneficial or if, for the sake of returns, said decisions would
have been better off randomized.

Additionally, we include the yearly returns of the S&P 500, a standard risky7

benchmark return, and 1-year CDs,8 a standard risk-free benchmark return.
There are no distributions of returns for the S&P 500 and 1-year CDs: for
each t ∈ {2008, ..., 2011} we know9 the single value that is the return the S&P
500 achieved during year t and the single value that is the return a 1-year CD
provided during year t. To emphasize that these are fixed rates of return as
opposed to means of return distributions, denote them by r:

rS&P, t = S&P 500 annual return during year t , (5.16)

rCD, t = 1-year CD annual interest rate during year t . (5.17)

So, for each t ∈ {2008, ..., 2011} we now have three benchmark returns: µ̃t,
rS&P, t, and rCD, t. Note that, because we have known returns for the S&P 500
and 1-year CDs as opposed to distributions, there are no benchmark standard
deviations associated with these S&P 500 and 1-year CD benchmark returns.
So, whereas rS&P and rCD are analogous to µ̃, there is neither a S&P 500 nor
a 1-year CD analogy to σ̃.

5.5 (b, L,A)-Space

For any pair (b, L), define the maximum A value (in steps10 of 0.1) for which
there is at least one accepted group of stocks for each year:

Amax(b, L) = max
({
A ∈ {−∞, 0, 0.1, 0.2, 0.3, ...}

∣∣∣

|Dt(b, L,A)| ≥ 1 ∀t ∈ {2008, ..., 2011}
})

. (5.18)

Note that Amax(b, L) is always finite because | C5(G)| < ∞ and thus ∃A < ∞
such that ab(yt−1(G, rG, kG) < A ∀G ∈ C5(G).

7It is a risky benchmark because the underlying stocks are risky: the rate of return of
any stock over an upcoming time period is unknown, in contrast to a CD (see footnote 8).

8Certificate of Deposit; the simplest way to put money in a bank and earn interest. You
deposit money in the bank at a fixed, predetermined rate of interest with a certain maturity
and only upon maturity can you withdraw your money (plus interest). The interest rate is
risk-free in the sense that it is fixed and known: unless the bank defaults, you know exactly
how much interest you will be able to withdraw along with your deposit upon maturity.
Given that the investment strategy presented here involves holding a portfolio for one year,
1-year CDs are the proper-maturity risk-free instruments to use for comparison.

9Historical S&P 500 returns are easily obtainable for free online (see source [8]). We
were unable to find a free, online, reliable source for historical 1-year CD rates; instead, we
used the Harvard network to access source [10]: Global Financial Data.

10The A values tested were integer multiples of 0.1 (as well as A = −∞), so Amax isn’t
the true maximum value that resulted in accepted stock groups each year but rather the
greatest non-negative multiple of 0.1 that resulted in accepted stock groups each year. This
is identical to the issue of grid resolution discussed in section 4.2.4.
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As it turns out, for each (b, L) pair that was tested (see (5.19), below), greater
A values result in strictly higher returns for all years and all of the return-
based distribution metrics from section 5.3. Thus, in the results below, for
each (b, L) pair we present only results for A = Amax(b, L). The (b, L) pairs
tested are the elements of the grid11

B × L = {0, 0.1, 0.25, 0.38, 0.5} × {2, 3,∞} (5.19)

where B is b-space and L is L-space such that the (b, L,A) triples for which
results are presented are elements of the grid

B × L× {Amax(b, L)} . (5.20)

5.6 Cumulative Returns

In the results that follow, for each (b, L,A) ∈ B×L×{Amax(b, L)}, we compare
the year-by-year cumulative returns resultant from reinvesting in the strategy’s
mean portfolio each year to the year-by-year cumulative returns resultant from
reinvesting in each of the three benchmarks each year (where we use the mean
µ̃t of the benchmark random distribution). Explicitly, for any (b, L,A) triple,
the investment strategy’s cumulative 2008 through year-t mean return and
cumulative 2009 through year-t return are denoted by c and defined as

c2008, t(µ) =

[
t∏

n=2008

(1 + µn(b, L,A))

]
− 1 , (5.21)

c2009, t(µ) =

[
t∏

n=2009

(1 + µn(b, L,A))

]
− 1 . (5.22)

In these equations, replace µn(b, L,A) by:

• µ̃n(b, L,A) to obtain c2008, t(µ̃) and c2009, t(µ̃), the cumulative 2008 and
2009 through year-t returns of the mean of the benchmark random dis-
tribution,

• rS&P, n to obtain c2008, t(rS&P) and c2009, t(rS&P), the cumulative 2008 and
2009 through year-t returns of the S&P 500,

• rCD, n to obtain c2008, t(rCD) and c2009, t(rCD), the cumulative 2008 and
2009 through year-t returns of a 1-year CD.

In words, c2008, t(µ) is the total return that results from earning an annual
return of µ2008 for one year, then reinvesting and earning an annual return of
µ2009 for one year, etc., and finally reinvesting and earning an annual return
of µt for one year.

11As with all the discrete grids so far, there is no reason to believe that this is the best
one to use. It is simply a compromise between computational feasibility, resolution, and
range (except for b for which the range is bounded as per (3.20) and thus the b compromise
is only between computational feasibility and resolution).
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5.6.1 Annualized Cumulative Returns

For each (b, L,A) ∈ B×L×{Amax(b, L)}, in addition to summarizingDt(b, L,A)
∀t ∈ {2008, ..., 2011}, we also summarize the distribution of annualized cumu-
lative returns resultant from reinvesting each year 2008 through 2011 and the
distribution of annualized cumulative returns resultant from reinvesting each
year 2009 through 2011. Explicitly, for any (b, L,A) triple, define

µ2008−2011(b, L,A) =

[
2011∏

t=2008

(1 + µt(b, L,A))

]1/4
− 1 , (5.23)

µ2009−2011(b, L,A) =

[
2011∏

t=2009

(1 + µt(b, L,A))

]1/3
− 1 , (5.24)

and analogously for µ̃2008−2011(b, L,A), µ̃2009−2011(b, L,A), rS&P, 2008−2011,
rS&P, 2009−2011, rCD, 2008−2011, and rCD, 2009−2011. In words, an annualized cumu-
lative return is the annual return that, if compounded annually, is equivalent
to the cumulative return. For example, µ2008−2011 is the annual return that,
if compounded annually, is equivalent to earning an annual return of µ2008 for
one year, then reinvesting and earning an annual return of µ2009 for one year,
then reinvesting and earning an annual return of µ2010 for one year, and finally
reinvesting and earning an annual return of µ2011 for one year.

We can also define annualized cumulative percentile returns: the annualized
cumulative returns resultant from reinvesting each year 2008 through 2011 and
2009 through 2011, respectively, in the yearly portfolios of the same percentile.
Explicitly, for any (b, L,A) triple, define

QP%
2008−2011(b, L,A) =

[
2011∏

t=2008

(
1 +QP%

t (b, L,A)
)
]1/4
− 1 , (5.25)

QP%
2009−2011(b, L,A) =

[
2011∏

t=2009

(
1 +QP%

t (b, L,A)
)
]1/3
− 1 . (5.26)

5.6.2 Distributions of Annualized Cumulative Returns

A more accurate method of calculating the 2008-2011 and 2009-2011 annual-
ized cumulative means and percentiles would be as follows. For each (b, L,A)
triple, create the actual distribution of annualized cumulative 2008-2011 re-
turns

D2008−2011(b, L,A) =
{
a2008 a2009 a2010 a2011

∣∣∣ ∀ a2008 ∈ D2008(b, L,A),

a2009 ∈ D2009(b, L,A), a2010 ∈ D2010(b, L,A),

a2011 ∈ D2011(b, L,A)
}

(5.27)
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and the actual distribution of annualized cumulative 2009-2011 returns

D2009−2011(b, L,A) =
{
a2009 a2010 a2011

∣∣∣ ∀ a2009 ∈ D2009(b, L,A),

a2010 ∈ D2010(b, L,A), a2011 ∈ D2011(b, L,A)
}
.

(5.28)

Then, every metric that is calculated forDt(b, L,A) ∀t ∈ {2008, ..., 2011} could
also be calculated for D2008−2011(b, L,A) and D2009−2011(b, L,A).

However, this method cannot be used for reasons of computational feasibil-
ity. For example, as displayed in the results that follow, for b = 0, L = 2,
and A = Amax(b = 0, L = 2) = 0.5, we get |D2008| = 2709, |D2009| = 448,
|D2010| = 2390, and |D2011| = 109 which would give |D2008−2011| = 2709 ×
448×2390×109 = 3×1011, making D2008−2011 prohibitively large computation-
wise. Accordingly, we take (5.23), (5.24), (5.25), and (5.26) as approximations
to the respective true values that would be obtained from actually constructing
D2008−2011(b, L,A) and D2009−2011(b, L,A), and we don’t calculate annualized
cumulative values for all the metrics that require an actual distribution: |D|,
|D|%, |D ≥ 0|%, σ, and σ̃.

5.6.3 2008 Returns

We include annualized cumulative 2009-2011 returns along with annualized
cumulative 2008-2011 returns because 2008 was an unusually bad year for be-
ing long the stock market12 and, as per (2.3), every investment strategy pre-
sented here is necessarily long the stock market. Such is evident in the results
presented in the next section: for all (b, L,A) triples that were tested, both
µ2008(b, L,A) and µ̃2008(b, L,A) are severely negative (in the range of −15%
to −55%). Accordingly, we present the annualized cumulative 2009-2011 data
to show how the investment strategies perform in the long-term over a more
typical13 sequence of years.

That is certainly not to say that the 2008 results should be ignored. Stock
market crashes do occur (obviously) so it is instructive to see exactly how
badly the strategy performs during one. In fact, given that the market crash
in 2008 was part of what is considered the worst financial crisis since the Great
Depression,14 the 2008 results are particularly instructive in that they show
how our investment strategies perform in a truly-worst-case scenario.

12See footnote 1 and footnote 2.
13See footnote 1.
14See footnote 2.
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5.7 Results

A master group of 21 stocks, all of which are components of the S&P 500,15

was used to generate the results in this section: G = {Alcoa (AA), Apple
(AAPL), American Express (AXP), Boeing (BA), Bank of America (BAC),
Caterpillar (CAT), Cisco (CSCO), Chevron (CVX), DuPont (DD), Disney
(DIS), General Electric (GE), Home Depot (HD), Hewlett-Packard (HPQ), In-
ternational Business Machines (IBM), Johnson & Johnson (JNJ), JPMorgan
Chase (JPM), Travelers (TRV), United Technologies (UTX), Verizon (VZ),
Wal-Mart (WMT), and Exxon Mobil (XOM)}.

As discussed in section 4.2.1, we will not outline a strategic method for choos-
ing G. Accordingly, we encourage an investor who has no predispositions to
certain stocks to use the G that is defined above because, as will be demon-
strated in the following sections, it results in historically profitable portfolios.

For each (b, L,A) ∈ B × L× {Amax(b, L)}, we present:

• a table summarizing the annual and annualized cumulative return dis-
tributions Dt(b, L,A), t ∈ {2008, ..., 2011, 2008-2011, 2009-2011} via the
distribution metrics from section 5.3 as well as the benchmark metrics
from section 5.4;

• a box and whisker plot presenting the exact same information as the table
above with columns for each t ∈ {2008, ..., 2011, 2008-2011, 2009-2011}
and, in each column,

– the red line is µt(b, L,A),

– the green circle is µ̃t(b, L,A),

– the blue square is rS&P, t,

– the maroon triangle is rCD, t,

– the top black line is Q100%
t (b, L,A),

– the top of the black box is Q75%
t (b, L,A),

– the middle black line (in the black box) is Q50%
t (b, L,A),

– the bottom of the black box is Q25%
t (b, L,A),

– the bottom black line is Q0%
t (b, L,A);

• two plots showing year-by-year cumulative returns starting, respectively,
in 2008 (labeled “2008-2011”) and 2009 (labeled “2009-2011”), where t
is on the horizontal axis and

– the red curves are c2008, t(µ) and c2009, t(µ),

15This fact further justifies using the S&P 500 as a benchmark.
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– the green curves are c2008, t(µ̃) and c2009, t(µ̃),

– the blue curves are c2008, t(rS&P) and c2009, t(rS&P),

– the maroon curves are c2008, t(rCD) and c2009, t(rCD).

The tables and plots are as follows. We first present the table and plots for the
(b, L,A) triple that resulted in the best-performing investment strategy which
was (b = 0.38, L = 2, A = 0.9) as further discussed in section 5.9; we then
present tables and plots for the rest of the triples.



Arthurs 50

Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 2184 291 1185 4 - -
|D|% 10.73% 1.43% 5.82% 0.02% - -
|D ≥ 0|% 0.14% 92.1% 89.7% 100.0% - -
µ -41.46% 64.37% 26.36% 29.92% 12.11% 39.22%
µ̃ -18.92% 16.44% 5.43% -14.38% -3.92% 1.68%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 9.07% 38.5% 21.4% 4.94% - -
σ̃ 19.29% 30.33% 15.24% 13.63% - -

Q100% 13.11% 143.88% 67.49% 35.23% 58.1% 76.77%
Q75% -38.71% 92.11% 40.88% 35.23% 22.38% 54.1%
Q50% -42.69% 69.65% 28.79% 34.21% 13.82% 43.07%
Q25% -46.34% 45.27% 15.64% 26.69% 3.37% 28.62%
Q0% -85.91% -40.0% -48.08% 23.56% -51.75% -27.26%
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Figure 5.1: (best triple) b = 0.38, L = 2, A = Amax(b, L) = 0.9.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 2709 448 2390 109 - -
|D|% 13.31% 2.2% 11.75% 0.54% - -
|D ≥ 0|% 0.41% 92.63% 88.16% 95.41% - -
µ -39.25% 41.04% 16.31% 16.91% 3.9% 24.24%
µ̃ -18.16% 16.82% 6.26% 0.37% 0.49% 7.61%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 14.74% 23.66% 13.0% 9.34% - -
σ̃ 19.29% 30.36% 15.34% 13.89% - -

Q100% 9.96% 91.67% 49.21% 33.6% 43.17% 56.33%
Q75% -29.42% 58.33% 25.79% 23.63% 14.79% 35.0%
Q50% -40.61% 42.64% 17.66% 18.72% 4.27% 25.79%
Q25% -50.35% 28.86% 7.25% 9.78% -6.84% 14.91%
Q0% -74.33% -29.46% -20.24% -7.91% -39.61% -19.68%
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Figure 5.2: b = 0, L = 2, A = Amax(b, L) = 0.5.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 3536 669 1463 4 - -
|D|% 17.38% 3.29% 7.19% 0.02% - -
|D ≥ 0|% 6.67% 85.2% 88.17% 100.0% - -
µ -33.18% 31.9% 17.33% 19.03% 5.33% 22.58%
µ̃ -18.92% 17.41% 6.39% -3.94% -0.68% 6.26%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 19.56% 29.56% 13.66% 5.63% - -
σ̃ 19.39% 30.48% 15.38% 15.56% - -

Q100% 24.78% 88.96% 45.66% 26.85% 44.47% 51.71%
Q75% -19.63% 51.65% 27.17% 26.85% 18.41% 34.74%
Q50% -35.91% 38.05% 19.07% 19.3% 5.87% 25.15%
Q25% -48.44% 21.07% 8.05% 19.03% -5.35% 15.89%
Q0% -75.61% -54.1% -20.24% 10.92% -43.9% -25.95%
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Figure 5.3: b = 0, L = 3, A = Amax(b, L) = 0.6.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 4076 4076 1519 20 - -
|D|% 20.03% 20.03% 7.46% 0.1% - -
|D ≥ 0|% 10.33% 64.67% 88.02% 90.0% - -
µ -30.83% 9.66% 17.33% 18.88% 1.42% 15.22%
µ̃ -18.38% 17.58% 6.21% -4.96% -0.79% 5.88%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 21.2% 32.24% 13.64% 9.98% - -
σ̃ 19.44% 30.47% 15.2% 15.98% - -

Q100% 39.52% 88.96% 46.99% 31.92% 50.37% 54.17%
Q75% -16.09% 34.96% 27.16% 25.39% 15.92% 29.1%
Q50% -33.72% 16.59% 19.13% 22.28% 3.0% 19.31%
Q25% -47.42% -23.15% 7.94% 15.94% -15.68% -1.31%
Q0% -75.61% -58.15% -20.24% -3.2% -47.02% -31.38%
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Figure 5.4: b = 0, L =∞, A = Amax(b, L) = 0.6.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 2426 356 1798 33 - -
|D|% 11.92% 1.75% 8.84% 0.16% - -
|D ≥ 0|% 0.41% 92.13% 87.1% 100.0% - -
µ -44.6% 46.07% 17.46% 21.69% 3.71% 27.81%
µ̃ -18.52% 14.47% 6.15% -0.87% -0.47% 6.4%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 16.28% 26.48% 14.75% 7.25% - -
σ̃ 19.7% 29.4% 15.58% 16.99% - -

Q100% 10.77% 101.24% 49.34% 37.1% 46.16% 60.31%
Q75% -33.62% 65.18% 28.17% 26.28% 15.3% 38.61%
Q50% -46.09% 48.69% 18.91% 22.52% 3.88% 29.27%
Q25% -56.77% 32.17% 7.14% 18.33% -7.77% 18.77%
Q0% -83.21% -28.89% -23.24% 2.11% -44.69% -17.71%
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Figure 5.5: b = 0.1, L = 2, A = Amax(b, L) = 0.6.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 3906 811 2000 57 - -
|D|% 19.2% 3.99% 9.83% 0.28% - -
|D ≥ 0|% 6.37% 84.83% 86.9% 98.25% - -
µ -37.06% 34.61% 17.95% 21.71% 5.02% 24.56%
µ̃ -18.56% 16.57% 5.42% -0.42% -0.08% 6.96%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 21.76% 31.52% 15.12% 8.43% - -
σ̃ 19.4% 30.14% 15.56% 16.07% - -

Q100% 27.16% 98.31% 50.17% 39.88% 51.71% 60.9%
Q75% -21.52% 54.93% 29.07% 26.55% 18.68% 36.23%
Q50% -39.79% 40.85% 19.5% 23.54% 5.7% 27.51%
Q25% -53.94% 22.07% 7.18% 18.08% -8.17% 15.6%
Q0% -84.63% -50.77% -23.24% -4.88% -51.51% -28.9%
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Figure 5.6: b = 0.1, L = 3, A = Amax(b, L) = 0.6.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 3774 3774 1130 2 - -
|D|% 18.55% 18.55% 5.55% 0.01% - -
|D ≥ 0|% 9.96% 64.52% 87.96% 50.0% - -
µ -35.31% 11.31% 19.52% 10.23% -1.31% 13.61%
µ̃ -18.39% 16.03% 5.6% 8.9% 2.15% 10.09%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 23.56% 34.8% 14.96% 12.48% - -
σ̃ 19.17% 30.6% 15.38% 10.82% - -

Q100% 42.48% 98.31% 48.77% 22.71% 50.7% 53.55%
Q75% -19.19% 38.61% 30.35% 22.71% 15.65% 30.38%
Q50% -39.19% 18.64% 21.56% 22.71% 1.85% 20.96%
Q25% -53.56% -24.97% 9.99% 22.71% -21.79% -6.95%
Q0% -84.63% -55.97% -23.24% -2.26% -52.53% -30.87%
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Figure 5.7: b = 0.1, L =∞, A = Amax(b, L) = 0.7.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 2456 362 1837 40 - -
|D|% 12.07% 1.78% 9.03% 0.2% - -
|D ≥ 0|% 0.33% 91.71% 86.23% 100.0% - -
µ -53.87% 53.77% 19.61% 23.56% 1.19% 31.47%
µ̃ -18.45% 16.21% 6.03% -0.79% -0.08% 6.92%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 18.73% 31.61% 17.56% 9.22% - -
σ̃ 19.32% 28.85% 15.5% 13.02% - -

Q100% 11.91% 120.12% 57.84% 43.62% 53.73% 70.88%
Q75% -41.53% 76.36% 32.3% 29.66% 15.25% 44.5%
Q50% -56.5% 57.06% 21.27% 23.65% 0.6% 33.04%
Q25% -67.98% 37.14% 7.35% 19.15% -13.44% 20.58%
Q0% -96.47% -34.74% -37.16% 1.17% -65.22% -25.42%
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Figure 5.8: b = 0.25, L = 2, A = Amax(b, L) = 0.7.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 3937 827 2051 73 - -
|D|% 19.35% 4.06% 10.08% 0.36% - -
|D ≥ 0|% 5.69% 85.01% 85.81% 95.89% - -
µ -44.59% 40.73% 20.27% 23.61% 3.77% 27.9%
µ̃ -18.93% 15.49% 5.8% -4.41% -1.35% 5.31%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 24.83% 36.93% 18.05% 12.41% - -
σ̃ 18.99% 29.22% 15.18% 15.3% - -

Q100% 31.44% 116.61% 58.84% 47.02% 60.58% 71.66%
Q75% -26.93% 64.3% 33.53% 32.04% 20.6% 42.54%
Q50% -49.14% 47.86% 22.04% 26.92% 3.84% 31.74%
Q25% -64.37% 25.16% 7.44% 17.44% -13.4% 16.44%
Q0% -95.35% -60.89% -37.16% -21.77% -69.25% -42.29%
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Figure 5.9: b = 0.25, L = 3, A = Amax(b, L) = 0.7.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 3928 3928 1347 13 - -
|D|% 19.3% 19.3% 6.62% 0.06% - -
|D ≥ 0|% 9.24% 62.53% 86.04% 92.31% - -
µ -42.23% 12.41% 21.14% 27.98% 0.17% 20.34%
µ̃ -18.46% 16.73% 5.85% -0.23% 0.13% 7.22%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 27.3% 40.85% 18.24% 10.89% - -
σ̃ 19.36% 30.38% 15.57% 14.26% - -

Q100% 51.27% 116.61% 60.49% 40.83% 64.97% 69.8%
Q75% -23.58% 44.79% 34.22% 35.98% 19.06% 38.03%
Q50% -47.9% 20.59% 23.53% 31.59% 0.14% 24.51%
Q25% -63.97% -28.48% 8.76% 25.98% -22.93% -0.69%
Q0% -94.75% -67.12% -37.16% -4.07% -68.06% -41.69%
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Figure 5.10: b = 0.25, L =∞, A = Amax(b, L) = 0.8.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 3655 714 1347 15 - -
|D|% 17.96% 3.51% 6.62% 0.07% - -
|D ≥ 0|% 4.27% 82.91% 87.9% 100.0% - -
µ -40.04% 47.06% 26.44% 29.5% 9.62% 34.04%
µ̃ -18.51% 14.18% 5.67% -7.57% -2.37% 3.7%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 14.61% 45.98% 22.16% 9.48% - -
σ̃ 19.14% 29.47% 14.91% 15.36% - -

Q100% 36.7% 139.63% 69.58% 44.07% 68.2% 80.23%
Q75% -39.71% 79.26% 41.9% 35.58% 20.07% 51.07%
Q50% -43.46% 56.76% 29.6% 29.44% 10.14% 37.56%
Q25% -47.54% 25.83% 14.5% 26.28% -1.22% 21.98%
Q0% -82.54% -73.69% -48.08% 9.57% -59.8% -46.91%

‘08 ‘09 ‘10 ‘11 ‘08-‘11 ‘09-‘11

−100

−80

−60

−40

−20

0

20

40

60

80

100

120

140

A
n

n
u

al
R

et
u

rn
(%

)

µ

µ̃
rS&P

rCD

Q100%

Q75%

Q50%

Q25%

Q0%

‘08 ‘09 ‘10 ‘11

−40

−20

0

20

40

C
u

m
u

la
ti

ve
R

et
u

rn
(%

) 2008-2011

‘09 ‘10 ‘11
0
20
40
60
80
100
120
140
160

2009-2011

c(µ)

c(µ̃)

c(rS&P )

c(rCD)

Figure 5.11: b = 0.38, L = 3, A = Amax(b, L) = 0.9.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.



Arthurs 61

Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 4204 4204 1413 29 - -
|D|% 20.66% 20.66% 6.94% 0.14% - -
|D ≥ 0|% 6.35% 58.33% 86.48% 93.1% - -
µ -38.47% 13.2% 25.95% 25.64% 2.46% 21.45%
µ̃ -18.41% 15.79% 6.48% -0.6% -0.0% 7.02%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 17.49% 47.29% 22.28% 19.16% - -
σ̃ 19.05% 29.76% 15.4% 11.88% - -

Q100% 59.81% 139.63% 71.75% 44.32% 75.53% 81.1%
Q75% -38.52% 51.6% 41.59% 41.18% 16.28% 43.8%
Q50% -43.31% 13.46% 29.47% 33.13% 2.25% 24.46%
Q25% -47.35% -26.15% 13.58% 20.79% -14.54% 0.44%
Q0% -82.54% -81.22% -48.08% -42.03% -68.48% -61.62%
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Figure 5.12: b = 0.38, L =∞, A = Amax(b, L) = 0.9.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 1534 494 1082 32 - -
|D|% 7.54% 2.43% 5.32% 0.16% - -
|D ≥ 0|% 0.0% 13.56% 0.55% 87.5% - -
µ -39.92% -2.22% -16.95% 4.27% -15.54% -5.39%
µ̃ -18.53% 17.79% 5.51% -3.39% -0.55% 6.29%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 10.4% 34.71% 4.78% 3.45% - -
σ̃ 19.5% 30.07% 14.99% 17.19% - -

Q100% -8.83% 172.97% 49.5% 15.3% 43.92% 67.57%
Q75% -32.88% -4.71% -15.31% 6.58% -12.86% -4.93%
Q50% -40.32% -10.6% -17.64% 4.43% -17.7% -8.39%
Q25% -47.88% -16.24% -19.28% 2.63% -22.47% -11.49%
Q0% -67.0% -38.12% -28.11% -1.25% -38.29% -23.98%
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Figure 5.13: b = 0.5, L = 2, A = Amax(b, L) = 0.7.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 2261 906 1334 60 - -
|D|% 11.11% 4.45% 6.56% 0.29% - -
|D ≥ 0|% 0.0% 17.11% 0.45% 63.33% - -
µ -43.28% -0.53% -17.73% 2.05% -17.04% -5.83%
µ̃ -18.37% 15.69% 5.78% -1.67% -0.45% 6.37%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 10.45% 34.61% 4.59% 4.09% - -
σ̃ 19.42% 30.16% 15.61% 16.74% - -

Q100% -9.74% 171.19% 49.5% 15.3% 43.32% 67.2%
Q75% -36.9% -3.73% -16.13% 4.93% -14.51% -5.39%
Q50% -44.08% -9.93% -18.42% 1.81% -19.59% -9.22%
Q25% -51.4% -15.72% -19.54% -1.17% -24.46% -12.49%
Q0% -67.98% -67.06% -30.29% -4.78% -48.56% -39.76%
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Figure 5.14: b = 0.5, L = 3, A = Amax(b, L) = 0.7.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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Annual Annualized Cumulative
2008 2009 2010 2011 2008-2011 2009-2011

|D| 2415 2415 1355 5 - -
|D|% 11.87% 11.87% 6.66% 0.02% - -
|D ≥ 0|% 0.0% 12.92% 0.3% 20.0% - -
µ -44.15% -4.88% -18.05% -1.53% -19.08% -8.44%
µ̃ -19.18% 16.42% 5.93% -3.26% -0.91% 6.06%
rS&P -37.0% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%
σ 10.43% 27.76% 4.47% 1.35% - -
σ̃ 19.05% 30.87% 15.53% 9.87% - -

Q100% -6.53% 171.19% 49.5% 0.95% 39.85% 59.95%
Q75% -37.38% -5.12% -16.21% 0.95% -16.27% -7.75%
Q50% -44.39% -10.26% -18.49% -1.25% -20.55% -10.52%
Q25% -51.98% -16.42% -19.58% -2.47% -25.1% -13.14%
Q0% -70.17% -80.6% -30.76% -2.85% -55.58% -49.28%
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Figure 5.15: b = 0.5, L =∞, A = Amax(b, L) = 0.8.
The table summarizes the strategy‘s return distributions and compares to
benchmarks. The middle plot displays the same summaries and benchmark

comparisons in box and whisker form. The bottom two plots show cumulative
returns, starting in 2008 and starting in 2009, for the strategy and the benchmarks.
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5.8 Results Summary

The following table, as a summary of the results presented in the previous sec-
tion, displays, for each (b, L,A) ∈ B×L×{Amax(b, L)}, each mean annual and
annualized cumulative return: µt (b, L,A) ∀t ∈ {2008, ..., 2011, 2008-2011,
2009-2011}. For comparison, the table also displays the benchmark annual
and annualized cumulative returns.

Recall that µ̃t(b, L,A) as defined in (5.14) and displayed in the tables and
plots of the previous section was the mean of a random |Dt(b, L,A)|-elemented
subset of the random returns distribution Et. As described in section 5.4, this
|Dt(b, L,A)|-elemented subset was used such that σ̃t(b, L,A) could be directly
compared to σt(b, L,A). For the following table this is both impossible because
we have a variety of (b, L,A) triples, each yielding a different |Dt(b, L,A)|, and
unnecessary because we are not displaying any standard deviations. Accord-
ingly, each σ̃ value in the following table is the mean of all

(|G|
5

)
elements of

the appropriate random returns distribution Et. Specifically, for and only for
the following table, we have

µ̃t = mean (Et) ∀t ∈ {2008, ..., 2011} , (5.29)

and then, using these annual returns, the annualized cumulative returns
µ̃2008−2011 and µ̃2009−2011 are defined in the usual way (analogous to (5.23), etc.).

The table is as follows.
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b L 2008 2009 2010 2011 2008-2011 2009-2011
2 -39.25% 41.04% 16.31% 16.91% 3.9% 24.24%

0 3 -33.18% 31.9% 17.33% 19.03% 5.33% 22.58%
∞ -30.83% 9.66% 17.33% 18.88% 1.42% 15.22%
2 -44.6% 46.07% 17.46% 21.69% 3.71% 27.81%

0.1 3 -37.06% 34.61% 17.95% 21.71% 5.02% 24.56%
∞ -35.31% 11.31% 19.52% 10.23% -1.31% 13.61%
2 -53.87% 53.77% 19.61% 23.56% 1.19% 31.47%

0.25 3 -44.59% 40.73% 20.27% 23.61% 3.77% 27.9%
∞ -42.23% 12.41% 21.14% 27.98% 0.17% 20.34%
2 -41.46% 64.37% 26.36% 29.92% 12.11% 39.22%

0.38 3 -40.04% 47.06% 26.44% 29.5% 9.62% 34.04%
∞ -38.47% 13.2% 25.95% 25.64% 2.46% 21.45%
2 -39.92% -2.22% -16.95% 4.27% -15.54% -5.39%

0.5 3 -43.28% -0.53% -17.73% 2.05% -17.04% -5.83%
∞ -44.15% -4.88% -18.05% -1.53% -19.08% -8.44%

µ̃ -18.62% 16.53% 6.06% -2.58% -0.51% 6.38%
rS&P -37% 26.46% 15.06% 2.05% -1.65% 14.09%
rCD 3.48% 0.81% 0.3% 0.15% 1.18% 0.42%

Table 5.1: Summary of backtesting results for optimal set of investment strategies.

5.9 Best (b, L,A)

It’s clear that the best (b, L) pair in B × L is (b = 0.38, L = 2). As per table
5.1, this pair gives the outright highest mean annual returns in 2009 (by a sig-
nificant margin) and 2011, is only 0.1% behind the highest mean 2010 return, is
decidedly middling as mean 2008 returns go, and gives the outright highest an-
nualized cumulative returns for both 2008-2011 and 2009-2011. Furthermore,
as per section 5.7, the standard deviations σt(b = 0.38, L = 2, A = Amax) are
roughly similar to the standard deviations for the other (b, L,A) triples. In
summary, it wins in 2009, 2011, 2008-2011, and 2009-2011, almost wins in
2010, is roughly average in 2008, and is roughly average risk-wise.

Thus, given that Amax(b = 0.38, L = 2) = 0.9, the single best parameter-
choosing strategy is defined by (b = 0.38, L = 2, A = 0.9). Combining this
single best parameter-choosing strategy with the decision-making support tool
gives the single best investment strategy.

Though this (b = 0.38, L = 2, A = Amax) investment strategy is the best
we were able to devise, it is not necessarily good enough: we need to show
that it is better than the benchmarks.
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From figure 5.1 we see that, in 2009, 2010, and 2011, respectively, our op-
timal investment strategy outperforms the random benchmark by 48%, 21%,
and 44%, it outperforms the S%P 500 by 38%, 11%, and 28%, and it outper-
forms 1-year CDs by 64%, 26%, and 30%. These are enormous margins and in
the case of the random benchmark and the S%P 500 they are significant: in
2009 through 2011, our investment strategy, taking into account all fees and
regulatory considerations, significantly outperforms both the stock market as
a whole and randomly choosing portfolios of the same stocks that our strategy
uses. In dollar terms, assuming a $5000 initial investment as per section 3.3,
compared to the S&P 500 the investor would have made an additional $1896,
$566, and $1394, respectively, in 2009, 2010, and 2011 using our strategy. In
annualized cumulative terms over the period 2009 through 2011, our strategy
beats the random benchmark by 38%, the S&P 500 by 25%, and 1-year CDs
by 39%. In cumulative terms, if an investor had reinvested in our strategy each
year 2009 through 2011, he would have earned a total of $6067 more than if
he had reinvested in the S&P 500 each year 2009 through 2011.

In 2008, on the other hand, our strategy is beat by all three benchmarks:
the random benchmark performs 23% better, the S&P 500 performs 4% bet-
ter, and a 1-year CD performs 45% better. While being beat by the random
benchmark by 23% is upsetting, the fact that our investment strategy per-
formed only 4% worse than the market as a whole during what was, as previ-
ously discussed, perhaps the worst financial crisis since the great depression,
is somewhat comforting: even when the market as a whole crashes in a com-
pletely anomalous fashion, our portfolio doesn’t perform significantly worse.
The average investor in the stock market would have done roughly equally
poorly through the crisis as an investor using our strategy would have.

Furthermore, when 2008 is taken into account cumulatively, the results are
good. Our investment strategy gives a 2008 through 2011 annualized cumula-
tive return that beats the random benchmark by 16%, the S%P 500 by 14%,
and 1-year CDs by 11%. So, even if an anomalous stock market crash occurs
once every four years, our strategy still performs well.

Finally, the risk in our investment strategy is roughly similar to the risk in
the random benchmark strategy: in 2008 and 2011 our strategy was less risky,
as measured by standard deviation, by 10% of return and 9% of return, re-
spectively, and in 2009 and 2010 our strategy was more risky, as measured by
standard deviation, by 8% of return and 6% of return, respectively.

Overall, our investment strategy outperforms the benchmarks in every met-
ric except for 2008 returns, in which our strategy is outright bested by the
benchmarks, and risk, in which our strategy and the benchmarks are roughly
equivalent.
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6 Conclusions

We successfully accomplished the main goal: devise a profitable and capital
non-intensive investment strategy that is practical for an unsophisticated in-
vestor to implement. In summary, using the formal mathematical framework
of the appropriate pre-Hilbert space we proved in a method, that to the best of
our knowledge is original, the well-known financial result that given a fixed set
of assets, known expectations, variances, and pairwise covariances of the re-
turns thereof, and a fixed overall return, there always exists a unique portfolio
of these assets that is expected to achieve this overall return with minimum
variance. Then, we created an investment decision-making support tool by
combining the ability to create such fixed-return minimum-variance portfolios
with a general investment procedure and an accurate method of calculating
real-world returns that accounts for all fees and investment regulations. This
tool, upon specifying values for a set of parameters, produces a comprehen-
sively defined investment strategy. Subsequently, we devised several different
parameter-choosing strategies, all of which both learn from the past to draw in-
ferences about the future and learn from the past in order to determine exactly
how much of the past to learn from. We combined the decision-making sup-
port tool with these parameter-choosing strategies to create several different
investment strategies that all dynamically learn from historical data. Finally,
we backtested these investment strategies to see how well they would have
performed in past years and then inspected the results to choose a single best
investment strategy. This best investment strategy is capital non-intensive
and practical for an unsophisticated investor to implement by design, as well
as profitable compared to benchmarks to the tune of outperforming the S&P
500 by up to 38% in average annual returns.

This best investment strategy is practical for an unsophisticated investor to
implement because it only requires access to an online brokerage, investing in
common stocks, and trading once per year. It is relatively capital non-intensive
because it is optimally used with $5000 of initial capital and it can be used,
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albeit to the slight detriment of the resultant returns, with only $2000 of initial
capital. $2000 to $5000 is not a trivial amount of money, but it is certainly
a reasonable amount to expect our unsophisticated investor to have and it is
significantly less initial capital than is required for various professionally man-
aged alternatives.

Furthermore, we devised an investment decision-making support tool that is
a general and powerful platform with the potential to generate investment
strategies that are even more profitable than the best investment strategy cre-
ated here; one must simply devise a parameter-choosing strategy that is better
than the optimal ones presented here and combine it with the decision-making
tool to obtain a superior investment strategy that is still capital non-intensive
and practical for an unsophisticated investor to implement.

But we need not limit ourselves to helping the unsophisticated investor who
has only a few thousand dollars to invest. The decision-making support tool
can be easily modified to generate capital-intensive strategies for sophisticated
investors who are comfortable investing in all asset classes and trading far more
frequently than once per year. In fact, for two reasons we expect that such
investment strategies have the potential to perform significantly better than
even the best unsophisticated capital non-intensive strategy devised here: first,
more frequent trading means that the strategy is more rapidly updating its
predictions about the future by learning from the newest historical data and
second, more asset classes means lower-variance minimum-variance portfolios.
Future work would include the development and testing of such potentially
enormously profitable investment strategies.
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