
1.  Introduction
Atmospheric blocking occurs when pressure systems remain quasi-stationary in the midlatitudes for days 
to weeks (Rex, 1950). These “blocks” can have a major impact on surface conditions, often leading to per-
sistent temperature extremes that can have devastating effects on human health and activities (e.g., Pfahl & 
Wernli, 2012). As a result, predictions of how extreme weather patterns might shift due to climate change 
will need to incorporate changes in blocking frequency (or lack thereof) (Chan et al., 2019).

However, current climate models do a poor job of reproducing observed blocking patterns in the current 
climate (Masato et al., 2013), a result that has likely contributed to the disagreement in the literature over 
future trends (Francis & Vavrus, 2012; Kennedy et al., 2016; Woollings et al., 2018). In line with previous 
results, we find substantial underestimation of blocking in an atmosphere-only run of the Community 
Earth Systems Model (CESM) compared to reanalysis data from the Modern Era Retrospective-Analysis 
for Research and Applications, Version 2 (MERRA) (Gelaro et al., 2017), as measured using the absolute 
geopotential height (AGP) index from Scherrer et al. (2006) (as shown later in Figure 4).

In this letter, we focus on determining what aspect of the model is at the root of this underestimation. A 
number of studies have pointed to various fixes that might improve blocking estimations–higher resolution 
(Schiemann et al., 2017), better orography (Berckmans et al., 2013), more realistic sea surface temperatures 
(Scaife et al., 2011), and others–without determining precisely what physical mechanism caused the better 
estimations. By changing the model on a more basic level, we hope to determine the root cause of blocking 
underestimation and thereby help guide future efforts to improve these estimations. It has not previously 
been known whether model biases affect blocking directly or whether they simply indirectly influence it 
through degradation of the model mean state. In this study, we improve the model moist physics and the 
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model mean state and find that the former change has little effect on blocking statistics while the latter 
improves them substantially. This suggests that an improved representation of diabatic heating (which we 
expect to see in a super-parametrized model) is not sufficient to improve the model's blocking estimations 
because it fails to improve the model's mean state.

2.  Methods
2.1.  Blocking Index

The Scherrer et al. (2006) index is a 2-dimensional index that extends the Tibaldi and Molteni (1990) index 
by searching for blocks across a range of central latitudes. The index uses only the 500-hPa geopotential 
height, and looks at grid points between 35°N and 75°N. The blocking index consists of two criteria, which 
are applied to each grid point:

1.	 �The 500 hPa geopotential height is lower 15° to the South, indicating a jet reversal.
2.	 �The 500 hPa geopotential height is more than 150m lower 15° to the North, indicating an excursion of 

the jet around the blocked area.

To qualify as a block, conditions at a grid point must meet these criteria for at least five consecutive days.

To confirm that the improvements we saw were not a result of our choice of blocking index, we also track 
events with high local wave activity (LWA), following Martineau et al. (2017). This method follows regions 
of very high LWA, and counts them as blocks only if they are approximately stationary for five or more days.

We also use an anomaly based index, which gives results that are less conclusive than the Scherrer 
et al. (2006) or Martineau et al. (2017) indices. For this index, a block at a given gridpoint consists of five 
or more days with 500 hPa geopotential height that is more than 250 m higher than the mean at that point.

2.2.  CAM

We use the Community Atmospheric Model, Version 4 (CAM), which is the atmospheric portion of CESM, 
from the National Center for Atmospheric Research. We run it at a resolution of 2.5° longitude by 1.9° lat-
itude, with 26 model levels, and a 30-min time step. We use climatological sea surface temperatures with 
fixed present-day levels of greenhouse gases. For the control run, we run it for 39 years and use only the 
January data.

In order to allow us to more easily perform a mean-state bias correction (see Section 2.4), we also modify 
CAM such that it is able to run in a “perpetual” January, with variables like sea surface temperature, zenith 
angle, and ice cover all fixed at the appropriate levels for Mid-January. We then run an ensemble where this 
perpetual January is the only modification from the control CAM; those results have broadly similar mean 
state and blocking patterns to the control run when measured using the Scherrer et al. (2006) index (see Fig-
ures S3 and S4). Mid-January is chosen because it is the time when blocking frequency is at its highest in the 
Northern Hemisphere (Tyrlis & Hoskins, 2008). In order to maintain a level footing between the different 
sources of data, even though the perpetual January is running continuously we cut its output into “months” 
of 31 days and reset the blocking index at the beginning of each of these months so that the frequency of 
blocks in perpetual CAM is not artificially inflated due to the duration criterion.

2.3.  Super-Parametrized CAM (SPCAM)

The physics of a climate model include many parametrizations, problems with any one of which could, in 
theory, be responsible for the underestimation of blocks. In particular, the parametrization that seems to 
cause the greatest difference between model results and observations is the convective parametrization, 
which is blamed for a number of persistent model problems: the double Inter-Tropical Convergence Zone 
(Bellucci et al., 2010), too-low intraseasonal variability (Maloney & Hartmann, 2001), and a precipitation 
amount distribution that is skewed toward drizzle (Wang et al., 2016). As a result, one of the most effective 
ways to “improve” the model physics is to do away with the convective parametrization by resolving clouds.
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Opinions differ on the importance of moist processes for atmospheric blocking (Nakamura & Huang, 2018; 
Pfahl et al., 2015), but it is certainly plausible that a lack of strong storms might be related to the block-
ing underestimation, since several prominent theories suggest that blocks are sustained by eddies that are 
frequently spun up in the Atlantic and Pacific storm tracks (Shutts, 1983; Yamazaki & Itoh, 2009). In par-
ticular, given the demonstrated impact of latent heat release in cyclones approaching a block (Steinfeld 
& Pfahl, 2019), it is conceivable (though, as we show, incorrect in this case) that an improvement in the 
model's representation of diabatic processes would improve the blocking frequency regardless of its effects 
on the model mean state.

In order to “improve” the moist physics, we compared runs of CAM with the Super-Parametrized CAM, 
which replaces conventional convection parametrization with a two-dimensional cloud-resolving model 
in each of the CAM vertical columns (Khairoutdinov et al., 2005). SPCAM has been shown to improve the 
performance of the model in more accurately reproducing observed precipitation patterns, including peak 
precipitation time within the diurnal cycle, percentage of days with significant precipitation, and convective 
intraseasonal variation (Khairoutdinov et al., 2005). This comparison allows us to directly test how much 
impact biases in the moist physics have on blocking frequency.

2.4.  Mean State Bias Correction

It is, of course, more difficult to simply “improve” the mean state of the model in a way that does not risk 
contaminating the dynamics of blocking. Previous work has used a method of bias correction that is per-
formed after the model is run, by adding or subtracting an array of time-invariant values from the output ge-
opotential height so that the model mean state matches the reanalysis at each grid point (Scaife et al., 2011; 
Simpson et al., 2020), as well as in some cases by adjusting the high- and low-frequency variability (Vial & 
Osborn, 2012). This approach has had promising results but does run the risk of creating “synthetic” blocks 
in the output that did not behave like blocks while the model was running–while the dynamical mecha-
nism that maintains blocks is not entirely understood, we know that there is such a mechanism from the 
fact that blocks are distinguishable from red noise (Masato et al., 2009), and these “synthetic” blocks might 
not be sustained by the same forces. For this study, we instead design an algorithm, similar to the one used 
in Ma and Kuang (2016), to nudge the mean state of the model while it is running without influencing the 
formation of the blocks directly by damping only the lowest frequencies that have little to no influence on 
synoptic phenomena.

To do this, we begin with the perpetual January setup in order to avoid the effects of a seasonal cycle. We 
begin with 38 January 15ths from the MERRA-2 reanalysis, each of which is run through CAM for 24 h 
to damp out artificial fluctuations; the outputs of those runs are then averaged together. This average day, 
or more precisely the eight three-hour intervals that make up the average day, is used as a target state (or 
states) for the nudging. Each ensemble member begins from a different January 15th in the MERRA data-
base (38 ensemble members in total); then as the model runs, we track the running average of the difference 
between each ensemble member and the target state at each gridpoint for four variables: Zonal and meridi-
onal wind, temperature, and humidity. This “average” difference is used to determine the nudging strength 
and direction at each point: for example, if a point has been consistently hotter than the target, then an 
amount of static energy proportional to the average temperature difference is removed from that gridbox. 
When the ensemble begins, the nudging force adapts very quickly, since the running mean is initially drawn 
from only a short time period–on the second day the running mean is drawn entirely from the first day but 
after that each day is incorporated into the mean with a weight that is proportional to the inverse of the time 
elapsed. Over time, we decrease the weights to make the nudging force less adaptive until eventually (after 
1,000 days) we let the weighting stay at a constant value such that each new 30-min timestep changes the 
running mean by only 1/24,000. The weight wt at a given timestep t is given by the equations:

 

2 , 48000

1tw t
t

� (1)

 
1 , 48000

24000tw t� (2)
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The effective damping timescale of this nudging for oscillations of var-
ious periods is shown in Figure S5 (see the caption of which for more 
details on the calculation method). The “crossing point” on that plot is 
56  days, meaning that oscillations shorter than that length should not 
be damped effectively because they will have already undergone one full 
period by the time they would experience substantial damping. This is 
more than twice the length of the vast majority of blocking events (Tyrlis 
& Hoskins, 2008), reassuring us that the nudging should not affect block-
ing frequency directly.

To demonstrate that it is the improvement in the mean state and not 
merely the implementation of the nudging mechanism that is responsi-
ble for the blocking frequency improvement, we do an additional nudged 
run, this time targeted for the mean January of the control run rather 
than the MERRA January mean. This run does not produce any signifi-
cant change relative to the control run according to the Scherrer or Mar-
tineau blocking indices (see Figure S6).

Each ensemble member is run for 12 years; we draw our blocking statis-
tics and climatology from only the last two years to be confident that the 
ensemble has reached an equilibrium between the nudging toward the 
target state and the drift away from it.

2.5.  Significance

The statistical significance of the difference in blocking frequencies (be-
tween MERRA and model results) is evaluated using a 2-sided Student's 
t test applied at each grid point, where the null hypothesis is that the 
model blocking frequency is identical to reanalysis.

3.  Results
3.1.  SPCAM

In our run of SPCAM (which lasted only 20  years because of its high 
computational expense) we find that the blocking frequency patterns 
in SPCAM are fairly similar to those in the control (Figure 4): the root-
mean-square error (RMSE) between SPCAM and MERRA is 0.022, worse 
than between the control run and MERRA. This change is primarily the 
result of overprediction of low-latitude blocks, which are more related 
to subtropical highs than to the jet stream, but the overall result demon-
strates that the parametrization of moist processes does not have a sub-
stantial impact on blocking frequency at higher latitudes. Moreover, since 
SPCAM does no better than CAM at matching the MERRA mean state 
(see Figure 1), this result supports the idea that the mean state bias is the 
most important factor.

3.2.  Nudged CAM

The bias correction is successful at eliminating more than 50% of the er-
ror relative to the control run at almost all model levels (Figure 2). For 
temperature and zonal wind, we correct more than 70% of the error at 
all but the lowest levels, which are hard to correct likely because of noise 
caused by fluxes from the land surface and damping caused by the use of 
climatological sea surface temperatures.
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Figure 1.  The magnitude of the error between the January mean states 
of super-parametrized Community Atmosphere Model (SPCAM) and 
Modern Era Retrospective-Analysis for Research and Applications, Version 
2 (MERRA), normalized by the magnitude of the error between the 
January mean states of the control run and MERRA, for each of the four 
variables, calculated by finding |XSPCAM − XMERRA| and |XCTL − XMERRA| at 
each gridpoint, where X represents the average value of a variable over all 
timesteps, and averaging those quantities horizontally before dividing the 
former value by the latter.

Figure 2.  The magnitude of the error between the mean state of the 
nudged run and the January mean state of Modern Era Retrospective-
Analysis for Research and Applications, Version 2 (MERRA), normalized 
by the magnitude of the error between the January mean states of the 
control run and MERRA, for each of the four nudged variables calculated 
in a similar manner as Figure 1.
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At 500 hPa, Figure 3 shows that the control run has a large patch of negative temperature mean bias over the 
North Sea, which is particularly pronounced relative to the positive temperature mean bias that covers most 
of the Northern Hemisphere. In the nudged CAM, this patch disappears, replaced with weaker and more 
diffuse negative temperature mean bias across most of the globe. The zonal wind mean bias in the control 
run has strong bands of mean bias across the midlatitudes; in the nudged run the mean bias is once again 
much weaker and more diffuse. Of particular note is the correction to jet strength over Northern Europe, 
where CAM tends to favor the Central and Southern positions of the jet (Hannachi et al., 2012) to the exclu-
sion of the Northern position, a mean bias which is corrected in the nudged run. Mean biases in meridional 
wind look similar between the control and nudged runs, although substantially reduced in magnitude in 
the latter. The moisture mean bias in the control run is strongest by far in the equatorial regions, and is 
largely corrected in the nudged run.

The blocking frequency patterns are also improved substantially in the nudged ensemble, particularly in 
the Euro-Atlantic sector (Figure 4). The root mean square error in blocking frequency is 0.015 between the 
control run and MERRA, which improves to 0.011 for the nudged CAM.
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Figure 3.  The temperature mean state of Modern Era Retrospective-Analysis for Research and Applications, Version 2 (MERRA) in January at 500 hPa (a), the 
difference between the control Community Atmosphere Model (CAM) and MERRA (b), and the difference between the nudged CAM and MERRA (c). As in (a) 
to (c) but for zonal wind (d)–(f), meridional wind (g)–(i), and specific humidity (j)–(l).
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3.3.  Local Wave Activity Index

When applied to our data, the Martineau et al. (2017) index gives similar results to the Scherrer et al. (2006) 
index, with SPCAM and the control CAM underestimating blocking over Europe, while the nudged CAM 
has a blocking frequency quite close to MERRA, especially over Europe (Figure 5). In fact, the RMSE for the 
Martineau et al. (2017) index improves from 0.035 between the control run and MERRA to 0.018 between 
the nudged run and MERRA.

3.4.  Anomaly Index

The anomaly index gives results that were more equivocal than the other two indices. If we use a fixed 
anomaly threshold of 250 m, we get a similar overall RMSE for the nudged CAM and SPCAM–both have an 
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Figure 4.  Fraction of January days blocked according to the Scherrer et al. (2006) index in (a) interpolated Modern 
Era Retrospective-Analysis for Research and Applications, Version 2 (MERRA) data from 1980 to 2017. Difference 
in fraction of January days blocked between MERRA data and (b) 40-year control run of CAM (c) 20-year run of 
SPCAM and (d) a 38-member ensemble of CAM after nudging has been applied. Stippling indicates the area where the 
difference is significant.
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RMSE versus MERRA of 0.018, compared to 0.021 for the control CAM–although the error in the nudged 
CAM is more contained in the higher mean blocking frequency across the Northern Hemisphere rather 
than in deviations from that mean (Figure S1). This seems to be largely due to the fact that the standard 
deviation in geopotential height (across the entire region 35°N–75°N.) is larger for the nudged CAM (253 m) 
than it is for MERRA (227 m), the control CAM (242 m) or SPCAM (233 m), for reasons that we do not 
entirely understand. When we correct for this difference by changing from a fixed anomaly threshold to 
one that is equal to the standard deviation of a given simulation (Figure S2), the nudged CAM has a lower 
RMSE versus MERRA of 0.014, while SPCAM and control CAM remain largely unchanged with RMSE of 
0.020 and 0.022, respectively.
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Figure 5.  Fraction of January days blocked according to the Martineau et al. (2017) index in (a) interpolated Modern 
Era Retrospective-Analysis for Research and Applications, Version 2 (MERRA) data from 1980 to 2017. Difference 
in fraction of January days blocked between MERRA data and (b) 40-year control run of CAM (c) 20-year run of 
SPCAM and (d) a 38-member ensemble of CAM after nudging has been applied. Stippling indicates the area where the 
difference is significant.
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4.  Conclusions
When the mean state bias in CAM is reduced, the blocking underestimation improves dramatically. This 
change is not seen when we switch to a model version that better captures convection, suggesting that the 
model's difficulty in accurately reproducing blocking patterns stems from problems with its mean state and 
that reductions in blocking underestimation are best achieved by improving the model mean state overall. 
This process will likely include changes to the model physics (Williams et al., 2020), but our results indicate 
that the focus should be on making those changes that best improve the mean state rather than improving 
physical processes that are perceived as more directly related to blocking.

Further work is necessary to determine if this pattern holds true for other climate models, most of which 
have also been found to underestimate blocking at least in part as a result of mean state bias (Anstey 
et al., 2013; Vial & Osborn, 2012).

Data Availability Statement
Data displayed in this paper are available at https://dataverse.harvard.edu/dataset.xhtml?persistentId= 
doi:10.7910/DVN/1QDG2T.
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