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ABSTRACT: Methods in system identification are used to obtain linear time-invariant state-space models that de-
scribe how horizontal averages of temperature and humidity of a large cumulus ensemble evolve with time under
small forcing. The cumulus ensemble studied here is simulated with cloud-system-resolving models in radiative–
convective equilibrium. The identified models extend steady-state linear response functions used in past studies and
provide accurate descriptions of the transfer function, the noise model, and the behavior of cumulus convection
when coupled with two-dimensional gravity waves. A novel procedure is developed to convert the state-space mod-
els into an interpretable form, which is used to elucidate and quantify memory in cumulus convection. The linear
problem studied here serves as a useful reference point for more general efforts to obtain data-driven and interpret-
able parameterizations of cumulus convection.
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1. Introduction

How to represent the aggregate response of a cumulus en-
semble to large-scale forcing is a central issue in the dynamics
of moist atmospheres. In this paper, we address this issue un-
der two restrictions. First, we consider a cumulus ensemble suf-
ficiently large that its behavior is approximately deterministic.
While cumulus ensembles in the real atmosphere or those
that parameterizations in large-scale models aim to represent
are not sufficiently large to behave deterministically, it is
nonetheless useful to first address the deterministic compo-
nent, upon which stochastic fluctuations can then be added.
Second, we consider that large-scale forcing varies around a
time-invariant reference by amounts sufficiently small such
that the aggregate response of the cumulus ensemble to the
forcing behaves approximately linearly. This linear behavior
is relevant to phenomena such as the convectively coupled
waves and provides a foundation for extensions to nonlinear
regimes. Much of the recent work on data-driven cumulus
parameterizations through machine learning has targeted the
nonlinear problem (e.g., Brenowitz and Bretherton 2018;
O’Gorman and Dwyer 2018; Rasp et al. 2018; Yuval et al.
2021). It is our hope that the linear problem studied here
can provide a useful reference point for such efforts.

When a cumulus ensemble responds to forcing, the ef-
fect on the large-scale environment is not instantaneous.
The finite response time provides memory in convection
and has been invoked as a way to preferentially damp
shorter-period convectively coupled phenomena (see, e.g.,
Emanuel et al. 1994; Kuang 2008b). For sufficiently slowly
varying large-scale forcing, the statistics of the cumulus
ensemble may be assumed to be in equilibrium with the
large-scale environment such that they are diagnostic
functions of the latter. This will be referred to as quasi

equilibrium.1 A linear approximation of such diagnostic
functions was obtained from cloud-system-resolving mod-
els (CSRM) and was referred to as linear response func-
tions (e.g., Kuang 2010, 2012, 2018). To be more specific,
hereinafter, we shall refer to them as the steady-state linear re-
sponse functions. Similar work was done for jet dynamics
(e.g., Hassanzadeh and Kuang 2016). However, for variations
in the large-scale environment with time scales comparable
to or faster than the response time scales of convection, the
statistics of the cumulus ensemble may no longer be in ap-
proximate equilibrium with the large-scale environment.

In this paper, we take a time series analysis perspective and
use tools developed in the field of system identification (see,
e.g., Ljung 1999) to identify linear time-invariant (LTI) state-
space models. These models extend the steady-state linear re-
sponse functions by removing the assumption of statistical
equilibrium between the cumulus ensemble and its large-scale
environment. We then present a novel procedure to convert
the state-space models to an interpretable form to provide
some insights into memory in cumulus convection.

This paper is organized as follows. Section 2 describes the
CSRM used to simulate the cumulus ensemble. Section 3
describes the state-space model framework and the experi-
mental setup that we use. Section 4 describes the identified
models and their performance, and section 5 discusses
memory in cumulus convection, followed by discussion
and conclusions (section 6). A number of technical details,
including the description of the new procedure to convert the
state-space models into an interpretable form, are given in
the appendixes.

Corresponding author: Zhiming Kuang, kuang@fas.harvard.edu

1 In the context of cumulus convection, some confusion may
arise because the quasi equilibrium of the cloud work function
in the well-known Arakawa and Schubert (1974) paper refers
to an equilibrium in which the convective response approxi-
mately balances the large-scale forcing. See section 5 for more
discussions.
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2. Description of the CSRM

All CSRM experiments were performed with the System for
Atmospheric Modeling (SAM), version 6.7.5. An earlier version
of this model was described in Khairoutdinov and Randall
(2003). The model solves the anelastic equations of motion.
The prognostic thermodynamic variables are liquid water
static energy, total nonprecipitating water, and total precipi-
tating water. We use a bulk microphysics scheme and a sim-
ple Smagorinsky-type 1.5-order scheme to parameterize the
effect of subgrid-scale turbulence. Surface latent and sensible
heat fluxes are computed using bulk aerodynamic formula
with a constant 10-m exchange coefficient of 1 3 1023 and a
constant surface wind speed of 5 m s21. Surface momentum
fluxes are computed with the Monin–Obukhov similarity
theory.

The domain is 128 km 3 128 km in size in the horizontal
with a 4-km resolution and doubly periodic lateral boundary
conditions. There are 28 vertical layers that extend from the
surface to 32 km, the top third of the domain being a wave-
absorbing layer. The top two layers in this model are restored
to prescribed values with a 1-h time scale and will be excluded
from our forcing and analysis. The relatively coarse horizontal
and vertical resolutions match those used in the Superpara-
meterized Community Atmosphere Model (SPCAM), which
has been shown to produce the convectively coupled waves,
convective self-aggregation, and the Madden–Julian oscillation
(e.g., Khairoutdinov et al. 2008; Arnold and Randall 2015), and
were chosen to both reduce the computational cost and to
make the results directly relevant to other studies using
the SPCAM.

All experiments are over an ocean surface with fixed sea sur-
face temperature of 298C. Idealized radiation is prescribed fol-
lowing Pauluis and Garner (2006): a cooling rate of 1.5 K day21

is used when temperature is greater than 207.5 K; other-
wise, Newtonian relaxation to 200 K is used with a time
scale of 5 days. The mean state is that of a radiative–
convective equilibrium (RCE) and no mean wind shear;
the latter condition is ensured by damping the horizontally
averaged horizontal winds with a time scale of 15 min. The
approach described in this paper, however, can be applied
to any mean state.

3. System identification

a. Generation of input–output data

A key step in identifying LTI models is to obtain sequences
of input and output data with adequate excitation across dif-
ferent modes and frequencies, sufficient signal-to-noise ratio
(SNR), and minimal nonlinear distortion.

Define ft as the input vector of sizem 3 1 such that that ft/D
is the anomalous temperature T and specific humidity q ten-
dencies that we impose uniformly in time over the time inter-
val [tD, (t 1 1)D], where D is the sampling interval and t is the
time index. The imposed tendencies are in addition to the ref-
erence RCE forcing. They are horizontally uniform over the
CSRM domain and represent tendencies due to large-scale
dynamics. Define yt as the m 3 1 output vector that describes

deviations of the instantaneous CSRM horizontal mean T and
q profiles at time tD from their respective reference profiles.
The sizes of the input and output vectors are chosen to be the
same in this study but need not be so in general. We set D to
15 min to match the global model time step often used in
SPCAM. As described in section 2, the top two levels of the
model are nudged to reference values with a time scale of 1 h,
they therefore do not vary freely and are excluded from the
inputs and outputs. In addition, only humidity and humidity
forcing of the lowest 14 layers (below ;350 hPa) are included
in the inputs and outputs; with the idealized radiation, humid-
ity variations at higher levels have minimal effects on convection.
With these choices, inputs and outputs are both 40 3 1 vectors;
that is, m 5 40. While horizontal averages of horizontal
winds and their forcing can be included in the inputs and
outputs as well, they are excluded in this study of a zero
mean shear case.

To enhance the SNR, we ran 2048 copies of the CSRM
with slightly different initial conditions in the RCE setup de-
scribed in section 2 for 200 days without additional forcing
(i.e., zero input) to reach a statistically steady state. These
copies are thus different realizations of the cumulus ensemble
in a 128 km 3 128 km CSRM and will be referred to as the
ensemble members. All the ensemble members were run
for another 1000 days using identical time sequences of ft.
The 1000-day sequences of ft were made by first generating
200-day input sequences using randomly phased multisines
and then repeating them five times. Appendix A describes
the details of input sequence generation and how the forc-
ing amplitudes were adjusted to balance SNR and nonlin-
ear distortion.

The first of the five 200-day periods was discarded as it was
affected by transients (the initial adjustments) that lasted for
;50 days (not shown). The remaining four 200-day periods,
having identical inputs and unaffected by transients, were av-
eraged. This gives the input and output sequences ft and yt
from one experiment. Variations among the four 200-day pe-
riods provide an estimate of the stochastic noise.

We ran a total of eight experiments. Each experiment dif-
fered only in the random number sequence used to generate
the random phases of the multisines (see appendix A). Six of
the experiments were combined to produce the dataset upon
which the system identification was performed, further reduc-
ing the stochastic noise and the stochastic nonlinear distortion.
The other two experiments were used for validation. The above
procedure largely follows the recommendations in Pintelon
and Schoukens (2012), which contains more discussions on the
input–output data generation.

b. State-space model

There is an extensive literature on the identification of LTI
systems from input and output data and the readers are re-
ferred to Ljung (1999) for a systematic exposition. In the fol-
lowing, we briefly describe the framework, which also serves
to establish the notation.

We will describe the behavior of the cumulus ensemble as
a discrete LTI system in the state-space form, which has
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become the dominant way of representing linear dynamical
systems since the celebrated work of Kalman (1960):

xt11 5 Axt 1 Bft 1 st and

yt 5 Cxt 1 mt: (1)

Here, yt and ft are the input and output vectors defined in
section 3a, and xt is the n 3 1, yet unknown, internal state
vector that captures the state of the system at time tD in an
n-dimensional hidden or latent space, with n being the order
of the model; A, B, and C are time-invariant matrices that cap-
ture the system dynamics; st and mt are (possibly colored)
Gaussian noises from unrepresented processes during the time
interval [tD, (t 1 1)D] and measurement noises at time tD, re-
spectively. The Gaussian assumption is justified here by the
central limit theorem, as we are concerned with the average of
a large ensemble of independent and statistically identical cu-
mulus fields. All effects of f on y are assumed to go through x.
With the Gaussian assumption for the process and measure-
ment noises, Eq. (1) can be rewritten in the innovation form
[see section 4.3 of Ljung (1999) for details]:

xt11 5 Axt 1 Bft 1 Ket and

yt 5 Cxt 1 et, (2)

where K is the Kalman gain matrix and e is a Gaussian white
noise term with covariance matrix R, commonly referred to as
the innovation. The matrices K and R will be directly esti-
mated from the input–output data and are connected to the
covariance and cross-covariance matrices of the process and
measurement noises and the matrices A and C.

c. Parameter estimation

With an input–output dataset and a user specified model
order, n (size of the internal state vector x), parameters A, B,
C, K, and R, and the initial state x0 of the state-space model
[Eq. (2)] can be estimated by minimization with well-established
methods (Ljung 1999). One can choose to minimize the simula-
tion error or the one-step-ahead prediction error (hereinafter
referred to simply as prediction error).

The prediction error is calculated by driving the model with
the inputs and past measured outputs using the Kalman gain:

~xt11 5 A~x t 1 Bft 1 K~e t,

~yt 5 C~xt, and

~et 5 yt 2 ~yt, (3)

where model results are indicated with a tilde. The simulation
error is the error when Kalman gain is set to zero in Eq. (3).
The weighted L2 norm of the residual

���w ∗ ~e t
���
2
, averaged over

t, is minimized in the respective cases, where * denotes ele-
mentwise multiplication of two vectors and w is a weighting
vector with elements wi, defined as

wi 5

������
Dmi

√
if yi is temperature

L
cp

������
Dmi

√
if yi is humidity

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ (4)

in which L is the latent heat of vaporization of water, cp is the
specific heat of air, and Dmi is the mass of layer i. As com-
pared with minimizing the simulation error, minimizing the
prediction error is equivalent to inversely weighting the
model error by noise such that noisy components and fre-
quencies are weighted less [see chapter 12 of Ljung (1999) for
more details].

We estimate the parameters with the subspace method, an ef-
ficient noniterative method implemented in the n4sid function
of the commercially available MATLAB System Identification
toolbox. For a technical description of the subspace algorithm,
see Ljung (1999), section 10.6. The identified model could in
principle be further improved using iterative methods. This is not
done here, as the subspace solution appears to be sufficiently ac-
curate, and the iterative methods take an impractically long time.
With the subspace method, there are several additional user (or
hyperparameter) choices to make. These are described in more
detail in appendix B.

4. Identified state-space models

a. Validation errors

All of the state-space models that we have identified using
procedures described in section 3 are stable; that is, the eigen-
values of their matrix A all have modulus less than 1. These
models are then applied to the validation set in the simulation
mode, the mode that we intend to use the models in. For each
identified model, after averaging the weighted L2 norm of the
residual ~e t and that of yt over t, we take their ratio and show it
as a percentage in Fig. 1, with Fig. 1a being a broad overview
and Figs. 1b and 1c being close-ups on the small and large model
order portions, respectively. The different hyperparameter choices
represented by the different symbols in Fig. 1 are described in
appendix B. Since simulation error stabilizes beyond the model
order of;150, we shall use n5 160 with canonical variate analy-
sis (CVA) weighting (Larimore 1990) and prediction focus (de-
scribed in appendix B) as our reference model and will focus on it
in the remainder of this section. It is also worth noting that the
simulation error continues to decrease significantly as n increases
beyond 40. Models with n greater than 40, the size of the output
vectors, include effects from past outputs. This memory effect will
be discussed in section 5.

b. Transfer function

The transfer function of the state-space model is a frequency-
dependentm3 mmatrix that describes how outputs depend on
inputs as a function of frequency v:

G(v) 5 C(IeivD 2 A)21B, (5)

where I is the identity matrix. In and only in this expression
and Eq. (22) later in the paper, i denotes the imaginary unit.
While v in Eq. (5) can be complex valued, we will restrict our-
selves to real frequencies. To provide a broad overview of the
transfer function and its accuracy, we show in Fig. 2 amplitudes
of the response and the model error as functions of frequency
for one of the experiments in the validation set; results from
the other experiment are very similar. Note that input forcing
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amplitude is a smooth and monotonic function of frequency
[see Eq. (A2) in appendix A].

The blue curve in Fig. 2a shows the weighted average of the
power spectra of the individual components of y, using the
square of the weighting shown in Eq. (4). This will be referred
to as the signal. The same quantity for the stochastic noise in
y is shown in orange. As noted in section 3, the stochastic
noise was estimated from variations among the four 200-day
periods with identical forcing. To compute the model error
(red curve in Fig. 2a), we apply the identified reference model
with n 5 160 in the simulation mode to the validation experi-
ment, compute the power spectra of the errors in individual
components of y, and then compute their weighted average as
done for the signal.

Figure 2a shows that the simulation error is at the level of
the stochastic noise for all frequencies. Figures 2b and 2c show
the same comparison for the power spectra of the column-
averaged moist static energy (MSE), in temperature unit, and
net precipitation (precipitation minus evaporation) measured
in millimeters per day. The time series of the net precipitation
is computed from y and f based on conservation of water; con-
tributions from condensed water are small and neglected. These
results indicate that, while the model is identified by minimizing
the weighted L2 norm of the residue, it also performs well in
other metrics. Figure 2d shows the variance of T and q as func-
tions of pressure for additional context.

Despite being forced more strongly at higher frequencies
(see appendix A), the weighted average of the power of y
(Fig. 2a) and the column-averaged MSE (Fig. 2b) both have con-
siderably greater power at lower frequencies, with the SNR (in
terms of power) ranging from several hundreds to 1000 or more.
For net precipitation, there is a broad peak in the noise spectrum

at periods of several hours, while the signal spectrum is relatively
flat for frequencies lower than a few hours. The stochastic noise
is nonwhite in all three metrics in Figs. 2a–c, and there is a
sharper peak around the period of ;6 h, indicating the presence
of some internal stochastic processes with that time scale. This
peak is also present in the signal in both the weighted average of
the power spectra of y and the power spectrum of the net precipi-
tation, indicating the presence of resonance because the pre-
scribed forcing is smooth in frequency (see appendix A).

c. Noise model

Parameter matrices A, C, K, and R provide a model for the
stochastic noise in the system. To evaluate this noise model, we
use deviations of the 2048 individual ensemble members from
the ensemble mean to provide an independent and explicit esti-
mate of the stochastic noises in an individual ensemble member.
Covariance matrices of these stochastic noises for a range of
lags are output from the CSRM and compared with those com-
puted from the noise model based on parameter matrices A, C,
K, and R. The formulas for such computation are presented in
appendix C. The comparisons show broad agreement and two
examples, with 0 lag and 3-h lag, are given in Fig. 3.

The lagged covariance from the noise model therefore can
be useful to stochastic modeling efforts such as Neelin et al.
(2008) and Palmer (2019) with the caveat that noises in indi-
vidual ensemble members may not be Gaussian. Further stud-
ies are needed to fully characterize the noise distributions in
individual ensemble members.

d. Steady-state linear response function matrix

The steady-state linear response function matrix describes
the convective tendencies for a T and q profile that is steady

FIG. 1. Percentage errors when identified state-space models with a range of model orders are used without the Kalman gain to simulate
the outputs given the inputs from the two validation experiments. The simulation errors are plotted as functions of the number of states
used in the models (i.e., model order). (a) An overview, and details on the (b) low- and (c) high-model-order ends. Blue circles are for ca-
nonical variate analysis (CVA) weighting (Larimore 1990) and prediction focus with the number of past and future inputs and outputs de-
termined by the Akaike information criterion (AIC), and they are labeled as “CVA pred auto.” Red circles and green crosses are the
same as blue circles, but they use 96 past and 72 future inputs and outputs [labeled as “CVA pred (72, 96)”] and 52 past and 185 future in-
puts and outputs [labeled as “CVA pred (185, 52)”], respectively. Black diamonds are for multivariate output-error state space (MOESP)
weighting (Verhaegen 1994) and simulation focus with the number of past and future inputs and outputs determined by the AIC, and
they are labeled as “MOESP sim auto.” See the main text and appendix B for more details.
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in time and can be computed from the state-space model pa-
rameters as

M 52[C(I 2 A)21B]21: (6)

The matrix M is found to have a single positive eigenvalue
of ;30 day21. Positive eigenvalues of the steady-state linear
response function were also found in Kuang (2010, 2018)
and were attributed to estimation error. Such an explana-
tion can be ruled out in this study given its high SNR. We
confirm the accuracy of the positive eigenvalue using addi-
tional CSRM experiments with time-invariant forcing that
aligns with the eigenvector associated with this positive ei-
genvalue (top panels in Fig. 4). Further efforts, described in
appendix D, were made to polish the eigenvector to en-
hance clarity, the results from which are shown in the bot-
tom panels of Fig. 4.

Figure 4 shows that warming and moistening the boundary
layer and cooling and moistening the free troposphere (with

horizontally uniform forcing) in accordance with the eigen-
vector of M with the positive eigenvalue make the boundary
layer colder and drier and the free troposphere warmer and
drier, all measured in terms of horizontal averages. This seem-
ingly counterintuitive result will be interpreted physically using
the joint probability distribution function (PDF) as additional
information in section 6.

e. Coupling with two-dimensional gravity waves

To further evaluate the identified models, we couple the
state-space models and two-dimensional (2D) linear gravity
waves with a single horizontal wavenumber k. As described in
Kuang (2008a), for linear gravity waves of a single horizontal
wavenumber, hydrostatic balance, the horizontal momentum
equation, and the continuity equation can be combined to
give an equation [their Eq. (7)] that relates time tendencies of
the vertical velocity profile to the anomalous temperature/buoy-
ancy profile. For brevity, we will not repeat the derivation here.

FIG. 2. (a) Mass-weighted average of the power spectra of the output signal y (blue) and its stochastic noise (orange)
from one of the experiments in the validation set, along with the simulation error using the identified state-space model
with model order n 5 160. (b) As in (a), but for column-averaged moist static energy (MSE). (c) As in (a), but for net
precipitation (precipitation minus evaporation). (d) Standard deviations of temperature (blue) and specific humidity (red)
in the output signal y as functions of pressure.

K UANG 609MARCH 2024

Brought to you by Harvard Library Information and Technical Services | Unauthenticated | Downloaded 02/23/24 06:27 PM UTC



Combining this equation and the state-space model using tem-
perature and moisture advection due to the anomalous vertical
velocity as the inputs, we have

xt11

wt11

( )
5

A BF

k2EC D

( )
xt

wt

( )
1

AK

k2E

( )
et, (7)

where Fwt represents the forcing due to the advection of the
reference temperature and moisture profiles by vertical veloc-
ity wt, k

2E describes how y (anomalous temperature and mois-
ture profiles) affects the vertical velocity profile w (note that
yt 5 Cxt 1 et), and D represents momentum persistence, here
including only the effect of specified Rayleigh damping as in
Kuang (2008a). The other variables are the same as those in
Eq. (2). This system is similar to that of Kuang (2012, 2018) ex-
cept written in a discrete form, using state vector x instead of
output y, and with the addition of stochastic noise e. A wave-
radiating upper boundary condition is imposed at ;25 hPa.

With our idealized radiation, water vapor variations above 350 hPa
have little effect on convection or the large-scale waves and are
neglected.

Figure 5 compares the simulated rain rates when the 2048-
member CSRM ensemble and the reference state-space model
are coupled to 2D gravity waves with a horizontal wavelength
of 2000 km. Coupling of the state-space model with 2D gravity
waves was done through Eq. (7). Three realizations of Eq. (7)
using different random seeds are shown to indicate the range
of behaviors. With a Rayleigh damping time of 0.23 days,
coupled simulations with either the CSRM or the state-space
model produce growing convectively coupled waves (Fig. 5a).
With a Rayleigh damping time of 0.20 day, no growing waves
are seen in either case (Fig. 5b). The stability boundary in
terms of the Rayleigh damping rate therefore differs by no
more than 15% between the CSRM and the state-space
model. Figure 6 shows a similar result for the horizontal
wavelength of 5000 km.

FIG. 3. Comparison of the (a),(b) 0-lag and (c),(d) 3-h-lag noise covariance matrices from the (left) identified noise
model and (right) explicit estimates. For the comparison, the explicit estimates of the covariance matrices are divided
by 2048, the size of the ensemble, and the noise-model results are multiplied by 4 since the noise model is estimated
using the averages of four 200-day periods with identical inputs.
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Blue circles in Fig. 7a give an overview of the stability of
the convectively coupled waves represented by the system of
Eq. (7) without stochastic noise or Rayleigh damping, showing
the growth rate as a function of the horizontal wavenumber. One
notable result is that the highest growth rate occurs at a horizon-
tal wavelength of about 1700 km. This is considerably shorter
than the wavelength at which the normalized spectral power for
Kelvin waves maximizes in observations and in SPCAM simula-
tions (e.g., Wheeler and Kiladis 1999; Khairoutdinov et al. 2008).
While past studies have invoked convection memory due to
the finite time lag in convective response to large-scale forc-
ing to shift the peak in growth rates to lower wavenumbers

(e.g., Emanuel et al. 1994; Kuang 2008b), such effects are al-
ready accounted for in the state-space model. Therefore,
other, yet to be explored, processes are needed to account
for the difference.

Results in this section establish that the reference state-space
model with n 5 160 gives a sufficiently accurate representation
of how horizontal averages of temperature and humidity of the
CSRM ensemble evolve with time under small forcing and can
be used to further our understanding of convectively coupled
phenomena. We now turn our attention to models with lower
orders to obtain some insights into the importance and the na-
ture of memory in cumulus convection.

FIG. 4. (top left) Steady-state temperature and (top right) specific humidity responses of the CSRM ensemble to
forcing that aligns with the eigenvector of M that is associated with the positive eigenvalue. The forcing was divided
by the eigenvalue (;30 day21) and is shown as black circles. The signs of the responses to this forcing have been re-
versed (blue lines) for closer comparison. Red lines show the responses when a forcing with reversed signs is used.
(bottom) As in the top panels, but with forcing that aligns with the polished eigenvector. The procedure to polish the
eigenvector is described in appendix D.
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5. Conversion of state-space models for interpretations
in terms of convection memory

A state-space model identified in a multivariate case is gener-
ally considered a “black box.” While canonical forms can be
constructed in the univariate case to assist with interpretation,
canonical forms for multivariate cases (and the corresponding
input–output models) are nonunique (Luenberger 1967). We
have designed a procedure to facilitate the interpretation of the
identified state-space models in terms of convection memory.
Before we start, however, it is important to note that the equations
solved by the CSRM itself are autonomous. Memory only arises
because we have reduced the prognostic variables of the CSRM
to horizontally averaged profiles of T and q}our y; if this reduc-
tion removes information needed to determine future values of y,
past values of y are needed to provide the missing information.

We shall set the stage by making a connection between con-
vection memory, or system memory in general, and vector autor-
egressive models with exogenous inputs (VARX). Description of
this connection is mathematically straightforward but provides
some intuition. We shall set the Kalman gain to zero as we intend
to use the state-space models for simulation.

While the input and output data vectors are expressed using
individual model layers as the bases, this need not be the case;
any orthonormal transformations will not change the system
identification problem described in section 3.

We define transformation matrices, Ty for outputs y and Tf

for inputs f such that

ŷ t 5 Tyyt,

f̂ t 5 Tfft, and

ê t 5 Tyet: (8)

We shall work in this transformed coordinate system. The state-
space model, after setting the Kalman gain to zero, is now

xt11 5 Axt 1 B̂ f̂ t and

ŷt 5 Ĉxt 1 êt, (9)

where

Ĉ ; TyC and

B̂ ; BTT
f (10)

and superscript T indicates transpose. Define zt11 as the con-
vective sources of temperature and specific humidity over the
time interval [tD, (t1 1)D]:

zt11 ; ŷt11 2 ŷ t 2 TyT
T
f f̂ t: (11)

If zt11 is determined by the current atmospheric state and
forcing and an error term such that

FIG. 5. Time series of net precipitation (precipitation minus evaporation) after the CSRM ensemble (thick line) and
the reference state-space model (thin lines) are coupled to 2D gravity waves of 2000-km horizontal wavelength and
Rayleigh damping of (a) 0.23 and (b) 0.2 days. The three thin lines are for three different random noise sequences
used in the state-space model.
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zt11 5 (Hy 2 I)ŷ t 1 (Hf 2 TyT
T
f )̂f t 1 êt11, (12)

we have a VARX1 (first-order VARX) process for ŷ:

ŷ t11 5 Hyŷt 1 Hff̂ t 1 ê t11, (13)

where Qy may be viewed as a persistence matrix for ŷ. If zt11

is additionally affected by zt, that is, there is memory in con-
vective tendencies, we have

zt11 5 (Hy 2 I)ŷt 1 (Hf 2 TyT
T
f )̂ft 1 Hzzt 1 êt11, (14)

whereQz is a persistence matrix for convective tendencies, rep-
resenting, for example, inertia in convective updrafts and down-
drafts. This leads to the following VARX2 (second-order
VARX) process for ŷ:

ŷ t11 5 (Hy 1 Hz)ŷ t 1 Hf f̂ t 2 Hzŷt21 2 HzTyT
T
f f̂t21 1 êt11:

(15)

The above procedure can be continued. Define changes in
the convective sources of temperature and humidity from
time interval [(t 2 1)D, tD] to time interval [tD, (t 1 1)D]:

at11 ; zt11 2 zt 5 ŷt11 2 2ŷ t 1 ŷ t21 2 TyT
T
f f̂t 1 TyT

T
f f̂ t21:

(16)

Equation (14) states that at11 can be determined by ŷt, f̂ t, and
zt (plus the error term):

at11 5 (Hy 2 I)ŷt 1 (Hf 2 TyT
T
f )̂ft 1 (Hz 2 I)zt 1 êt11:

(17)

If at11 is additionally affected by at, that is, there is memory in
changes in the convective sources of temperature and mois-
ture, we have

at11 5 (Hy 2 I)ŷ t 1 (Hf 2 I)̂ft 1 (Hz 2 I)zt 1 Haat 1 êt11,

(18)

where Qa is a persistence matrix for a. Equation (18) gives a
VARX3 (third-order VARX) process for ŷ:

ŷt11 5 (Hy 1 Hz 1 Ha)ŷ t 2 (Hz 1 2Ha)ŷ t21 1 Haŷt22

1 Hff̂ t 2 (Hz 1 Ha)TyT
T
f f̂ t21 1 HaTyT

T
f f̂ t22 1 ê t11:

(19)

In theory, this procedure can be continued indefinitely, account-
ing for all possible memory effects. Truncating the procedure at
a particular order is equivalent to assuming all higher-order dif-
ferences of ŷ (with corresponding contributions from past f̂) are
determined by (i.e., in statistical equilibrium with) current values
of ŷ and its lower-order differences (again with corresponding
contributions from past f̂).

FIG. 6. As in Fig. 5, but for 2D gravity waves of 5000-km horizontal wavelength and Rayleigh damping of (a) 0.7 and
(b) 0.6 days.
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In Eqs. (15) and (19), coefficients of the f̂t21, f̂ t22 terms and
those of the ŷt21, ŷ t22 terms are not linearly independent, be-
cause they only account for the passive role of f̂ in inferring con-
vective sources based on budgets of the horizontal averages [see
Eq. (11)]. However, there could be additional effects from forc-
ing f̂ on convection beyond just the budgets, because, as we will
see, horizontal averages do not fully describe the state of con-
vection. Including additional terms to accommodate these, using
Eq. (15) as an example, leads to a general VARXmodel:

ŷt11 5 (Hy 1 Hz)ŷt 1 Hff̂ t 2 Hzŷt21 1 [Hf1 2 HzTyT
T
f ]̂f t21

1 êt11: (20)

We have designed a procedure to convert the identified state-
space models to this VARX form that induces sparsity in the Q

matrices to facilitate interpretation. While this procedure is key to
the results that follow, it is technical in nature and its description
is given in appendixes E–H. For the results to be presented, we
use conversions to VARX3 models but have verified that, when
the state-space models are converted to fourth-order VARX
models, results do not change and the added terms are effectively
zero. As explained in appendix H, we will focus on state-space
models identified with CVA weighting and prediction focus.

a. Models without memory

We shall start with the case where model order n is 40, the
size of the input and output vectors. In this case, we seek to
maximize the sparsity of all Q matrices, including Qy and Qf.
Our procedure, described in appendixes E, F, G, and H, re-
sults in full rank Qy and Qf, with all other Q matrices being
zero. This means that outputs at time step t 1 1 are computed
with inputs and outputs at the time step t alone, i.e., there is
no memory. We shall use G40 to denote the transfer function
of this model, which represents the best model measured in
L2 norm without accounting for convection memory.

The approach of Kuang (2010) also has no memory because
it can be written as

yt11 5 (I 1 M*)yt 1 ft (21)

such that yt11 only depends on yt and ft. Here, M* is the
steady-state linear response function defined in Eq. (6) us-
ing parameters of the reference state-space model (n 5 160)
but with the sign of the positive eigenvalue flipped. This will
be referred as the QE model. The transfer function in this
case, GQE, is

GQE(v) 5 (IeivD 2 I 2 M∗)21: (22)

In and only in this expression and Eq. (5), i denotes the imagi-
nary unit. This model matches the state-space model at zero
frequency but sacrifices accuracies at higher frequencies. The
sign flip is inconsequential for the comparisons of the transfer
functions shown in Fig. 8 but important for preserving the sta-
bility of the system. BecauseM* describes how the system rep-
resented by Eq. (21) evolves with time, the system would be
unstable if M* had any positive eigenvalues. In contrast, the
system represented by the reference state-space model is sta-
ble even though the matrixM derived from its parameters has
a positive eigenvalue. This is because, in the state-space
model, M only describes the system’s steady-state response to
forcing, not the system’s time evolution.

Figures 8a and 8b show the errors in G40 relative to the trans-
fer function of the n 5 160 case, G160, used here as the “ground
truth,” which is justified given Fig. 2. Specifying the frequency v

(horizontal coordinate), the pressure level of the forcing (vertical
coordinate) and whether it is a temperature or humidity forcing
(left or right panel) selects a column ofG40(v)2 G160(v), the dif-
ference matrix of the two transfer functions at that frequency.
This column is a 40 3 1 vector that describes how responses of
the temperature and humidity profiles to the specified forcing at

FIG. 7. (a) Growth rates of the system represented by Eq. (7) when the state-space models of orders 160 (blue
circles) and 40 (black crosses) are used. The red asterisks are the growth rates when the state-space model in Eq. (7)
is replaced by Eq. (21). (b) As in (a), but with state-space models of orders 41 (red asterisks), 43 (black crosses), and
160 (blue circles). Note that the size of input and output vectors is 40.
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the specified frequency differ between the two models. What is
shown in Figs. 8a and 8b is the ratio, in percent, of the weighted
L2 norm of that column to the weighted L2 norm of the corre-
sponding column of G160(v). The weighting is the same as that
described in section 3c. Figures 8c and 8d show the parallel re-
sults for GQE. The weighted L2 norm of the different columns

of G160(v) for the range of frequencies considered are shown in
Figs. 8e and 8f for reference.

In the case of G40, errors of 30%–50% or greater can occur
at all frequencies. The steady-state matrix approach gives er-
rors ;10% or less for periods 5 days or longer, which is con-
sistent with the relatively good results obtained in previous

FIG. 8. Percentage errors in the transfer functions (a),(b) with model order 40 and (c),(d) with the QE assumption
relative to the reference n5 160 LTI model for (left) temperature inputs and (right) humidity inputs. Also shown are
amplitudes of the weighted L2 norm of the responses to (e) temperature and (f) humidity inputs. The values in (e)
and (f) are the weighted L2 norm of the response in kelvins to a forcing with the amplitude of 1 K day21 over a layer
of 100 hPa in thickness at the specific pressure level (vertical axis) and frequency (horizontal axis).
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studies (e.g., Kuang 2010). Errors in GQE reach 20% or more
at 2 days and can exceed 50% for periods of 1 day or shorter.

In Fig. 9, we further compare the net precipitation responses
when forcing that is horizontally uniform and sinusoidal in time
is applied to a 2048-member ensemble of the CSRM described
in section 2, the reference state-space model, and the QE model
of Eq. (21). The CSRM ensemble was run for 1200 days with
the forcing and the last 1000 days were averaged to produce the
net precipitation responses over one forcing period. For consis-
tency, in all three cases (the CSRM ensemble, the state-space
and QE models), net precipitation is computed from input and
output based on conservation of water. In the upper panels, the
applied forcing is a deep ascent/descent (Fig. 9a). This structure
is similar to that used in Jones and Randall (2011) but with a
much smaller amplitude. The response in net precipitation for a
period of 5 days is closely in phase with the forcing, consistent
with the notion of Arakawa and Schubert (1974) and well cap-
tured by the state-space model and the QE model. For a period
of 1 day, the net precipitation response lags the forcing and sub-
stantial errors are seen in the QE model. These results are simi-
lar to those in Jones and Randall (2011).

For more general forcing structures, however, the response in
net precipitation need not be in phase with the forcing even
when the forcing period is long. Lower panels of Fig. 9 show that

when a sinusoidal temperature forcing is applied at 700 hPa, the
net precipitation response is not in phase with the forcing, but the
more general notion of QE, as expressed in Eq. (21), still cap-
tures the response quite well. For a forcing period of 1 day, large
errors are seen in the QE model. These results are not surprising
given Fig. 8 but serve as more visual examples. Note that the forc-
ing used here is stronger than that discussed in appendix A, which
was fine-tuned to minimize nonlinearity, and some indication of
nonlinearity can be seen in the CSRM results in Fig. 9. For exam-
ple, in Figs. 9b and 9e, we observe that the positive phase of the
net precipitation is slightly more peaked than the negative phase.

Figure 7a further compares the growth rates when the differ-
ent models are coupled to 2D gravity waves. Results using the
QE model [Eq. (21)] are close to those using the reference
state-space model at lower horizontal wavenumbers but deviate
from them substantially at higher horizontal wavenumbers.
With the n 5 40 state-space model, significant errors are seen
across all horizontal wavenumbers. These results indicate that
without accounting for convection memory and without prefil-
tering the data to emphasize lower frequency variations, as in
the majority of current machine learning approaches to cumulus
parameterization [with the notable exceptions of Han et al.
(2020, 2023)], substantial errors likely exist in the convectively
coupled waves.

FIG. 9. (a) Structure of the sinusoidal forcings used, and responses in net precipitation when the forcing period is (b) 1 day and
(c) 5 days. The phase of the forcing is such that the forcing at phase angle p is what is shown in (a) and the forcing at phase angle 0 is its
negative. Results from the CSRM ensemble, the state-space model with n5 160, and the QE model [Eq. (21)] are shown in (b) and (c) in
blue circles and red and yellow lines, respectively. (d)–(f) As in (a)–(c), but with the forcing structure shown in (d).
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b. Models with memory

Models with n . 40 include effects from past outputs and
possibly past inputs, i.e., memory. As described in appendix H,
we exclude Qy and Qf from the sparsity-inducing procedure, as
we have found that they are always full rank. Even more specifi-
cally, we will focus on the interpretation of Qz, that is, mem-
ory in convective tendencies. Data-driven models such as
those identified here in general combine different physical
processes to achieve the smallest error given the model or-
der. As an example, consider two physical processes that are
correlated. Including a linear combination of the two in the
model will achieve a smaller error than including only one of
the two processes, which complicates the interpretation. If one
physical process contributes much greater variance to the data
than the other, then that process will dominate the linear combi-
nation. Our premise is that as the model order increases, pro-
cesses added to the model will contribute progressively less
variance to the data and processes that contribute most of the
variance will eventually stabilize.

This appears to be the case as seen in Table 1, which lists
the eigenvalues of Qz when the model order increases from
41 to 47. While initially the leading eigenvalues (ranked by their
modulus) vary considerably, for n5 45–47, the three leading ei-
genvalues have stabilized. As we further increase n, additional
eigenvalues may stabilize, although we note that the reduction
in the model error becomes more marginal (Fig. 1b). Fur-
thermore, the computational cost of our procedure increases,
as higher-order VARX models would be needed, and the
sparsity-inducing procedure also becomes less effective. We
limit ourselves in this paper to the first three eigenmodes
and leave the interpretation of additional eigenmodes of Qz

as well the eigenmodes of the other Q matrices to future
work.

The leading eigenvalue is ;0.96. The associated eigen-
vector for n 5 45, 46, 47 shows reasonable consistency
(Fig. 10). We interpret this mode as the deep convective
mode and the eigenvalue indicates that this mode of convec-
tive tendency will decay in amplitude by ;4% every 15 min;
that is, it has an e-folding time of ;5 h. The second and third
eigenvalues form a conjugate pair with an e-folding time of
;1 h and a period of 6 h. Figure 11 visualizes how convective
tendencies associated with the second and third eigenvectors
evolve with time with the exponential decay suppressed in the
graphic to make phase structure clearer. The time evolution
resembles the congestus to deep convection to stratiform life
cycle emphasized in, for example, Mapes (2000). The 6-h
period also offers a plausible explanation of the peaks at
6 h in the stochastic noise spectra seen in Fig. 2. The finding

that persistence and life cycle of the convective elements con-
tribute to convection memory and the character of the sto-
chastic noise is not surprising. However, the data-driven
identification and the level of quantification that can be ob-
tained with our approach is a new addition to the studies of
cumulus convection.

It is left to future study to develop interpretations of addi-
tional elements of convection memory, but the picture painted
in Figs. 10 and 11 appears to capture a majority of the memory
effect. Figure 7b shows that including memory from only a few
modes improves the growth rates of the convectively coupled
waves substantially.

6. Conclusions and further discussion

In this paper, we take a time series analysis perspective
and use methods in system identification to obtain LTI
state-space models that describe how horizontal averages of
temperature and humidity of a large cumulus ensemble
evolve with time under small forcing. The identified state-
space models, with sufficient model order, accurately repre-
sent the behavior of the cumulus ensemble in terms of its
transfer function, the noise model, and its behavior when
coupled with 2D gravity waves. The highest accuracy is
obtained when the model order is greater than about 150.
These state-space models extend the steady-state linear re-
sponse function approach used in past studies such as Kuang
(2010, 2018) by removing the assumption that the cumulus
ensemble is in statistical equilibrium with its large-scale
environment.

A novel procedure is then developed to convert the state-space
models into a sparse VARX form to facilitate physical interpreta-
tion. The procedure is applied to the identified state-space models
with a range of model orders. State-space models that, when con-
verted to the sparse VARX form, use only the current input and
output yt and ft have transfer functions that contain substantial
(30%–50% or more) errors for all frequencies. The QE ap-
proach, another memoryless model, works well at lower
frequencies but becomes inaccurate at higher frequencies.
Our results also indicate that without accounting for con-
vection memory and without prefiltering the data to em-
phasize lower frequency variations, data-driven cumulus
parameterizations likely contain substantial errors in the
convectively coupled waves. Last, a robust and sparse rep-
resentation of the leading convection memory effects is
found and resembles the deep convective heating mode
and the congestus to deep convection to stratiform convec-
tive life cycle previously emphasized in the literature. The
deep convective heating mode is found to have an e-folding

TABLE 1. Nonzero eigenvalues of Qz for a range of state-space model orders.

n 5 41 n 5 42 n 5 43 n 5 44 n 5 45 n 5 46 n 5 47

0.85 0.83 6 0.12i 0.89 0.92 0.96 0.95 0.96
0.73 6 0.22i 0.79 6 0.30i 0.78 6 0.21i 0.78 6 0.21i 0.79 6 0.23i

0.51 0.47 0.50 0.70
0.41 0.45 0.44

0.08 0.41 6 0.04i
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time of ;5 h and the congestus to deep convection to strati-
form oscillation is found to have a period of ;6 h with an
e-folding time of 1 h.

An immediate limitation of the present effort, aside from
the limitations of the CSRM used to perform the experiments

in terms of model physics, setup, and numerics, is that it is lim-
ited to small perturbations around a reference mean state.
While the results here are already relevant to phenomena
such as the convectively coupled waves, extension to the non-
linear regime is needed to address a wider range of problems,

FIG. 10. Convective (left) temperature and (right) humidity tendency structures associated with the leading eigen-
vector (with the largest eigenvalue in modulus) of Qz using the state-space model with model orders of n5 45 (blue),
46 (red), and 47 (yellow).

FIG. 11. Time evolutions of convective (a) temperature and (b) humidity tendency structures associated with the second and third eigen-
vectors ofQz using the state-space model with model orders of n5 (left) 45, (middle) 46, and (right) 47. The two eigenvectors form a com-
plex conjugate pair, and the decay of the eigenmodes has been removed in the figure to emphasize the oscillatory aspect.
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including the parameterization of cumulus convection. One
avenue that we are pursuing is to use the identified state-
space models to initialize a recurrent neural network, which
has a similar construct as a state-space model but can provide
nonlinear representations (with the trade-off of having more
complex and less well understood model estimation), and
gradually ramp up the forcing amplitude in our experiments
to extend to the more nonlinear regimes. Results from such
efforts will be reported in the future.

In multivariate time series analysis, model equivalency and
nonuniqueness are well known. Existing approaches to select a
unique model among many equivalent models, known as model
specification, include the scalar component model approach and
the echelon form (e.g., Tiao and Tsay 1989; Athanasopoulos
et al. 2012). Our procedure of identifying state-space models

from the time series and then converting the state-space models
to VARX models, as described in the appendixes, can be easily
extended to VARMAXmodels and is a new addition to such ef-
forts. Much uncertainty, however, remains. The assumption that
greater sparsity provides more interpretability, while reasonable,
remains an assumption; the sparsity-inducing procedure remains
approximate; confidence in the interpretations given in section 5b
also partially relies on their consistency with our prior knowledge
of convective life cycle. More work is needed to improve the dis-
covery of new physics in purely data-driven models.

As noted at the beginning of section 5, the equations solved
by the CSRM are autonomous. Memory only arises because we
have reduced the prognostic variables of the CSRM to horizon-
tally averaged profiles of temperature and humidity}our y.
This reduction loses information needed to determine how the

FIG. 12. (left) Mass flux as a function of liquid water static energy divided by the specific heat hL/cp and total nonprecipitating water qt.
(right) Joint histogram of hL/cp and qt. The thick line demarcates the boundary between cloudy (average cloud water in the bin greater
than 1025 g kg21) and noncloudy bins. The bin size is;0.09 K for hL/cp and;0.1 g kg21 for qt.

FIG. 13. As in Fig. 12, but for changes associated with a steady-state forcing that aligns with the polished eigenvector ofM with the positive
eigenvalue, as shown in Fig. 4.
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system evolves with time, and past values of y and f are used to
provide the missing information. In this sense, past values of y
and f serve as proxies of the missing information stored in the
state vector x.

An alternative approach is to extend the output vector y to
include additional statistics of the cumulus ensemble needed
to determine its evolution. One candidate potentially useful
to include is aspects of the joint probability distribution func-
tions (PDFs). As an initial illustration of this potential, we
show here that the PDFs or histograms can provide a more
physical picture for the seemingly counter intuitive results of
a positive eigenvalue of the steady-state linear response func-
tion, as described in section 4d.

To start, we show in Fig. 12 the reference joint histogram of
liquid water static energy, hL (divided by cp so it is in tempera-
ture unit) and total nonprecipitating water, qt, as well as the verti-
cal mass flux for each of the bins, at the cloud base (;900 hPa).
As expected, the upward mass fluxes are carried by a small frac-
tion of the grid points that are at the moister and colder end of
the distribution and are cloudy. The steady-state response to forc-
ing that aligns with the eigenvector of M with the positive eigen-
value is shown in Fig. 13. In response to horizontally uniform
warming and moistening in the boundary layer and cooling and
moistening in the free troposphere, upward and downward mass
fluxes increase, so does the number of cloudy grid points at the
moister and cooler end of the joint distribution, consistent with
the stronger convective overturning needed to balance the forc-
ing. However, there are also more grid points at the drier and
warmer end of the joint distribution, leading the horizontal aver-
age to be drier and warmer, as seen in Fig. 4.

Figure 14 further shows the histogram of hL at the lowest
model layer and its response to the aforementioned forcing.
The reference histogram shows a long low-temperature tail due
to cold pools. A horizontally uniform warming tendency shifts
the histogram toward higher hL without changing its shape. The
steady-state response, however, shows a wider distribution with
more grid points at both the high- and low-temperature ends.
While the horizontal average is colder in response to a warming
tendency near the surface (due to more extensive cold pools as-
sociated with stronger convection), there are also more parcels
at the high-temperature end, allowing for more near-surface air
parcels to participate in deep convection. The results shown in
Fig. 4 can thus be interpreted physically with the aid of auxiliary
information from the joint histograms.

The need to include variables in addition to horizontal
averages has been recognized in the past. For example, Mapes
and Neale (2011) proposed adding a prognostic variable to rep-
resent convection organization. More recent work using ma-
chine learning to parameterize convection found that including
some measure of convection organization improves the predic-
tion of precipitation extremes (Shamekh et al. 2023). The identi-
fied state-space models already augment y through its use of state
vector to represent the latent space, but in a “black box” manner.
With the sparse VARX form of the identified state-space models,
we can isolate the contributions needed from variables in addi-
tion to current y and f in a more systematic way and select com-
ponents from the joint PDF and other statistics accordingly. Such
efforts could help us identify and quantify, for examples, the

aspects of the cumulus ensemble that are responsible for the per-
sistence in its deep convective heating and for its evolution from
congestus to deep convective to stratiform heating, without con-
tributions from the horizontal averages. Further connecting with
cumulus parameterizations with assumed PDFs (e.g., Golaz et al.
2002a,b) could also be a valuable direction to explore.
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FIG. 14. (top) The reference mean histogram of hL/cp at the low-
est model layer. The bin size is ;0.06 K. (bottom) Changes in the
histogram associated with a steady-state forcing that aligns with the
polished eigenvector ofM with the positive eigenvalue, as shown in
Fig. 4.
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SAM.html). Other software used is from the MATLAB System
Identification toolbox. Time series used for training and valida-
tion, as well as the identified models, are available through Har-
vard Dataverse (https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/IY3CJJ).

APPENDIX A

Generation of the Input Sequences

To generate the 1000-day input sequences, we first generate
200-day time sequences using randomly phased multisines,
and then repeat them five times. More specifically, the time
sequence for the ith component of f is given by

f (i)t 5
2���
N

√ ∑
N/2

l51
F(i)
l cos

2plt
N

1 u(i)
l

[ ]
t 5 1, 2, …, 5N 2 1, 5N, (A1)

where N 5 200 days/D and u(i)
l is the phase shift of the lth

Fourier component of the ith component of f. The different
phase shifts are independently drawn from a uniform distribu-
tion over [0, 2p]. With D 5 15 min, N is sufficiently large
such that f (i)t approaches Gaussian noise (within each 200-day
period), and the time series of f (i)t and f ( j)t are uncorrelated
when i Þ j. The choice to make forcing in temperature and
humidity and in different layers uncorrelated is made for sim-
plicity. Having an optimized nondiagonal covariance matrix
for f could potentially produce higher SNRs and smaller non-
linear distortions but the optimization is highly nontrivial and
is not pursued here.

The forcing amplitude F(i)
l is chosen to balance nonlinear dis-

tortion and SNR. We first made a 1000-day run using forcing
time sequences given by Eq. (A1) with F(i)

l 5 F(i) for odd l and
F(i)
l 5 0 for even l. F(i) is set to 0.02 K/15 minutes if the ith com-

ponent of y represents the temperature of a layer. If the ith
component of y represents the specific humidity of a layer,
F(i) is set to the reference specific humidity of that layer di-
vided by 10 days. The relative amplitudes of temperature and
humidity forcing at different layers were chosen based on
past experiences.

Discarding the first 200-day period, the remaining four
200-day periods, having the same forcing and unaffected by
transients (initial adjustments), are averaged. The stochastic
noise is estimated by the deviation of individual periods from
the average. Since forcing is zero at even frequencies, greater
power at these frequencies than that of stochastic noise at nearby
odd frequencies indicates the presence of nonlinear distortion,
assuming that nearby frequencies behave similarly. With the
aforementioned forcing amplitudes, nonlinear distortion is readily
detected above the level of stochastic noise (Fig. A1a). The abil-
ity to quantify the nonlinear distortion is a major motivation for
using the randomly phased multisines (Schoukens et al. 2016).

Assuming that the nonlinear distortion is dominated by
quadratic terms, estimates can be made to adjust the forcing
amplitude such that nonlinear distortion does not exceed the
stochastic noise. Based on such estimates, we set

F(i)
l 5 F(i)

/
3:5 2 1:25 max log10

3l
400

( )
, 0

[ ]{ }

l 5 1, 3, 5, …,
N
2
2 1: (A2)

FIG. A1. (a) Mass-weighted average of the power spectra of the output signal y at odd (blue) and even frequencies (red) and of random
noise (yellow) when the CSRM ensemble is forced with the test odd-frequency-only forcing, as described in appendix A. (b) As in (a), but
with refined forcing amplitude described in Eq. (A2).
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Nonlinear distortion is no longer detected in simulations
with these input amplitudes (Fig. A1b). In the simulations
that we use to identify the state-space model, we divide
the forcing described in Eq. (A2) by

��
2

√
and apply it to all

l values from 1 to N/2 such that the forcing contains the
same total spectra power. This uses twice as many frequen-
cies and reduces the stochastic nonlinear distortion and is
preferable to Eq. (A2).

APPENDIX B

Hyperparameter Search

The subspace method contains several user (or hyperpara-
meter) choices. First, one can choose which weighting matrices
to apply to estimates of the extended observability matrix in the
algorithm. We will focus on the following two choices: multivari-
ate output-error state space (MOESP) (Verhaegen 1994) and
CVA (Larimore 1990). Because the CVA weighting accounts
for the error covariance and MOESP does not, we have found
that, for parameter estimation, the CVA weighting works well
with prediction error minimization while the MOESP weighting
works well with simulations error minimization, and the other
pairings produce significantly worse results. Another user choice
is the numbers of past and future inputs and outputs to use in
the estimation algorithm. Using a sufficiently large number of
past inputs and outputs is important for capturing the relevant
information, and using a sufficiently large number of future
inputs and outputs is important for constraining long time
scales of the evolution matrix A and avoiding stability issues.
On the other hand, making the number of past and future
inputs and outputs too large will add noise and computa-
tional expense. Results for a few choices are presented in
this appendix.

The black symbols in Fig. 1a give a broad view of how the
percentage validation error varies with model order using the
CVA weighting with prediction focus and with the number of
past and future inputs and outputs used chosen automatically by
MATLAB based on the Akaike information criterion (AIC).
That the validation error increases as the model order ap-
proaches 300 is due to MATLAB using too few past inputs and
outputs (,5) in the parameter estimation for these model or-
ders. Using a greater number of past inputs and outputs (green
symbols in Fig. 1c) removes this error increase. Therefore, it ap-
pears that the error stabilizes beyond model order of ;150.

Figure 1b is a close-up on the small model order portion.
MATLAB’s automatic selection uses a smaller number of
past inputs and outputs as the model order becomes small. To
test the sensitivity to this, we reestimated the parameters for
model orders less than 48 using 96 past and 72 future inputs
and outputs, values chosen based on the AIC for n 5 48, and
the results are shown in red. The errors are largely similar ex-
cept a substantial reduction at n 5 43. Using even larger num-
bers of past and future inputs and outputs had little effects on
the errors. The cases shown in red are those used in section 5
for physical interpretation of convection memory.

We have also included the results from MOESP weight-
ing with simulation focus in Fig. 1. Their errors are smaller

than those from CVA weighting of the same model order
when the model order is low and converge to the CVA re-
sults when model order reaches ;100. For physical inter-
pretation described in section 5, we use the models with
CVA weighting for reasons described in appendix H.

APPENDIX C

Formulas for Lag Noise Covariance Matrices

Without forcing, variations in the system are entirely due
to stochastic noise:

xt11 5 Axt 1 Ket and

yt 5 Cxt 1 et: (C1)

The lag-0 covariance in x, Sx, in this case is given by the
discrete Lyapunov equation:

Sx 5 ASxA
T 1 KRKT, (C2)

where R is again the covariance matrix of e. The lag-0 co-
variance in y, Sy, is

Sy 5 CSxC
T 1 R: (C3)

Similar derivations give the lag-j covariance in y as

S(j)
y 5 CAjSxC

T 1 CAj21KR: (C4)

APPENDIX D

Refinement of the Eigenvector of the Steady-State
Linear Response Matrix Associated with the

Positive Eigenvalue

The amplitudes of the positive eigenvalue and the smallest
(in absolute value) negative eigenvalue of the steady-state
linear response function matrix M differ by a factor of ;440.
When we force the CSRM ensemble with the eigenvector
associated with the positive eigenvalue, errors in that eigen-
vector can potentially be amplified by as much. Further-
more, the state-space model excluded specific humidity
above ;350 hPa from the state vector for simplicity. This is
adequate for most purposes but may not suffice here. For
this reason, we have further refined this eigenvector through
the following procedure, making use of the fact that there is
only one positive eigenvalue.

In this appendix only, the input and output vectors are ex-
tended to include T and q of all except the top two model lev-
els. If the forcing vector f is the eigenvector associated with
the positive eigenvalue, the sum of the normalized steady-state
output vector y and the normalized f should be zero. A non-
zero sum indicates deviations of the forcing vector from the
true eigenvector. We therefore adjust the direction of the forc-
ing vector using the following equation:

ft11 5
ft
||ft ||

2
D

t

ft
||ft ||

1
yt
||yt ||

( )
, (D1)
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where D is 15 min and t is set to 200 days to ensure that y is
close to the steady-state response (the adjustment to equilib-
rium takes about 20 days) and that adjustment in f is small to
avoid artificial amplification. The forcing f is initialized with
the eigenvector of M with the positive eigenvalue, padded
with zero for humidity values above 350 hPa. This polished ei-
genvector is used in the lower panels of Fig. 4.

APPENDIX E

Overview of the Conversion of State-Space Models to an
Interpretable Form

We start with the approach by Phan et al. (1998) to convert a
state-space model to a VARX model with p past inputs and
outputs. We shall neglect the Kalman gain term in Eq. (2), as
we intend to use the model for simulation instead of prediction.
Phan et al.’s framework can be extended to include the Kalman
gain term to convert a state-space model into a VARMAX
(vector autoregressive moving average with external input)
model. We will not present that result here and will focus
on the VARX formulation.

First, define the controllability matrix Cp, observability
matrix Op, and Toeplitz matrix Tp:

C p ; [Ap21B̂, …, AB̂, B̂],

O p ;

Ĉ

ĈA

..

.

ĈAp21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

T p ;

0 0 0 · · · 0

ĈB̂ 0 0 . .
.

0

ĈAB̂ ĈB̂ 0 . .
.

0

..

. . .
. . .

. . .
. ..

.

ĈAp22B̂ · · · ĈAB̂ ĈB̂ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
? (E1)

Following Phan et al. (1998), with a matrix N that satisfiesE1

ĈAp 1 NO p 5 0, (E2)

the state-space model [Eq. (9)] can be converted to a one-
step-ahead input–output model:

ŷ t 5 ∑
p

i51
Fiŷt2i 1 ∑

p

i51
Ci f̂t2i 1 êt, (E3)

with

[Fp ::: F2 F1] 52N and

[Cp ::: C2 C1] 5 CC p 1 NT p: (E4)

The steps so far are the same as those in Phan et al. (1998) ex-
cept that there is no direct feedthrough. Including a direct feed-
through term poses no difficulty for the discussions below.

When n , mp, Eq. (E2) is underdetermined, so N is nonuni-
que. The problem then is how to choose N to simplify the in-
terpretation. This is where we deviate from Phan et al. (1998),
which uses the pseudoinverse to minimize the Frobenius norm
of N. We instead minimize the sparsity inducing L1 norm of
the vector that contains all the elements of the persistent matri-
ces (Qy, Qz, Qa, etc.), as well as Qf and the matrices describing
additional contributions from ft21, ft22, and so on (see section 5
for definitions of these matrices). While orthonormal transfor-
mations of y and f do not change the Frobenius norms of the
coefficient matrices, they do change the L1 norm. Therefore,
the minimization problem is to find Ty, Tf and N given by

argmin
N,Ty,Tf

{||col([Hy Hz Ha …])||1
1 ||col([Hf Hf1 Hf2 …])||1}, (E5)

where col(?) is an operator that stacks the columns of a matrix
on top of each other to form a column vector and || ? ||1 de-
notes the L1 vector norm. To truly minimize the number of
nonzero parameters in the model, which is assumed to allow
for greater interpretability, one would need to minimize the L0

norm. However, that problem is prohibitively expensive given
the dimensions of the present system and minimizing L1 norm
is used as a proxy. Advances that led to compressed sensing
have shown that solutions to L1-norm minimization also mini-
mize the L0 norm for large random matrices under certain con-
ditions (e.g., Candès et al. 2006; Donoho 2006). However, those
conditions are not met in our case. Earlier results that rely on
coherence (see review in, e.g., Donoho 2006) are also too re-
strictive to be applied here. Therefore, we do not have a math-
ematical proof that the solution minimizing the L1 norm is the
unique optimally sparsest solution. Nevertheless, the results ap-
pear sufficiently sparse to allow for physical interpretation.

The relative weights between the terms in Eq. (E5) are arbi-
trary. We have found that the two terms are of similar magni-
tude and the results are insensitive to the relative weights so
have simply used weights of 1, as indicated in Eq. (E5).

This minimization problem is solved in two steps. First, given
the orthogonal transformation matrices Ty and Tf, the minimi-
zation problem is formulated as a linear programming problem
(see appendix F for the formulation) and solved using the
simplex algorithm, as implemented in MATLAB. The minimi-
zation over Ty and Tf is nonlinear and is done using the quasi-
Newton method, facilitated by the fact that the gradient can be
computed based on the Lagrange multipliers from the linear
programming step. The details are given in appendix G.

APPENDIX F

Formulation of the Linear Programming Problem

For this appendix, our starting point is Eq. (9) with Ty and
Tf given. The following describes the case with p 5 2. Cases

E1 Equation (E2) here is Eq. (5) of Phan et al. (1998) multiplied
by Ĉ. This change slightly simplifies our discussion.
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with larger p values can be dealt with similarly. For p 5 2,
the controllability, observability, and Toeplitz matrices are

C 2 ; [AB̂ B̂ ],

O 2 ;
Ĉ

ĈA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, and

T 2 ;
0 0

ĈB̂ 0

[ ]
: (F1)

From Eqs. (E2) and (E4), which follow Phan et al. (1998),
we have

C1 5 ĈB̂ and (F2)

C2 5 ĈAB̂ 2 U1ĈB̂: (F3)

Note from Eq. (F2) that C1 does not depend on N, (i.e.,
F1, F2). The L1-norm minimization problem is to find

argmin
U1,U2

{||col([Hy Hz ])||1 1 ||col(Hf1)||1} (F4)

subject to the constraints of Eq. (F3) and

[U2 U1]O 2 5 ĈA2 (F5)

as well as the auxiliary constraints that link the Q matrices
and the coefficient matrices of the VARX model, which fol-
low directly from section 5:

U1 5 Hy 1 Hz,

U2 52Hz, and

C2 5 Hf1 2 HzTyT
T
f : (F6)

This L1-norm minimization can be formulated as a linear
programming problem of finding

arg min
H,J,P,Q,U,V

∑
m

i51
∑
m

j51
(H 1 J 1 P 1 Q)ij 1 ∑

m

i51
∑
m

j51
(U 1 V)ij

[ ]
(F7)

subject to the equality constraints of Eqs. (F5) and (F6) as
well as the following inequality constraints:

Hij $ 0; Jij $ 0; Pij $ 0; Qij $ 0; Uij $ 0; Vij $ 0;

i 5 1, 2, …, m; j 5 1, 2, …, m, (F8)

where subscript ij indicates the ith row and jth column of a matrix.
The optimized Q matrices are then given by

Hy 5 H 2 J,

Hz 5 P 2 Q, and

Hf1 5 U 2 V; (F9)

C1, that is, Qf, is not affected by the minimization and is
given in Eq. (F2).

The equality constraints can be combined in a matrix
form for the MATLAB solver as

col L 1 2L 1 L 2 2L 2

[ ]
HT

JT

PT

UT

QT

VT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
5 col

(ĈA2)T
(ĈAB̂)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
( )

, (F10)

where we have defined

L 1 ;
(ĈA)T
(ĈB̂)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and L 2 ;
2(Ĉ)T 0

2TfT
T
y I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (F11)

APPENDIX G

Search for the Optimal Orthonormal Transformation

First, within the m-dimensional space, we define the 2D
rotational matrix in the plane span by the ith and jth axes:

T(ar) 5

i j

i

j

1 · · · 0 · · · 0 · · · 0

..

. . .
. ..

.

0 cosar sinar 0

..

. . .
. ..

.

0 2sinar cosar 0

..

. . .
. ..

.

0 · · · 0 · · · 0 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(G1)

where r 5 (i 2 1) 3 m 1 j is a plane index and ar is the
rotational angle in the rth plane. This rotational matrix is
the identity matrix with the iith, ijth, jith, jjth entries re-
placed by the four entries involving ar in Eq. (G1).

The total number of unique pairs of i and j (i Þ j), and
thus the total number of independent angles, is m(m 2 1)/2,
which are the parameters that we seek to adjust. We can de-
fine the transformation matrix for the outputs y as the product
of these 2D rotational matrices:

Ty(a) 5 *
m(m21)/2

r51
T(ar); (G2)

a is the parameter vector that holds all of the m(m 2 1)/2 an-
gles. Reflections are not included because they do not affect
the L1 norm of the coefficients of the resulting VARX model.

There are no prior reasons that the transformation matrix
for the input is the same as that for the output, so we define a
separate transformation matrix for the input f in the same way:

Tf (b) 5 *
m(m21)/2

r51
T(br): (G3)
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Minimization is done over a and b. This is a high-dimensional
nonlinear minimization and is solved using the quasi-Newton
method, as implemented in MATLAB function fminunc. The
search is facilitated by the knowledge of the Jacobian,
which can be computed using the Lagrange multipliers of
the equality constraints from the linear programming step
as follows.

From Eq. (G1), T(ar)/ar can be easily computed. We
can then compute

Ty

ar

5 *
r21

s51
T(as)

[ ]
T(ar)
ar

*
m(m21)/2

s5r11
T(as)

[ ]
and (G4)

Ĉ

ar

5
Ty

ar

C: (G5)

To shorten the notation, we define

Ĉar
;

Ĉ

ar

: (G6)

Taking p 5 2 again as an example, suppose the solution to
the L1-norm minimization problem, given the current Ty and
Tf, is H, J, P, Q, U, and V. The derivatives of the constraints
in Eq. (F10) with respect to ar are then

col
(Ĉar

A2)T

(Ĉar
AB̂)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 2 [L 1,ar

2L 1,ar
L 2,ar

2L 2,ar
]

HT

JT

PT

QT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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The dot product of this change in the constraints with the
Lagrange multipliers of the corresponding equality constraints
from the linear programming step gives how much the mini-
mum L1 norm of col([QyQzQf1]) decreases as ar increases.
The Qf can be included by adding the term

2∑
i,j
(Ĉar

)ij sgn[(ĈB̂)ij], (G9)

where sgn(?) is the sign function.
For br, the expressions equivalent to Eqs. (G4) and (G5)

are
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5 *
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[ ]
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s5r11
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[ ]
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5 B
Tf

br

( )T
, (G10)

and the derivatives of the constraints with respect to br are
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B̂

br

( )T
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2L 2,br
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Similarly, the dot product of Eq. (G11) with the Lagrange
multipliers of the corresponding equality constraints from
the linear programming step gives how much the minimum
L1 norm of col([QyQzQf1]) decreases as br increases. The
Qf can be included by adding the term

2∑
i, j

B̂

br

( )
ij

sgn[(ĈB̂)ij]: (G13)

Computing these variations over all ar and br gives the neg-
ative of the Jacobian for the quasi-Newton method used in
MATLAB function fminunc. We initialize the nonlinear mini-
mization with all values of ar and br set to zero. While we
cannot prove the minima found are the global minima, exten-
sive experimentation with randomized initial values of ar and
br did not produce lower minima.

APPENDIX H

Additional Considerations

With CVA weighting and prediction focus, for n # 40, all
optimized Q matrices except Qy and Qf are zero. For n 5 40,
Qy and Qf, both 40 3 40 matrices, are full rank. This indicates
that the identified model is the optimal model (measured in
L2 norm) without accounting for convection memory. This
facilitates the interpretation of convection memory, because
further increases in the model order n incrementally add con-
tributions purely from past inputs and outputs. Furthermore,
for n . 40, Qy and Qf are always full rank. Therefore, for
n . 40, we exclude Qy and Qf in the L1-norm minimization
procedure to focus on enhancing the sparsity of the other Q

matrices. This is found to produce cleaner results, which we
present in section 5b. The exclusion of Qy and Qf is done by
setting weights of Qy in Eq. (F4) to zero and removing con-
tributions from Eqs. (G9) and (G13) when computing the
Jacobian.

With MOESP weighting and simulation focus, Q matrices
other than Qy and Qf can be nonzero even when n # 40.
This is because MOESP weighting with simulation focus
does not weigh errors by the inverse of the error covariance
and eliminates modes in the current inputs and outputs that
contribute little to the L2 norm of the residual in favor of
past inputs and outputs that contribute more. The eliminated
modes in the current inputs and outputs tend to have smaller
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error covariance. When CVA weighting with prediction focus
normalizes errors by the error covariance, the importance of
those modes is enhanced such that they are retained instead of
past inputs and outputs. As seen in Fig. 1b, when the model
order n is less than 43, MOESP gives substantially better per-
formance than CVA for a given model order. However, in the
MOESP case, increases in the model order add contributions
from both past and present inputs and outputs, complicating
the interpretation. Therefore, we restrict ourselves to CVA
weighting with prediction focus in section 5 when discussing in-
terpretations of convection memory.
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