Could a template system of hydrophobic polymer amide on water have preceded an RNA-based code?

Julie E M McGeoch

Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.

Acknowledgements: NIH,

Center for Nanoscale Systems Harvard Guido Guidotti David C. Bell (TEM) Richard Schalek (SEM) Malcolm W McGeoch (physics)

Harvard daVinci Group meeting of 05.12.08

BASIC FIELD OF INTEREST:

We are interested in candidates for topologies that might have separated charge (a force) in the early Universe, while also providing the material basis for microenvironments to assist complex chemistry.

CHEMICAL STUDIED:

One such candidate is hydrophobic **Proteolipid**, the most conserved amide bonded polymer in all organisms (in terms of amino acid sequence) nucleotide code-based evidence indicates it first arose 4Gya in the Pre-cells, the Archaea and the Eubacteria (McGeoch & McGeoch Entrapment of water by subunit c of ATP synthase. J.R.Soc.Interface (2008) 5, 311-318).

DETAILS:

In organic solvent when presented with water, proteolipid assembles into tubes that pinch off into vesicles - these observations were made via light microscopy in the course of crystallizing proteolipids for X-ray structure work.

A gene duplication of proteolipid, subunit c of V-ATPase, is in large amounts in the ER of Eukaria.

The ER in some Mammalian cells forms a 3D scaffold of tubes/conduits on the nanometer scale (McGeoch 2007 J Microscopy 227, 172-184).

QUESTION:

As we had a chemical that spanned the 3.8 Gyrs of cell based life on Earth our question was: If we examined pure proteolipid and pure water on the nanometer scale would we see any evidence of scaffolds that could suggest they were candidates that formed early topologies

- & just HOW EARLY in the UNIVERSE could this system have arisen?

Conundrum: Life (CO_2 fixation) arose on Earth after 70 million yrs, while the constituent elements of polymer amide (H,C,N,O) had been around in the Universe for 9 billion yrs (100 times longer).

Komatsu et al (2008) Five -Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Cosmological interpretation *Astrophys J* eprint arXiv:0803.0547, **Bibliographic Code:**2008arXiv0803.0547K

CHEMICAL TIME LINE

A 3D iso-surface through 29 planes of the ER of a buccal epithelial cell of dimensions: 600x600x770nm. It was Cryo-FIB etched with a 10pAmp current, a vacuum of 1e-4Pa, and at a temperature of -150°C. There is complete continuity of the ER cisternae. Their high intensity grey iso-surface faces inward, and their low intensity yellow iso-surface faces outward into the cytoplasmic space. The branch pattern of the ER cisternae is mainly 3-way.

600x600x770nm.

Basic Methodology

Combining in various ways:

- 1) Water de-ionized to 19 Mega Ohms
- 2) Pure proteolipid1-10mg/ml

Imaging of the forms via:

1. Phase contrast light microscopy

2. Cryo SEM FEI 235 dual-beam/Gatan Alto2500 cold chamber & stage

Temp: 93-123K, electron beam source: field emission gun 5kV, vacuum: 1e-4Pa. Electron beam minimum spot size 2nm on a silicon substrate. Images formed from secondary electrons entering instrument collectors/detectors.

3. Cryo TEM/electron diffraction

Jeol JEM-2100F Temp 83K, Electron beam energy: 200keV, Vacuum: 1e-6Pa Electron wavelength 2.5pm Calibrated just prior to experiment with nickel oxide Structure of ATP synthase, the F0 proton channel and rotating stalk are shown in blue, the F1 synthase domain in red and the membrane in grey.

Daniela Stock, Andrew Leslie and John Walker 1999

Yeast ATP Synthase Complex F1: $\alpha,\beta,\gamma,\delta,\epsilon;$ F0: c $\,$ (-F0: a, b + f, d, h, OSCP, ATP8)

RasMol Backbone Colour by chain

Model diagram of polymer amide pore - to emphasize the cation change with time. The model is based on the patch clamp data: McGeoch & McGeoch 1994, McGeoch & Guidotti 1997, NMR structure data Girvin, Rastogi, Abildgaars, Markley and Fillingame 1998, 2D Crystal data McGeoch & Guidotti 2001 and yeast structure of Stock, Leslie & Walker 1999.

2 subunits of each polymer amide pore shown, 8-12 subunits per pore

Transmembrane Helices of Bovine Fo subunit c modeled from possible structure of E. Coli Fo subunit c, from R. H Fillingame, Biochim. Biophys. Acta, 1101 (1992) pp240-243

70 45 A Assumptions: 3.6 residues per turn, Hydrophilic Hydrophilic pitch 5.4 Angstroms, segment segment relative orientation of helices is not known

CHROM OSOME	CODING SEQUENCE	NON-CODING SEQUENCE	ASSOCIATED but "OTHER"
1		PSEUDOGENE of ATP5G1	
		VEGA PP5 1108020 5	
		0TTHUMG000008302	
		PSEUDOGENE of ATP5G2 VEGA	
		RP11-385M4.4	
	HONG ATDIGG	0TTHUMG0000036167	
2	P3		
	ENSG00000154518		
3			
5			
6		PSEUDOGENE of ATP5G1 VEGA:	
		0TTHUMG00000014203	
7		PSEUDOGENE of ATP5G2	
		AC000362.1	
		0TTHUMG0000034029	
8			
10		PSEUDOGENE of ATPRG	
		VEGA: RP11-404C6 3	
		0TTHUMG0000018379	
		PSEUDOGENE of ATP5G1 VEGA:	
		RP11-443A13.4	
11		0TTHUMG0000018533	
12	HGNC: ATP5G2		
	P2		
13	ENSG00000135390	PSEUDOGENE of	
15		VEGA:	
		RP11-29716.2	
14		011110/00000017322	HGNC: ATP5S
			Coupling factor B
15			
17	HGNC: ATP5G1		
	P1 ENSG00000159199		
18		PSEUDOGENE of ATP5G1	
		VEGA:	
		0TTHUMG00000141308	
19			
20			HGNC: GABPA
			α-sub respir factor 2
22 X		PSEUDOGENE of ATP5G1	
Λ		VEGA:	
		RP1-50A13.2	
Y		011HUMG0000021381	

Location of subunit c of ATP synthase coding & non-coding regions (*Homo sapiens*)

Subunit c on the surface of water induces ordering of the surface

Glass slide with 1µl water

Same + 1ng subunit c. Note the edges of the droplet are becoming straight rather than circular due to the ordering via the protein

Light microscopy phase contrast image

Phase contrast images of tubes of proteolipid. When the volume of solvent above the initial lipid/protein droplet is sufficient to allow the tubes to extend without reaching an air/solvent interface a mass of tubes grow out and up from the droplet to form a medusa-like structure. Proteolipid tubes at the outer surface of the water droplet (top right) round off and form vesicles. The range of diameter of the tubes is 5-40µm. If evaporation of the water is considerably slowed then crystals grow that are sometimes hollow (bottom right inset). Long thin tubes fold and twist back (top left inset, inverted phase contrast image to reveal twist detail).

SEM images showing the effect of raising the temperature of proteolipid vesicles from 83 to 233K (-190 to -40C) to sublime the central water. (a) Vesicles are initially $<1\mu$ m diameter on the Al stub at 83K (-190C). (b) They expand on warming as their central ice reconfigures. (c) At 213K (-60C) each vesicle has expanded further and has a very thin relatively dark wall area. *In all experiments once the temperature reaches 233K (-40C) the central water in the vesicles suddenly escapes from each vesicle resulting in the instrument abruptly registering a significant "outgassing or sublimation event". The instrument vacuum of 1e-4Pa however remains intact but images cannot be captured until the temperature is lowered to halt further sublimation.*

(d) Here the temperature is being lowered again and has reached about 123K (-150C). The vesicles are now multiple consisting of several flattened vesicles collapsed around each other to form spheres of about >4 μ m diameter. They are aligned completely across the stub, having nucleated to an arbitrary sub-micron straight groove on the stub. (e) a larger area than D showing the extent of the alignment of the vesicles. Some grow up above the monolayer and collapse back.

20µm

The proteolipid skin retained the entrapped central water over a temperature rise from -190 to -50°C.

Free water should have started to sublime at -120°C.

McGeoch & McGeoch Entrapment of water by subunit c of ATP synthase. J.R.Soc.Interface (2008) 5, 311-318

TEM images of transitional forms of proteolipid encapsulating water.

(a) spacious vesicles with central crystals.

(b) vesicles whose sides are beginning to straighten.

(c) spherical vesicles with attached hexagon crystals.

(d) vesicles and crystals attached to one another where neither one or the other is obviously present.

All scale bars = 100nm.

McGeoch & McGeoch Entrapment of water by subunit c of ATP synthase. J.R.Soc.Interface (2008) 5, 311-318

(a) TEM image of a vesicle consisting of ribbons of proteolipid winding around water.

(b) TEM inverted image of ribbons of proteolipid. A ribbon has β -sheets of strands of proteolipid laterally spaced 3.7Å. The edges of the ribbon away from the vesicle are α -helices. Lengthways the strands/carbon backbones of the protein can be followed in the ribbons as continuous strands of length >134nm diagonally across the entire image. The nearest ribbon has 24 strands with intermolecular β -sheet type bonding and α -helices at its right edge. TEM 200kV, 1e-6Pa.

STACKING ISSUE

The ribbons of proteolipid stack

Proteolipid aa sequences contain alternating hydrophobic/hydrophilic aa in groups of 2-3 aa's

This allows each layer to contain both hydrophobic & hydrophilic R groups in the same orientation. If the peptide sequence had single alternating hydrophobic & hydrophlic aa's, the top R groups away from the water would all be hydrophobic & the bottom towards the water, all hydrophilic. A degree of repulsion between successive layers would ensue, which would inhibit the stacking and alignment of the layers.

PROTEOLIPID SEQUENCES OF MAMMAL, YEAST & E. coli showing how the amino acids might distribute at a hydrophobic/hydrop hilic interface - the mammal is seen to have the most alternating sequence, that goes above and below the interface every 2-3 amino acids and only at the C-terminus remains in the hydrophobic phase for 14 amino acids.

R groups should alternate above and below the air/water interface based on hydrophathy. That the sequences alternate in 2's and 3's poses a topological problem. Phenylalanine (F) induced helical twists* in the backbone could solve this.

Red=hydrophobic amino acids Blue/grey =hydrophilic amino acids

Mammalian subunit C NP_788822 Bov DIDTAAKFIG AGAATVGVAG SGAGIGTVFG SLIIGYARNP SLKQQLFSYA ILGFALSEAM GLFCLMVAFL ILFAM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 AA FI A AA V VA A I VF LII YA р K G G D D T T G GSG G GT GS G RN 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 L LF YAIL FAL AM LFCLMVAFLILFAM SKOO SG SE G Yeast subunit C NP 009319 MOLVLAAKYI GAAIATIGLL GAGIGIAIVF AALINGTSRN PSLRNTLFPA ILGFALSEAT GLFCLMISFL LLYGV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 LVLAA YI AAIA I LL A I IAIVFAALI K G T G G G G 0 NGTSRN 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 LFPAIL FAL A LFCLMI FLLLY V S R N T G SE TG S G

E. coli subunit c AAC76760 MENLNMDLLY MAAAVMMGLA AIGAAIGIGI LGGKFLEGAA ROPDLIPLLR TOFFIVMGLV DAIPMIAVGL GLYVMFAVA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 M L M L L Y A M A A V M M L A A I A A I I L F L A A E N N D G G G G G G K E G 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

G D

G G

P LIPLL LFFILVM L AIPMIAV L LYVMFAVA

*Matsummura, Uemura, Mihara 2004 Chem Eur J 10, 2789-2794.

RQ D RTQ

TEM of hexagonal crystals of water encapsulated by proteolipid and their diffraction pattern to the right. The average spacing from the center of the pattern to the first hexagonal water spot corresponds to 3.73 ± 0.06 Å in 3 separate crystals measured from 1-3 directions. These sharp diffraction patterns are seen with a electron wavelength of 2.5pm. It implies the existence of a regular repeating structure in which the atoms (eg Oxygen of water) are aligned to their ideal positions with a displacement of somewhat less than the wavelength e.g. 1pm.

In the middle crystal image electron dense spherical vesicles encapsulated by protein can be seen together with pale masses of lipid in the background. The bottom R image is another hexagon water crystal that shows detail of the protein intersheet spacing as it encapsulates the crystal. At different points on the edge of this crystal there are 7-13 separate subunit c sheets spaced 6.0 ± 0.1 Å. The sheets bend over the 60° turns of the crystal.

TEM (*inverted image*) of a tube whose surface is covered by strands of proteolipid subunit c with a lateral spacing of 3.7Å amidst circular structures that could be assembled channels of subunit c of 3nm diameter. The strands adopt a woven path over the tube surface. The inset image shows a lower magnification of the entire pile of collapsed tubes on the TEM grid and in their center are crystals.

OBSERVATION

In a given proteolipid peptide strand: X direction spacing i.e, β -sheet hydrogen bonding = 3.7Å Y direction spacing i.e, distance between peptide bonds = 3.5Å Z direction spacing i.e. stacking of the layers - 6Å

Entrapped water lattice spacing = 3.73±0.06Å* It has the clear 6 fold symmetry of hexagonal ice but this state existed at a RT of 17°C. The state was conserved by flash freezing in milliseconds to -195°C. Therefore the entrapped water is ORDERED and compressed.

Further the amide sequence of proteolipid would seem to "fit" onto a water surface.

Could there be a co-operative association here in terms of:

1. Early protein condensation

2. And more speculative ~ even a degree of dependence for long term stability

*the strongest lattice diffraction of hexagonal ice is 3.89 at -180C. The spacing of the first peaks from the centre of the diffraction pattern in 3 separate crystals from 1-3 directions n=36. This measurement is smaller than expected for hexagonal water ice at 3.9Å which indicates compression.

If an early system arose in the Universe why select for:

- 1. Amino acids particularly?
- 2. What was the source of the amino acids i.e. synthesized or delivered?
- 3. Why was homochirality adopted (sugars D and aa's L)?
- 4. Energy consideration for polymerization of amino acids in/on water?

No halogens at the point H,C,N,O first arise -hydrophobic polymer amide remains stable

Once H, C, N or O formed, amino acids arising from these elements offered high value to a system

An α -AMINO ACID (aa)

Has a primary amine grp & a primary carboxyl grp

~ each aa has a specific isoelectric point pH when: NH3⁺/COO⁻ termed a Zwitterion

Reactions:

Nucleophilic addition.

Amide bond formation - polymers.

Amine group: Imine formation & esterification.

Carboxyl grp: Amide bond formation and decarboxylation.

The multiple side chains of amino acids can undergo chemical reactions.

*aa side chains confer hydrophobic/hydrophilic character to polymer in relation to abutters of the polymer.

Н

Amino acid amides to polymers

Converting an amino acid to its amide gives it sufficient energy to drive the subsequent reaction with an amino acid to form a peptide bond.

Heating amino acid amides (amides of glycine, alanine, valine, aspartic acid) to dryness with kaolin (clay mineral) - 10 hydration/dehydration cycles produces polymers linked by peptide bonds:

6% α -helix 42% β-sheet

52% Random

Amino acid

Aspartic acid Asp

H,N

Glutamic acid Glu

Amide - terminal hydroxyl grp replaced with an amine

Asparagine Asn

H₃N-Ċ-

Glutamine Gln

PREBIOTIC CONDENSATION OF AMINO ACIDS TO PEPTIDES

From Andre Brack's 2007 review

EXPERIMENTS that synthesize polymer

Simulations equivalent to those of thermal vents- oscillating high/low temp & constant high pressure with reducing conditions: glycine + CuCl₂ > 10mer G

Simulations of high salt lagoons - Amino acids + 3M Nacl + Cu + high temp→simple amino acids + dipeptides

Amino acids + N,N'-carbonyldiimidazole + $H_2O \rightarrow$ condensate enriched for protein amino acids

Activated amino acids (aminoacylphosphate derivatives) + mineral clays (montmorillonite)→56mer peptides

Amino acid thioesters + CdS/ZnS→8mer peptides

Acidic Asp/Glu + hydroxylapatite $Ca_5(OH)(PO_4)_3$ or clay illite \rightarrow polymers of Asp/Glu (*NB Ca*⁺⁺ binding essential to the mechanism)

Basic Arg + kaolinite/illite/montmorillonite clays + N,N'-carbonyldiimmidazole→polymers after 50 cycles

β -sheet/ α -helix formation

Strictly alternating homochiral poly (val-lys) + NaCl (screens the lys NH3⁺ charges) in water $\rightarrow\beta$ -sheets Rule: Strict alternation of hydrophobic/hydrophilic aa's in water \rightarrow bilayer thermally stable β -sheets - also need to be homochiral all L or all Daa's. Tetrapeptide periodicity produces thermally labile α -helices - the aa's in an α -helix don't have to be homochiral e.g conotoxins

If alcohol is added to a pre-formed β -sheet it transitions to α -helix - alcohol reverses the H₂O induced constraint on the hydrophobic grps NB Lipid must have a similar effect on proteolipid

Peptide Nucleic acids (PNA) were discussed by the Brack review - backbone of achiral poly(*N*-(2-aminoethylglycine) with bases attached through an acetate linker. PNA cyclizes easily making oligomers hard to form. Can get PNA-PNA.

BUT a direct pathway from peptide to Nucleotide-based code is not necessary if a peptide/lipid topology (formed much earlier than RNA) can host the development of RNA/DNA alone.

DATE	REFERENCE	CHEMICAL	DETAILS
REPORTED		FORMED	
1850, 1854	A. Strecker	AMINO ACIDS	Amino acids formed from: KCN, aldehyde s and ketones
1953	S 1 Miller & H C Urey	AMINO	Amino acids 7 othe r
1959 2004	A Lazcano & J L Bada	ACIDS	organic monomers from reduced mixtures of methane, ammonia & hydrogen.
1967	C N Matthews & R E	PROTEIN	Polymerization of HCN
	Moser		in the presence of water
1960 reviewed in 1994	S W Fox., P R Bahn., K Dose., K Harada ., L Hsu ., Y Ishima ., J Jungck., J Kendrick., G Kram pitz., N Tadayoshi., A Pappelis., A Po., D L Rohlfing., A Vegotsky., T V Waehneldt., H Wx & B Yu.	PROTEIN	Protein was formed from ammonia, methane, water and a discharge.
1960 to present time	Large number of competent chemists	PROTEIN	Protein will readily form from HCN and other H, C, N and O based chemicals.
2000	G D Cody., N Z Boctor., T R Filley., R M Hazen., J H Scott., A Sharma. & H S Yoder Jr.	Basic Metabolites like pyruvate	Experimental time is the only limit to producing almost any chemical provided its constituent elements are present.
2007	M W Powner., C Anastasi ., M A Crowe., A L Parkes., J Raftery. & J D Sutherland.	RNA-like molecule	RNA-like molecules can arise from photoanomerisation of cysteine nucleotides

TABLE 1. CHEMICALS from HYDROGEN, CARBON, NITROGEN & OXYGEN.

NB: Chemicals requiring constituent higher mass elements like *RNA* are in blue backgrou nds – these would have first formed later than 13 Gyrs ago.

1. Why Amino acids particularly?

Voet & Voet 1995 Metabolic breakdown of individual amino acids

FIGURE 24-8. Amino acids are degraded to one of seven common metabolic intermediates. Glucogenic and ketogenic degradations are indicated in green and red, respectively.

2. What was the source of the amino acids i.e. synthesized or delivered?

Source of the amino acids?

MISSION	SAMPLE SOURCE	AMINO	LIPID	SUGAR	OTHER
		ACIDS			
	Carbonaceous chondrite				
	Australia 1969				
	Engel & Nagy 1982	70-90% aa with			
		L bias			
		Non-earth aa's			
		L-aa bias at			
	Muschicon	9%	Emotions		
	Carbonaceous chondrite Australia1969		(chloroform/methanol extraction) act like		
	Deamer & Pashley 1989		membranes		
	Murray Deamer & Pashley 1989		Fractions (ibid) act like membranes		
	Mighei		Fractions (ibid) act like		
	Deamer & Pashley 1989		membranes		
	Murchison Carbonaceous chondrite	glycine	Nonanoic acid-forms vesicles**		pyrene
	Australia1969 Mautner, Leonard &				
	Deamer1995 Deamer 1997		Many examples lipid		
	METIORITES:		from meteorite samples		
	Murchison AntarcticALH84044 (origin		Very good vesicles		
	through to be Mars-ejected from Mars 16 million yrs ago				
	into Earth crossing orbit-landed in Antarctica 13,000 yrs ago)				
<u> </u>	AntarcticLEW 8534 Tagish Lake Cananda				Dicarboxylic acids
	Pizzarello et al 2001				Pyridine carboxylic acids Sulphonic acid
					Aliphatic and aromatic hydrocarbons The insoluble carbon has deuterium
					enrichment Fullerines containing planetary He and Ar
	Murchison			POLYOLS	
	Carbonaceous chondrite Australia1969			polyhydroxylated	
	Cooper et al 2001			sugars, sugar alcohols sugar	
	Murray metiorite			acids POLYOLS	
	Cooper et al 2001			polyhydroxylated	
				sugars, sugar alcohols sugar	
	Murchison	Dinentides:		acids	
	Carbonaceous chondrite Australia1969	Gly-Gly 11nmo23/g			
	Shimoyama & Ogasawara 2002	Cyclo(Gly-Gly) 18pmol/g			
		No L or LL			
		stereoisomers of protein aa's			
		Monomer			
		glycine 3 orders of mag [higher]			
		than dipeptides			
	Yamato-791198 Carbonaceous chondrite	Dipeptides: Gly-Gly			
	Shimoyama & Ogasawara 2002	l lpmol/g Cyclo(Gly-Gly)			
		18pmol/g			
		No L or LL stereoisomers of			
		protein aa's			
		Monomer glycine 4 orders			
		or mag [higher] than dipeptides			
	Murchison	aa's and Di			
	Australia1969 Meierhenrich et al. 2004	chiral bias			
Posattr					
Stardust					
Mars Voyager 1 to					Thick pink haze surrounding Titan. Tholins
Titan Voyager 1 to					Indicative of organic cpds tholins
dark hemisphere of					
Saturus-					
Satellite Inpetus Voyager 1 to					tholins
Centaur 5145 Pholus					
	Comet 81P/wild2 Sandford S A 2006				Organics rich in oxygen and nitrogen compared to meteorites
					Deuterium and N15 content suggest interstellar heritage
1	1				

Table 1 Comet & Meteorite chemicals

Enlarge to read the table

Providing potential source of chemicals to earth from extraterrestrial in-fall

Table 1 References in the order that they appear in the table:

Engel & Nagy (1982) Nature 296, 838.

Deamer & Pashley (1989) Orig Life Evol Biosph 19, 21-38.

Mautner, Leonard & Deamer (1995) Plan Space Sci 43, 139-147.

Deamer (1997) Microbiol *Mol Biol Rev* **61**, 239-261.

Pizzarello et al (2001) Science 293, 2236-2239.

Cooper et al (2001) Nature 414,879-883.

Shimoyama & Ogasawara (2002) Orig Life Evol Biosph 32, 165-179.

Meierhenrich et al (2004) PNAS 101,9182-9186.

Sandford et al (2006) Meteor Plan Sci 36, 1117-1133.

3. Why was homochirality adopted (sugars D and aa's L)?

L D discussion

Relates to amino acid condensation to protein on a water surface

By having 2 entities in a system choice is possible Choice conveys a "value" to each entity Value synonymous with "information"

Why was only one amino acid chirality selected (Laa)?

A polymer-based system of *n* units (typically n=100's), using homochirality (on-handed monomers)) is simplified in terms of the sequence combinations by a factor of 2.

How were L amino acids possibly enriched?

i.e what stellar events might have produced a greater proportion of L aa's making it more statistically likely that L would be selected by a system?

Data from *Murchison* meteorite: interstellar grains from a neutron star remnant of a supernova show circular polarized synchrotron radiation (Bonner 1991).

Data from *Orion OMC-1*: In the star formation region dust shows strong infrared circular polarization (Bailey et al 1998).

Bailey in 2001 suggested that circular polarization at short wavelengths might induce chiral asymmetry in interstellar organic molecules that were subsequently delivered to Earth by extra-terrestrial in-fall.

NB. Earth collects 20,000 tons of interplanetary dust/micro-meteorites per year - 99% are 50-500µm diameter and earlier when the Earth had just formed at 4.5e9yrs ago, this influx was greater.

Condensation of aa's to polymer in Water

Energetically unfavorable : H-Ala-OH + H-Gly-OH \rightarrow H-Ala-Gly-OH + H₂O Δ G⁰ = 4.13kcal pH 7 Equilibrium constant of the reaction is only *ca* 10⁻³

Equilibrium concentration of the dipeptide for 1M solutions of free amino acids is only slightly above 10⁻⁵M

Dixon and Webb 1958 estimated that 1M solutions in each of the 20 proteinaceous aa's would yield at equilibrium a 10^{-99} M concentration for a 12kDa protein & the volume of this solution would be **10⁵⁰ times the volume of the Earth.**

Therefore Energy input needed (bucket chemistry)

But -

On a smooth **Water Surface** with "snug & equal" atomic spacing of 3.7Å for reactants, with >66% hydrophobic aa's, possibly not so unfavorable?

No halogens at the point H,C,N,O first arise -hydrophobic polymer amide remains stable

In summary:

•A HYPOTHESIS is presented that POLYMER AMIDE functioned in the VERY EARLY UNIVERSE

We suggest that polymer amide first formed at the condensation stage of the 2nd generation stars *ca.* 13Gyrs ago.

Hydrophobic polymer amide in conjunction with lipid = proteolipid.

•The EVIDENCE that POLYMER AMIDE functioned at 4Gyrs ago in UNIVERSE

Polymer amide has all the properties to provide a topology for complex chemistry 4Gyrs ago ago (*McGeoch & McGeoch Entrapment of water by subunit c of ATP synthase. J.R.Soc.Interface (2008) 5, 311-318*).

Proteolipids are the most conserved proteins in all organisms in terms of their amino acid sequence-they first arose 4Gya in the Pre-cells, the Archae and the Eubacteria.

Proteolipid in organic solvent when presented with water, assembles into a 3D scaffold of tubes that pinch off into vesicles when the solvent starts to evaporate.

A gene duplication of proteolipid polymer amide, subunit c of V-ATPase, is in large amounts in the ER of Eukaria.

The ER in some Mammalian cells forms a 3D scaffold of tubes/conduits on the nanometer scale (*McGeoch 2007 Topology of the mammalian cell via cryo-FIB etching. J Microscopy 227, 172-184*).

Polymer amide can thus provide a topology when:

1) It is just a basic chemical in solvent.

or

2) When it is a component in a complex cell structure like the ER.

This demonstrates that it could in principal have functioned from the time its elemental components first arose 13Gyrs ago to the present day.

Applied considerations:

Present day diseases related to loss of control of ancient template systems

Applies also to the most fundamental aspect of polymer amide which is that it is the MATERIAL BASIS for SEPARATING CHARGE.

 α -helix of polymer = the postman β -sheet = the insulator Solution with ions between the β -sheets = the force (charge) that has been confined.

Neurological diseases that could have as their basis, aberrant control (via nucleotide-based mutations in controlling proteins) of ancient template systems

1)	2)	3)	4)
ANCIENT PROTEIN & how far back is their lineage relative to 4Gyrs ago when the first pre-cells started	FUNCTION	CODE-BASED SYSTEM that possibly suppresses/tightly regulates the ANCIENT PROTEIN's non-code based chemical reactions	DISEASE THAT COULD BE ASSOCIATED WITH LOSS OF 3
PROTEOLIPID Back to 4e9yrs ago	 ATP synthase rotor Cation channel 	Enzymes associated with lipid synthesis, control and transport Caspases Palmitoyl-protein-thioesterase	BATTENS DISEASE alias Neuronal Ceroid Lipofiuscinoses (CLN's) CLN1 CLN2
		Tripeptidyl-peptidase 7 transmembrane protein	CLN3
AMYLOID Back 2.7e9yrs a g o Amyloid fibres found in Ecoli biofilms Otzen D, Nielsen PH Cell mol Life Sci 2008 65,910-27.	Memory	PRESILINS: PS1, PS2 Proteolytic action on amyloid precursor protein that results in beta amyloid production (plaques). When PS1 and PS2 are mutated the beta amyloid is missfolded. Same for Tau protein whose function is to phosphorylate microtubules of the cytoskeleton. Over phosphorylated tau aggregates with other tau to form tangles. Abnormal Caspase-6 activation disrupts CNS cytoskeleton	ALZHEIMER'S
HUNTINGTIN Back to the evolution of insects 4e8yrs ago (Htt/mHtt (mutant)) DNA code acquires Polyglutamate (CAG) repeats Homologies in Drosophila	Vesicle trafficing involving clathrin.	Caspases degrade the N-terminus of the normal Htt and remove the glutamate repeats. In protein with extra repeats they are not all removed by the carpases. mHtt binds with TAF _{II} 130, a coactivator to CREB dependent transcription.	HUNTINGTON'S CHOREA

Spare slides for discussion

The 1st STARS

After few 100M yrs: H, He, O, C, N and not much else

Re-ionization (harsh environment) due to radiation from Pop3 stars

Oxygen could aid Pop 2.5 formation at smaller size than Pop3 (hyperfine transition radiation from ground state)

Pop 2.5 produces yet more O, C and N

Hypothesis: Water was dominant constituent of accretion discs

First chance of complex chemistry of proteins to occur

Acknowledgements: NIH, Center for Nanoscale Systems Harvard Guido Guidotti David C. Bell (TEM) Richard Schalek (SEM)

North point of Harbour Island North Eleuthera Bahamas

In calm warm ocean, alternate layers of cyanobacteria/biofilms of CaCO₃ form localized coral mounds termed stromatolites. Date from 3.5e9yrs ago

Experimental Stromatolite layer depositions have been produced abiotically - via controlled nano scale sprayed layer deposition.

A Stromatolite is a Biogeochemical Engine which translates energy into morphology

They could be candidates for containing a polymer amide template system along side the cyanobacterial nucleotide code?

Movie of Marine Foam - salt water/air bubbles encapsulated by amino acids

cf: Mopper & Zika 1987 Nature 325,246-249: Free amino acids in marine rains.

Universe diameter = 20billion light years = 1.1757e17miles

Jeffrey Weeks from Canton, New York diameter = 70 billion light years = 2.3e18miles At the centre of the debate are observations by NASA's Wilkinson Microwave Anisotropy Probe (WMAP), which was launched in 2001. The probe measures temperature ripples in the "cosmic microwave background", the afterglow radiation from the big bang fireball. Weeks and his colleagues, a team of astrophysicists in France, say the WMAP results suggest that the Universe is not only small, but that space wraps back on itself in a bizarre way (*Nature*, vol 425, p 593 2003).

A light-year is equal to:

- •9,460,730,472,580.8 km (about 9.461 Pm)
- •5,878,625,373,183.61 <u>statute miles</u>
- •about 63,241 astronomical units
- -about 0.3066 parsecs

String Theory

Interaction in the subatomic world: world lines of point-like particles in the Standard Model or a world sheet swept up by closed strings in string theory

String theory is an incomplete mathematical approach to theoretical physics, whose building blocks are onedimensional extended objects called strings, rather than the zero-dimensional point particles that form the basis for the standard model of particle physics. By replacing the point-like particles with strings, an apparently consistent quantum theory of gravity emerges, which has not been achievable under quantum field theory. Usually, the term string theory includes a group of related superstring theories and a few related frameworks such as M-theory, which seeks to unite them all.

TIME (years ago)	EVENT
13.73±0.12e9	Start
Minus 10ms	Baryons, Dark Matter, Dark Energy
Minus 100ms	1^{st} Nucleosynthesis: nuclei H, D, He, Li then H_2
Minus 5e8yrs	Accretion of 1 st generation stars 2nd Nucleosynthesis: low mass elements from H1 to O16, mainly H, C, N, O
Minus 8e8yrs	Start of accretion of 2^{nd} generation stars Water (ice + polymers like polymer amide could have been involved in this accretion)
12e9	2nd generation stars 3 rd Nucleosynthesis: higher mass elements NB now halogens exist
	FUSION reactions continue - star formation after the 2 nd generation stars was not linear and continues in present times
4.5e9	Formation of Earth $-a 3^{rd}$ generation star
4.4e9	1 st oceans condense
5.869	
	<i>NB</i> only <i>7e8yrs</i> between Earths formation & CO_2 fixation
7.	RNA/DNA code forms in pre-cell systems
3.5e9	Stromatolites: alternate layers of bacteria and ppted Ca carbonate due to the bacteria lowering the CO ₂ Are these structures 100% nucleotide code based? Protein synthesis inhibitors do not completely inhibit their nitrogen metabolism.
2.7e9	Archaea & Eubacteria
2e9	Eukaria
1.5e9	Acritachs, unicellular algae
1.2e9	Multicellular red algae
6.8e7	Mammals
0	Present day

The 3 proteolipid ribbons at the top left overlap lengthwise and show "moire patterns" (term derived from *Bombyx mori*) due their overlapping protein backbones attenuating rather than transmitting some of the electrons.

A moire pattern, formed by two sets of parallel lines, one set inclined at an angle of 5⁰ to the other

The Lotus leaf surface is of hydrophobic wax with upward projections of nano-hairs and micro-bumps Water on this surface has a contact angle of 170[°] As a reference Human skin which is slightly hydrophobic, has a contact angle for water of 90[°]

In strong sunlight when the leaf is undergoing photosynthesis the O₂ gas emerges through the open leaf somatae at such a rate, that it ejects microvolumes of water outwards from the surface of the main droplet.

Photosynthesis: $6 \text{ CO2} + 12 \text{ H2O} \rightarrow \text{C6H12O6} + 6 \text{ O2} + 6 \text{ H2O}$ Small amount of CO_2 too, from leaf respiration

We start with the assumption that amide is synthesized in HCN from aldehydes & ketones Shadowed Boxes represent temperature ranges that would support exchange of amide from gaseous HCN to liquid H₂O & liquid HCN to the surface of solid hexagonal water ice. NB these are reactions at Earths Atmospheric Pressure