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[1] Present-day shortcomings in the representation of upper tropospheric ice clouds in
general circulation models (GCMs) lead to errors in weather and climate forecasts as well
as account for a source of uncertainty in climate change projections. An ongoing challenge
in rectifying these shortcomings has been the availability of adequate, high-quality,
global observations targeting ice clouds and related precipitating hydrometeors. In
addition, the inadequacy of the modeled physics and the often disjointed nature between
model representation and the characteristics of the retrieved/observed values have
hampered GCM development and validation efforts from making effective use of the
measurements that have been available. Thus, even though parameterizations in GCMs
accounting for cloud ice processes have, in some cases, become more sophisticated in
recent years, this development has largely occurred independently of the global-scale
measurements. With the relatively recent addition of satellite-derived products from
Aura/Microwave Limb Sounder (MLS) and CloudSat, there are now considerably
more resources with new and unique capabilities to evaluate GCMs. In this article, we
illustrate the shortcomings evident in model representations of cloud ice through a
comparison of the simulations assessed in the Intergovernmental Panel on Climate Change
Fourth Assessment Report, briefly discuss the range of global observational resources that
are available, and describe the essential components of the model parameterizations that
characterize their ‘‘cloud’’ ice and related fields. Using this information as background, we
(1) discuss some of the main considerations and cautions that must be taken into account
in making model-data comparisons related to cloud ice, (2) illustrate present progress
and uncertainties in applying satellite cloud ice (namely from MLS and CloudSat) to
model diagnosis, (3) show some indications of model improvements, and finally
(4) discuss a number of remaining questions and suggestions for pathways forward.
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1. Introduction

[2] Upper tropospheric ice clouds that cover large spatial
scales and persist in time strongly influence global climate
through their effects on the Earth’s radiation budget [Chen
et al., 2000; Hartmann and Short, 1980; Liou, 1976;
Ramanathan et al., 1989; Ramanathan and Collins, 1991;

Randall and Tjemkes, 1991]. Many studies have pointed out
that these clouds have influences through both their green-
house and solar albedo effects with their relative influence
depending strongly on their height, thickness, and optical and
microphysical properties [Fu and Liou, 1992;Hartmann and
Doelling, 1991; Hartmann et al., 1992; Kiehl, 1994; Miller,
1997; Stephens et al., 1981]. Principal mechanisms for
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generating of upper tropospheric ice clouds include detrain-
ment from deep convective clouds and in situ ice nucleation
by synoptic motions, mainly in midlatitudes. At upper
levels, deep convective clouds, which account for a very
small fraction of cloud area, contain considerable amounts
of cloud ice as well as other frozen hydrometeors [Del
Genio and Kovari, 2002; Krueger et al., 1995; Rossow and
Schiffer, 1999]. They play a crucial role in both weather and
climate through vertical mixing and precipitation/latent
heating, as well as through their aforementioned connection
to other larger-scale ice clouds such as precipitating anvil
and nonprecipitation cirrus clouds [e.g., Luo and Rossow,
2004]. Characterizations of ice cloud properties have been
made using satellites [Jin et al., 1996; Li et al., 2005; Liao et
al., 1995a, 1995b; Lin and Rossow, 1996; Minnis et al.,
1993; Rossow and Schiffer, 1999; Stubenrauch et al., 1999;
Wylie and Wang, 1999] as well as in situ methods
[McFarquhar and Heymsfield, 1996; McFarquhar et al.,
2000]. Such data and analyses have improved our under-
standing of ice cloud processes, and guided the directions
for developing improved parameterizations of ice cloud
microphysics. However, measurements of these ice clouds
are still difficult to obtain owing to the challenges in-
volved in remotely sensing ice water content (IWC) and its
vertical profile, including complications associated with
multilevel clouds, mixed phases and multiple hydrometeor
types, the uncertainty in classifying ice particle size and
shape for remote retrievals, the relatively small time and
space scales associated with deep convection, and the large
dynamic range of cloud-related ice that exists when
considering both subvisible cirrus and the tops/interiors
of deep convective clouds. Together, these measurement

difficulties make it a challenge to characterize and under-
stand the mechanisms of ice cloud formation and dissipa-
tion [Liou, 1975; Liou and Ou, 1989; C. Liu et al., 2007;
Luo and Rossow, 2004; Rossow and Schiffer, 1999; Soden,
2004; Soden et al., 2004; Wylie and Wang, 1997].
[3] The importance of obtaining a more comprehensive

understanding and improved capability for modeling upper
tropospheric ice clouds cannot be underestimated as ‘‘cloud
feedbacks remain the largest source of uncertainty’’ in
determining Earth’s equilibrium climate sensitivity, specif-
ically to a doubling of carbon dioxide [Intergovernmental
Panel on Climate Change, 2007]. Some evidence for this
uncertainty is given in Figure 1 that shows model-to-model
comparisons of four different physical climate quantities,
including cloud ice water path (IWP). While it is understood
that models exhibit significant systematic spatial-temporal
biases with respect to quantities such as precipitation, water
vapor and clouds, their depiction of the global-averaged
values is quite good. This stems from the fact that these
quantities have had relatively robust long-standing obser-
vational constraints [Arkin and Ardanuy, 1989; Rossow and
Schiffer, 1991; Stephens et al., 1994; Xie and Arkin, 1997]
as well as indirect measurement constraints via top of the
atmosphere radiation measurements [Gruber and Krueger,
1984; Kyle et al., 1993; Smith et al., 1994]. In contrast,
robust global (or globally representative in situ) retrievals of
cloud ice, particularly vertically resolved values have not
been available, albeit Lin and Rossow [1996] estimated the
globally average ocean-only value to be 0.07 kg m�2.
Despite significant efforts to derive even IWP measure-
ments from passive and nadir-viewing techniques, the large
optical thicknesses, multilayer structure and mixed-phase

Figure 1. Globally averaged, annual mean values of (a) precipitation, (b) precipitable water, (c) total
cloud fraction, and (d) cloud ice water path from the 1970–1994 period of the twentieth-century GCM
simulations contributed to the IPCC 4th Assessment Report (20c3m scenario). Zero values indicate that
the given model did not provide this variable to the IPCC database.
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nature of many clouds makes the estimates from these
techniques very uncertain [Lin and Rossow, 1996; Stephens
et al., 2002; Wu et al., 2006]. The sparse sampling of in situ
observations and poor probing capabilities of nadir-viewing
passive satellite IWC/IWP measuring techniques are high-
lighted in the schematic of Figure 2 in the context of the
complexities of a precipitating and/or multilayer cloud
system. The ramifications of this poor constraint for cloud
ice, even IWP, are evident in the much larger model-to-
model disagreement for globally averaged cloud ice shown
in Figure 1. There is a factor of 20 difference between the
largest and smallest values, and even when the two largest
outliers are removed, there is still a factor of about 6
between the largest and smallest values. As expected, these
differences are exacerbated when considering the spatial
patterns of the time-mean values shown in Figure 3; in some
regions differences up to nearly 2 orders of magnitude. For
a quantity as fundamental and relatively unambiguous as
cloud ice mass, one that also has significant import within
the context of climate change and its associated model
projection uncertainties, it is critical that this level of model
uncertainty be reduced.
[4] Fortunately, there are new observational resources

that can be expected to lead to considerable reduction in
the uncertainties associated with model representations of
upper tropospheric cloud ice. Specifically, these include
the Microwave Limb Sounder (MLS) on the Earth
Observing System (EOS) Aura satellite, and the CloudSat
and CALIPSO satellite missions, all of which fly in forma-
tion in what is referred to as the A-Train [Stephens et al.,
2002]. On the basis of radar and limb-sounding techniques

(see Figure 2), these new satellite measurements provide a
considerable leap forward in terms of the information
gathered regarding upper tropospheric cloud ice water
content as well as other macrophysical and microphysical
properties. In this article, we briefly describe the current
state of GCM representations of cloud ice and their associ-
ated uncertainties, the nature of the new observational
resources for constraining cloud ice values in GCMs, the
challenges in making well-posed model-data comparisons,
and prospects for near-term improvements in model repre-
sentations. In section 2, we describe the satellite retrievals of
IWP and IWC that are discussed in the article, with an
indication of the relative strengths and weaknesses of the
different retrieval methodologies and sensitivities. In
section 3, we briefly describe the model resources that are
examined and provide a rudimentary description of the
various levels of complexity regarding model treatments
of cloud ice. For both IWP and IWC, and for both the
retrievals and the models, it is more or less understood that
‘‘ice’’ represents all frozen hydrometeors, which can include
cloud ice, which is typically suspended or ‘‘floating,’’ and
ice mass precipitating forms such as snow and graupel.
However, such distinctions are often not clearly made or are
fuzzy, and a principle focus of this article is to help
articulate where and how such distinctions are made and
matter for model-data comparisons. Moreover, it should be
stressed that with present satellite/retrieval technology, direct
retrievals that truly distinguish ‘‘floating’’/‘‘suspended’’
forms of ice from ‘‘falling’’/‘‘precipitating’’ forms are not
yet available, yet models often try to make this distinction.
Retrievals of this sort will require colocated vertical velocity
information, such as might come from Doppler radar
capability. In section 4, we present the results of the model
data comparisons, with discussions regarding sampling,
sensitivity, model representation, etc. In section 5, we
conclude with a summary and discuss needs regarding
future space-based retrievals and directions for model
diagnosis and improvement.

2. Satellite Retrievals

[5] In this section, we describe the satellite retrievals that
are illustrated and discussed in this paper. To highlight a
critical difference in capabilities, the retrievals are catego-
rized as either passive nadir-viewing or radar/limb sound-
ing. This distinction conveys a sense of their capabilities to
account for vertical structure, namely in terms of being able
to deal less ambiguously with multiple cloud levels and/or
mixed-phase clouds. This leads to a pragmatic distinction of
whether the satellite retrieval provides an estimate of
(column-integrated) ice water path (IWP; gm m�2) and/or
has the capability to provide an estimate of (vertically
resolved) ice water content (IWC; mg m�3). In each case,
all-sky values are discussed and presented. Given that this
study mainly focuses on the new capabilities and the
associated uncertainties of the CloudSat and MLS retrievals,
more details are provided regarding their methods and
products (see Table 1). The passive nadir-viewing products
are only referenced briefly and therefore the discussion
below only provides highlights with many details left to
the referenced literature.

Figure 2. Schematic diagram illustrating measurement
methods for estimating cloud ice water content/path,
including in situ measurements as well as passive, radar,
and limb-sounding satellite techniques.
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2.1. Passive Nadir Viewing

2.1.1. ISCCP
[6] The International Satellite Cloud Climatology Project

(ISCCP) provides an estimate of ice cloud water path (IWP)
values based on measurements in the visible (VIS; 0.6 mm)
and ‘‘window’’ infrared (IR; 11 mm). Because VIS meas-
urements are used, results are obtained only in daytime (at
3-h intervals) but are global except for the unilluminated
portions of the polar regions. The intrinsic resolution of
the radiance measurements is determined by the pixel
(field-of-view) size, about 5 km, and the sampling interval
of about 30 km; however, statistical quantities, such as the
monthly average, are completely equivalent to the full 5-km
sampling results. After identifying cloud pixels, the cloud
visible optical thickness (t) and cloud top temperature (TC)
are retrieved from the VIS and IR employing a radiative
transfer model. The cloud top temperature is corrected for
the transmission of IR radiation from below on the basis of
the values of t, the surface temperature (TS) and the
atmospheric temperature and humidity profile. The retrieval
of t is based on one of two microphysical models, one for
liquid and one for ice clouds. The phase of the cloud is

determined by the value of TC; if TC < 260 K, the whole
cloud is assumed to be an ice cloud. The ISCCP estimate of
IWP therefore includes any underlying liquid cloud layers
or the lower liquid parts of deep clouds. Hence, the ISCCP
values represent an upper limit on IWP but yet since it
qualified as being very insensitive to precipitation, the
product and this limit is expected to apply to cloud IWP.
The microphysical model for ice clouds assumes a fractal
particle shape with an aspect ratio of unity and an effective
radius (rE) = 30 mm and a size distribution variance of 0.1.
Thus, the value of IWP can be determined from product of
t, rE and a coefficient that relates geometric cross section to
volume for the assumed particle shape: for ice clouds in the
ISCCP data set, IWP (gm m�2) = 10.05 t. For additional
details and discussions of uncertainties, see Rossow and
Garder [1993], Rossow and Schiffer [1999], Lin and Rossow
[1996], Jin and Rossow [1997] and Han et al. [1999].
Annual mean ISCCP IWP values are shown in Figure 4.
2.1.2. NOAA/NESDIS–AMSU-B/MHS
[7] The NOAA/NESDIS IWP algorithm uses the meas-

urements from the Advanced Microwave Sounding Unit–B
(AMSU-B) and the Microwave Humidity Sounder (MHS)

Figure 3. Annual mean values of cloud ice water path (IWP; gm m�2) from the 1970–1994 period of
the twentieth-century GCM simulations contributed to the IPCC 4th Assessment Report (20c3m
scenario); Note that the color scale is not linear.
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Table 1. Sampling, Sensitivity, Error, and Reference Information for CloudSat and MLS Cloud Ice Water Content Retrievals

Sensor
Temporal
Sampling

Spatial
Resolution (Horizontal,

Vertical)
Vertical
Extent

Sensitivity or
Range

Estimated
Bias

Random
Error References

CloudSat 0131 and 1331
local time

1.3 � 1.7 km,
0.5 km

�0.5 to
�25 km

�5–75 mg/m3 ±40% relative to
in situ

±25% Austin et al. [2009]

MLS 0131 and 1331
local time

2 � 160 km,
3.5 km

<250 hPa �0.5–�50 mg/m3 ±50–100%
relative to
CloudSat

0.4, 1.0 and 4.0
(mg m�3) at

100, 147, and 215 hPa

Wu et al. [2008, 2009]

Figure 4. Annual mean values of cloud ice water path (IWP; gm m�2) from (a) ISCCP (2005),
(b) NOAA/NESDIS (2000–2006), (c) CERES/MODIS-Terra (2001–2005), (d) MODIS MYD06 (July
2002 to June 2007), (e) CloudSat (August 2006 to July 2007), and (f) CERES/MODIS-Aqua (July 2002
to June 2005). See text for details. Note that the color scale differs from that in Figure 3.
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instruments to simultaneously retrieve IWP and ice particle
effective diameter, De [Ferraro et al., 2005; Zhao and
Weng, 2002], through characterizations of the scattering
properties of ice cloud. The first step of the retrieval is to
derive De from a regression relation with the scattering
parameter ratio of 89 GHz and 150 GHz. The relation was
established using simulated data from a radiative transfer
model. Then IWP is computed from the retrieved De and the
scattering parameter of either 89 GHz or 150 GHz depend-
ing on the size of De. The retrieval can be done in all-
weather conditions, during day or night, and has relatively
high temporal coverage with up to 10 measurements per day
owing to the five Polar Orbiting Environmental Satellites
(POES) satellites (NOAA-15, -16, -17, and -18 and
MetOp-A). The NOAA IWP annual mean is shown in
Figure 4. Its low bias relative to the other products shown
is possibly due to two main reasons: scene screening
criteria, which may bias the result, and insensitivity to small
ice particles: in this case, less than 0.4 mm in size which is
fairly large for many suspended cloud ice particles. The
main screening criteria are that the scene be free of snow
cover, and the brightness temperature at 89 GHz is higher
than 150 GHz (owing to the fact that the depression of
brightness temperature increases with frequency from the
scattering effect when atmospheric ice is present).
2.1.3. MODIS-CERES
[8] To determine IWP, the Clouds and the Earth’s Radiant

Energy System (CERES) algorithms [Wielicki et al., 1998]
first explicitly classify each 1-km Moderate Resolution
Imaging Spectroradiometer (MODIS) cloudy pixel as ice
or water on the basis of the cloud temperature and the
goodness of the match between the observed spectral
radiances at three wavelengths and model calculations of
the radiances using several different ice and water particle
sizes [Minnis et al., 1995, also Cloud property retrieval
techniques for CERES using TRMM VIRRS and Terra and
Aqua MODIS data, submitted to IEEE Transactions on
Geoscience and Remote Sensing, 2009]. The models use a
set of hexagonal ice column distributions to represent ice
cloud particles [Minnis et al., 1998]. IWP is computed as a
function of the product of the retrieved effective ice crystal
size and optical depth for each pixel. Optical depth is
limited to a maximum of 128 in the current CERES
editions. The retrieval assumes that the entire cloud column
is composed of ice. Although good agreement is found
between ground-based cloud radar and the CERES retrievals
of IWP for relatively thin cirrus clouds (optical depths < 4)
with no underlying water clouds [Mace et al., 2005],
validation of IWP for thick clouds has not yet been
performed, primarily owing to a lack of reference data.
Few ice clouds with optical depths less than 0.3 are detected
by the CERES analysis [e.g., Chiriaco et al., 2007], and
while such clouds account for a significant portion of the
ice-cloud cover [Jin et al., 1996; Jin and Rossow, 1997;
Stubenrauch et al., 1999], they contribute very little to the
global IWP. More significant is the impact of multilayered
clouds on the IWP retrievals. Huang et al. [2006] and
Minnis et al. [2007] showed that the assumption of the
entire cloud column as ice leads to overestimates in IWP of
roughly 50% in multilayered cloud systems. Thus, if one
assumes that half of all ice clouds overlap liquid clouds,
then global estimates of IWP from passive visible, infrared,

and near-infrared measurements are likely to be overesti-
mated by around 25%. The data illustrated in Figure 4 use
averages of IWP derived using Terra MODIS data taken for
solar zenith angles less than 82�. The means are multiplied
by the average ice cloud fraction for each region to obtain
all-sky IWP. In nonpolar regions, the results correspond to
1030 LT.
2.1.4. MODIS Team
[9] The MODIS cloud optical and microphysical retriev-

als [Platnick et al., 2003] are part of the archived MOD06
and MYD06 products (for Terra and Aqua MODIS, respec-
tively) and use techniques similar to the CERES algorithm,
though there are some differences, including the methods
and data used for cloud masking [Ackerman et al., 2008;
Frey et al., 2008] (see also documentation at modis-atmos.
gsfc.nasa.gov/products_C005update.html). Determination
of the thermodynamic phase of the cloud water uses a
combination of infrared and shortwave infrared (SWIR)
spectral tests [King et al., 2004]. The ice cloud models
used for the retrievals are based on in situ observations from
a variety of cloud measuring campaigns and include size
distributions with varying habit combinations as a function
of size [Baum et al., 2005]. The MODIS retrievals have
been compared with the ground-based studies of Mace et al.
[2005] and successful retrievals for ice clouds with optical
thicknesses less than about 0.7 were less frequent than for
CERES-MODIS however retrieval uncertainties in that
range can be quite large. The ground-based and aircraft
studies of Chiriaco et al. [2007] found similar conclusions.
Figure 4 shows the mean global IWP from Aqua MODIS
(generated from monthly Level-3 [King et al., 2003] files
and weighted by the ice cloud fraction to provide all-sky
means). In the Level-3 product, monthly aggregations are
derived from daily aggregations that include pixels from all
orbits that contribute to the 1� grid box, i.e., an average over
the day’s samples and not an instantaneous one, though
differences only occur poleward of about 30� owing to the
MODIS swath and become more significant in polar
regions. A multilayer flag is generated in the processing
but was not used to exclude pixels in the IWP values
presented here.

2.2. Vertically Resolving: Radar and Limb Sounding

2.2.1. MLS
[10] The MLS onboard the Aura satellite, operational

since August 2004, has five radiometers measuring micro-
wave emissions from the Earth’s atmosphere in a limb-
scanning configuration to retrieve chemical composition,
water vapor, temperature and cloud ice. The retrieved
parameters consist of vertical profiles on fixed pressure
surfaces having near-global (82�N–82�S) coverage. In
formation with the rest of the so-called A-Train constella-
tion of satellites, Aura has equatorial crossing times of
approximately 0130 and 1330 local time. The retrievals
for IWC are provided at 68, 83, 100, 121, 147, 178, 215,
and 261 hPa. The MLS IWCs are derived from cloud-
induced radiances (CIR) using modeled CIR-IWC relations
based on the MLS 240-GHz measurements. Single IWC
measurements from MLS at 147 and 215 hPa have a vertical
resolution of �4 km and horizontal along- and cross-track
resolutions of �200 and �7 km, respectively. The data
presented in this article use MLS version 2.2 IWCs [Livesey
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et al., 2007]. In this version, the estimated precision for the
IWC measurements is approximately 0.07, 0.2 and 0.6–1.3
(mg m�3) at 100, 147, and 215 hPa, respectively, which
accounts for combined instrument plus algorithm uncertain-
ties associated with a single retrieval. For these three
pressure levels, the useful range of MLS IWC retrievals
are about 0.02–120, 0.1–90, and 0.6–50 mg m�3, respec-
tively. Detailed descriptions of the algorithm, performance
and validation of the MLS IWC is given by Wu et al. [2006,
2009], with additional detailed comparisons between MLS
and CloudSat given by Wu et al. [2009].
[11] Unless otherwise noted, the mean MLS values

shown are computed from the total IWC amounts divided
by the total number of measurements (including cloud free
conditions) and binned onto a 4� � 8� latitude-longitude
grid. While MLS retrievals are based on limb sounding, and
thus provide some depiction of vertical structure, they
cannot provide a robust estimate of total IWP since it does
not sample the entire column. Figure 5 illustrates MLS’
estimate of annual mean IWC at 215 hPa and the zonal
average of their vertically resolved values between levels
100 hPa and 261 hPa. Very important to this study is the
interpretation of what components of the frozen hydro-
meteors (e.g., snow, cloud ice) are represented in MLS
IWC retrievals. Because in high-IWC cases large hydro-
meteors produce strong attenuation, MLS cannot penetrate
the entire cloud and its sensitivity to cloud ice begins to
saturate. The saturated/degraded measurements significantly
underestimate the IWC in these cases, which in turn makes
MLS less sensitive to clouds with large amount of hydro-

meteors. A qualitative interpretation is that MLS tends to
saturate for cloud systems that have significant amounts of
larger frozen hydrometeors and thus tend to only reflect
distributions, in magnitude, that are more characteristic of
cloud ice alone.
2.2.2. CloudSat
[12] The Cloud Profiling Radar (CPR) on the CloudSat

satellite is a 94-GHz, nadir-viewing radar measuring back-
scattered power from the Earth’s surface and particles in the
atmospheric column as a function of distance [Stephens et
al., 2002]. Measurements of radar backscatter are converted
to calibrated geophysical data quantities (radar reflectivity
factor), which are then used in retrievals of cloud and
precipitation properties such as ice water content (IWC).
During each 160-ms measurement interval, the CPR data
are collected into a single vertical profile of backscattered
power sampled over 125 range bins measuring 240 m each,
creating a total data window of 30 km. The distance from
the satellite to the data window changes as a function of
orbital location in order to guarantee that the window
includes the Earth’s surface, because surface reflectivity is
a useful measurement in its own right and also serves as a
constraint in some retrieval algorithms. Because the CPR
does not scan, measurements consist of vertical profiles
along the satellite ground track (over 37,000 per orbit),
providing a vertical cross section of clouds and precipitation
in the atmosphere. The CPR footprint is oblong, owing to
the along-track motion during the 160-ms measurement
interval, with 6-dB dimensions of approximately 1.3 km
across track and 1.7 km along track (with a slight depen-

Figure 5. (left) Annual mean values of cloud ice water content (IWC; mg m�3) at 215 hPa and (right)
zonal average. Values from (a, c) MLS are from 2007, and those from (b, d) CloudSat are from August
2006 to July 2007. For Figure 5c, MLS retrievals only extend down to 261 hPa (dotted line); inset shows
same MLS data as larger panel but with different color scale.
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dence on latitude). The minimum detectable reflectivity is
approximately �30 dBZ (varies slightly with location,
season, and background). CloudSat orbits as part of the
A-Train constellation of satellites, following approximately
1 min behind Aqua, 15 s ahead of CALIPSO, and about
14 min ahead of Aura/MLS, although the forward limb
sounding retrieval of MLS reduces the separation of sam-
ples to about 7 min. CloudSat has been operational since
June 2006.
[13] The current CloudSat retrieval for ice water content

(IWC) (version 5.1, contained in release 4 (R04) of the
CloudSat 2B-CWC-RO data product) uses an optimal
estimation approach to retrieve parameters of the ice cloud
particle size distribution based on measurements of radar
reflectivity [Austin et al., 2009]. A priori data constructed
from a database of cloud microphysical measurements
constrain the solution where the measurements cannot; the
a priori data values are selected as a function of temperature,
which is available to the retrieval based on ECMWF model
data. The retrieval assumes a lognormal size distribution of
cloud particles, retrieving all three distribution parameters
for each radar resolution bin and calculating IWC and other
quantities from the retrieved parameters. A similar retrieval
is performed for liquid water content (LWC); the composite
profile contained in the 2B-CWC-RO product is obtained by
using the LWC retrieval for bins warmer than 0�C, the IWC
retrieval for bins colder than �20�C, and a linear combina-
tion of the two in the intermediate temperature range. The
minimum detectable IWC is estimated to be approximately
5 mg m�3, depending on the distribution parameters. The
annual mean IWP estimate from CloudSat is shown in
Figure 4. Evident is that it is high relative to the other
products, particularly in the tropical regions. Figure 5
illustrates CloudSat’s estimate of annual mean IWC at
215 hPa and the zonal average of their vertically resolved
values which in this case include retrievals through the
whole column. While the IWC retrieval algorithm does not
consider larger species such as snow and graupel explicitly,
the radar will certainly see these larger particles owing to the
powerful dependence of radar reflectivity on particle size
(D6 for Rayleigh particles, but less as particles move to the
Mie scattering regime). Efforts are underway to determine
the accuracy of the retrieved IWC values in the presence of
these larger particles. Separate retrievals designed specifi-
cally for snow are also in preparation as experimental
products.
[14] Validation activities of the CloudSat IWC algorithm

are proceeding along three tracks. First, both the radar-only
algorithm (used in 2B-CWC-RO) and the radar + visible
optical depth algorithm (used in the coming 2B-CWC-
RVOD product) were tested on synthetic reflectivity profiles
generated from a number of in situ cloud microphysical
profiles that were collected in several field campaigns; these
tests were part of an IWC retrieval intercomparison study
documented by Heymsfield et al. [2008]. While the paper
used the R03 version of the algorithm and mostly concen-
trated on the RVOD results, the same technique has been
applied to the R04 algorithm (used in 2B-CWC-RO). Most
of the retrieved IWC values are inside the± 25% of the true
values, though some exceed this range, so the systematic
error has been estimated as ± 40%.

[15] Second, results from 2B-CWC-RO have been com-
pared to global statistics from other platforms, including the
MLS [Wu et al., 2009] and Odin-SMR [Eriksson et al.,
2008]. Wu et al. found that CloudSat normalized PDFs of
IWC have differences with MLS of less than 50% over the
range where the instrument sensitivities overlap, but Cloud-
Sat IWC exceeds MLS IWC in the 14- to 17-km zone.
Third, CloudSat data are being compared to aircraft in situ
data collected in various field campaigns. Candidate cam-
paigns include the CloudSat/CALIPSO Validation Experi-
ment (CC-VEx,WarnerRobins,GA), the Tropical Composition
Cloud and Climate Coupling Experiment (TC4, San José,
Costa Rica), the Canadian CloudSat/CALIPSO Validation
Project (C3VP, Ottawa, Ontario), and Cirrus and Anvils:
European Satellite and Airborne Radiation measurements
project (CAESAR, Cranfield, England). Results of these
comparisons should be forthcoming soon.
2.2.3. CALIPSO
[16] The A-train also includes the Cloud-Aerosol Lidar

Infrared Pathfinder Satellite Observations (CALIPSO)
instrument that is also expected to provide estimates of
IWC based on lidar backscatter [Vaughan et al., 2004;
Winker et al., 2004]. In this case, the horizontal and vertical
resolutions will be about 60 km and 1 km, respectively,
and the sensitivity range is expected to be about 0.03 and
100 mg/m3

. At the time of this writing the CALIPSO IWC
product is yet to be released.

2.3. Satellite Summary

[17] One important distinction between the radar/limb-
sounding and the nadir-viewing passive products discussed
above is that the sampling of the former is only based on a
single suborbital track profile, rather than a swath or multi-
satellite product. Thus while the former gain in terms of
vertically resolved information, and in some cases higher
horizontal resolution, their combined spatial-temporal sam-
pling is considerably less. Another noteworthy consider-
ation is that passive methods infer the particle size
(distribution) from measurements at the top of the cloud,
which for upper level ice clouds is usually an underestimate
of the actual cloud-layer-mean size. Thus, IWP would be
expected to by typically underestimated in these data sets.
On the other hand, for AMSU, MLS and CloudSat, the
sensitivity to particle size shifts to the larger particles, and
thus the (albeit small) mass contribution from the smaller/
smallest particles would be expected to be underestimated.
Another issue to keep in mind is that none of these satellite
retrievals, in contrast to the model representations discussed
below, is able, or even attempts, to distinguish floating/
suspended forms of ice from falling/precipitating forms;
such distinction will require colocated vertical velocity
information, such as might come from Doppler radar. Thus
when we use such terminology it is typically in association
with the model and in attempting to find an ‘‘observed’’/
retrieved quantity that can be used for its validation.
[18] The brief descriptions of the satellite data discussed

above are only meant to highlight in a very brief manner the
different techniques and their associated gross strengths and
weaknesses. More detailed discussion of the techniques and
shortcomings, along with pertinent validation procedures
and results are given in the references cited above [see also
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Wu et al., 2008, 2009]. Overall, there are three messages to
be conveyed from the above discussion. The first is that,
until recently, the availability of global cloud ice estimates
was limited to IWP based on passive infrared or microwave
techniques (e.g., NOAA, CERES, MODIS, ISCCP). These
products’ known limitations and uncertainties, including
their limited intercomparison and validation, have hampered
their use in constraining modeled cloud ice values. How-
ever, it is noteworthy that the few observed satellite esti-
mates of IWP that have been available for a number of years
tend to exhibit agreement as good, and probably better, than
the GCMs utilized in the most recent IPCC assessment
(Figure 3). The second message is that more recent mea-
surement strategies (e.g., limb-sounding and radar) are
better equipped to probe and characterize internal cloud
properties, such as vertical profiles of IWC, in addition to
obtaining IWP. However, at first glance there appears to be
considerable disagreement between these two new estimates
of cloud IWC as well as disagreement between CloudSat
IWP and those based on passive techniques. This raises the
third message: considerable caution has to be applied when
comparing these estimates owing to the various sensor and
algorithm sensitivities. It is this latter issue that is a focal
point of this article, namely in terms of understanding the
nature of the ice water being measured and judiciously
using these estimates for model diagnosis and validation.

3. Modeled Values

[19] In a manner analogous to the previous section, the
discussion in this section is meant to briefly describe the
considerations typically in place within a GCM that account
for the simulation of frozen hydrometeors in the atmo-
sphere, both cloud ice and precipitating frozen particles.
Relevant concepts and important distinctions include con-
vective versus nonconvective/stratiform clouds, diagnostic
versus prognostic parameterizations, single versus multiple
hydrometeor species, and single versus multimoment char-
acterizations. These issues are highlighted below and then
the features of the ice-cloud parameterizations for the
GCMs examined in this study are briefly described.

3.1. Overview

[20] In GCMs, the atmospheric processes associated with
convective clouds and nonconvective clouds are artificially
separated into cumulus convection and stratiform cloud
schemes. For processes such as cumulus convection and
cloudmicrophysics that occur at scales smaller than the GCM
grid spacing (typically 50–200 km), specific cloud variables
are determined as a function of variables that are defined at
the grid scale, leading to a so-called ‘‘parameterization.’’
Most GCMs (excluding CRM-like frameworks described
below) parameterize deep convection on the basis of a
convective mass fluxes approach. In this approach, temper-
ature and humidity profiles are adjusted to account for
heat sources and moisture sinks directly induced by the
convective mass flux [Arakawa and Schubert, 1974;
Gregory and Rowntree, 1990; Tiedtke, 1989; Zhang and
McFarlane, 1995]. Important to note is that owing to the
observed small spatial scales of cumulus convection, the
influence they have on cloudiness and thus radiation has
often been neglected with the main objective only being

their direct impact on humidity and temperature via latent
heating. Owing to the large spatial scales of stratiform
clouds, GCMs have generally accounted for ‘‘cloudiness,’’
and its effect on radiation, via this part of the model’s
parameterization.
[21] Studies have shown that nonconvective stratiform

clouds (e.g., widespread precipitating anvil clouds and
cirrus outflow) can be produced by the detrainment of
condensed water from cumulus convection. Such connec-
tions within a modeling context have been taken into
account by coupling stratiform cloud and cumulus convec-
tion processes in GCMs [Tiedtke, 1993]. More specifically, a
link is made by including the effects of convection on cloud
generation (i.e., convective detrainment as a source of large-
scale cloud) and allowing dissipation of cloud particles
directly during their formulation. This technique originates
from attempts by Arakawa and Schubert [1974] to allow
detrainment from convective cumulus towers to serve as a
source for nonconvective stratiform clouds. In general, non-
convective stratiform clouds and their condensates are
formed, maintained and dissipated by many processes such
as small-scale turbulence, large-scale vertical motion, con-
vection and cloud microphysical processes. Therefore, any
coupling between convective and stratiform clouds requires
reliable parameterizations of microphysical processes within
the model’s nonconvective regions of stratiform clouds.
[22] When modeling ice clouds, several processes must

be considered in cloud schemes: the formation (e.g., ice
nucleation, water vapor deposition) and possible sedimen-
tation of cloud condensates, the growth and interactions
(e.g., deposition and riming, aggregation) and falling out of
precipitation, the evaporation/sublimation of both clouds
and precipitation, and possibly advection of the cloud
condensates. Owing to computational considerations as well
as our incomplete knowledge of cloud-ice and related fields
and their associated processes, most GCMs utilize fairly
simple representations of ice processes. Figure 6 is a highly
simplified schematic illustrating the most rudimentary fea-
tures and considerations in these representations. It mainly
distinguishes the highly simplified forms in typical GCM
(e.g., Figure 3) used for global weather forecasting as well
as many forms of climate simulation (Figure 6, left) versus a
somewhat common next level of sophistication (Figure 6,
right). In the former, there is consideration of only a single
species of condensate, ‘‘floating’’ cloud ice. In this study,
we use the term ‘‘floating’’ to distinguish it from precipi-
tating ice flux, but acknowledge that a number of climate-
relevant GCMs do allow their cloud ice to undergo sedi-
mentation. Processes within the parameterization, relying on
the large-scale fields, lead to the development and dissipa-
tion of the clouds. In some cases, the processes are treated
rather empirically, and are implicit, in others they are more
explicitly represented [Jakob, 2002]. Important in this class
of parameterizations is that a fraction of condensate is
typically assumed to have grown to a mass/particle size
large enough to be considered precipitation, and is assumed
to immediately fall out, albeit it can moisten lower layers
through evaporation in this fall out process. In such cases,
the GCM typically carries two primary cloud variables,
horizontal cloud fraction and cloud condensate mass, where
the latter is considered floating cloud ice. Such a formula-
tion is also referred to as a single-moment cloud scheme,
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because the number concentration of the ice particles is
prescribed and only the mass is predicted. More complex
formulations, which are more common in regional and
cloud-resolving models (CRMs), include double-moment
parameterizations that also predict number concentrations,
or even more computationally expensive spectral and bin
microphysics that include multiple discrete ice particle
sizes, number concentrations and explicit particle-particle
interactions.
[23] Another level of complexity beyond the simplified

single-species representation in Figure 6 is allowing more
ice condensate species (e.g., snow and graupel). A simpli-
fied representation of this is illustrated in Figure 6b. In this
case, cloud ice is distinguished from snow and graupel by a
consideration of particle size and/or the amount of overall
ice mass, and graupel is distinguished from snow via the ice
growth process during its formation (i.e., deposition or
riming). In these cases, there is typically a prescribed
particle number density for each species, or in more
complex representations this can be predicted as well. For
example, Lohmann and Kärcher [2002] consider the
dependence of ice number density on temperature and
updraft velocity to simulate the cirrus clouds formed by
homogeneous freezing. In addition, schemes of this general
level of complexity typically take particle fall velocities into
more careful consideration, with even the cloud ice subject
to sedimentation. Novel advances in ice microphysics
modeling/parameterization have been made recently by
Morrison and Grabowski [2008] that provide a more
seamless representation of the ice particle distribution
without the artificial boundaries associated with the above
separate species; albeit this scheme still needs to be tested in
a GCM.
[24] A final notion to highlight is that cloud parameter-

ization schemes can be diagnostic, prognostic or a combi-

nation of the two. In a diagnostic approach, cloud variables
and the overall cloud state are determined as a function of
other model variables (such as model resolved wind fields,
temperature, water vapor and relative humidity, etc.). For
this type of approach, there is no cloud memory in succes-
sive model time steps and the relationships between the
state of the cloud field and model state is fully determined.
The simplest example of this kind, a grid-scale condensation
scheme, produces clouds only when the GCM grid box mean
relative humidity reaches a specified threshold (e.g., 100%
[Geleyn, 1980]). In prognostic cloud schemes [e.g., Sundqvist,
1978], the time evolution of cloud variables (e.g., cloud-ice
mass and cloud cover) is predicted on the basis of contri-
butions from: grid-scale advection of the cloud variable
(e.g., through horizontal and vertical wind fields), source
terms (e.g., cumulus convective cloud condensates detrain-
ment) and sink terms (e.g., autoconversion between cloud
condensates and precipitation).

3.2. Models

[25] For the GCMs utilized in this study, the following
two subsections give brief descriptions of their parameter-
izations used to model ice clouds and related processes. The
first subsection contains descriptions for what are simply
referred to as GCMs, which typically rely on ice-cloud
parameterizations of a rather simple form (e.g., Figure 6a;
albeit in some cases the cloud ice itself can sediment
slowly). The second subsection contains descriptions of
two GCMs where there is an attempt, through novel
numerical/conceptual frameworks, to better resolve
cumulus processes. In these two cases, the ice processes
are based on the three-species approach discussed above
(e.g., Figure 6b).
3.2.1. GCMs and Single Species: Cloud Ice
[26] The ECMWF Integrated Forecast System (IFS; ver-

sion 30R1) cloud scheme uses prognostic equations for
cloud cover and total cloud condensate content (i.e., ice and
liquid together). Condensed water species are considered
pure ice at temperatures colder than �23�C and liquid at
temperatures warmer than freezing. Between �23�C and
0�C, the total cloud condensate is divided into ice and liquid
mass by linearly scaling the fraction of the total condensate
by temperature. Two kinds of ice crystals are modeled,
‘‘pure ice’’ (particles < 100 mm) and ‘‘snow’’ (particles >
100 mm). Snow falls out instantly upon formation but is
subject to sublimation and melting in lower levels. Note that
ice particles falling into a cloudy layer are a source for ice in
that layer, whereas ice falling into clear sky is converted
into snow. The scheme considers sources/sinks from con-
vective and nonconvective processes (e.g., turbulence near
cloud edges and resolved-scale ascent/decent), with deep,
shallow and midlevel convective processes represented. The
condensates produced in convective updrafts can be
detrained from the upper cloud layers into the environment.
The formation of clouds by nonconvective processes, on the
other hand, is determined by the balance between the
specific humidity and its saturation value, resolved vertical
ascent of moist air, and/or the diabatic cooling rate (e.g.,
longwave radiation). The scheme considers cloud destruc-
tion through evaporation associated with large-scale and
cumulus-induced descent, diabatic heating (e.g., solar radi-
ation) and turbulent mixing between cloudy air and envi-

Figure 6. Schematic diagram illustrating basic features of
model parameterizations of cloud-related ice for a conven-
tional GCM using (a) a single species microphysics scheme
and (b) a three-species microphysics scheme. The vertical
axes are associated with ice growth processes, and the
horizontal axes are associated with ice mass and/or particle
diameter and also particle fall velocity. In Figure 6a, ice
growth processes are not distinguished and are all
embedded within the simplified parameterization. In Figure
6b, deposition is the primary process associated with cloud
and snow, while riming is the primary processes responsible
for graupel formation. In Figure 6a, cloud ice is assumed to
be floating, i.e., zero fall velocity, and the ice deemed to be
precipitating is removed immediately, i.e., infinite fall
velocity. Shading is an indication of the density of particles.
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ronmental air near the cloud edge. Processes such as
autoconversion, collection and accretion are active in
clouds, with evaporation of precipitation being the active
process outside clouds. The falling/sedimentation rates of
cloud condensate whether they are ice mass, mixed phase or
liquid water clouds depend on temperature and ice particle
size. For this comparison, the IWC include the analyzed
values from both the R30 and R31 versions of the IFS
system, and include periods from August 2005 to July 2006.
[27] The GEOS5 ice cloud scheme is prognostic for cloud

condensate and cloud fraction. Two types of clouds are
distinguished by their condensate source. Anvil clouds
originate from detraining convection and large-scale clouds
originate using a probability density function (PDF) based
on condensation calculations. This scheme directly links
convection to anvil cloud variables by allowing detrained
mass and condensate fluxes from the convective scheme to
be added to the existing condensate and fraction for the
anvil cloud type. For the large-scale clouds, cloud conden-
sation is estimated using a simple PDF of total water
[Rotstayn, 1999; Smith, 1990] and used to update cloud
fraction and condensate. The destruction processes include:
evaporation of cloud condensate and cloud fraction, sedi-
mentation of frozen cloud condensate and accretion of cloud
condensate by falling precipitation. The evaporation of
cloud condensate and cloud fraction is meant to represent
destruction of cloud along edges in contact with cloud-free
air following Del Genio et al. [1996]. Sedimentation speeds
are calculated as in work by Lawrence and Crutzen [1998]
except that their expression for midlatitude clouds is applied
to all ice clouds of the large-scale type, and their expression
for tropical clouds is applied to the anvil type. For this
comparison, the IWCs are based on a simulation using
specified sea surface temperatures (SSTs) for the period
January 1999 to December 2002.
[28] The NCAR Climate Atmosphere Model (CAM 3.0)

cloud scheme uses prognostic equations for two predicted
variables: liquid and ice phase condensate [Rasch and
Kristjansson, 1998; Zhang and McFarlane, 1995]. During
each time step, however, these are combined into a total
condensate and partitioned according to temperature
(described below), but elsewhere function as independent
quantities. The scheme considers condensate sources/sinks
both from grid-scale (e.g., horizontal advective and vertical
motions) and subgrid-scale (e.g., convective and turbulent)
processes. The parameterization has two components: a
macro-scale component that describes the exchange of
water substance between the condensate and the vapor
phase and the associated temperature change arising from
that phase change [Zhang et al., 2003], and a bulk micro-
physical component that controls the conversion from
condensate to precipitate. In its bulk microphysics step,
the total condensate is decomposed into liquid and ice
phases and considered all ice if T < �40�C and all liquid
if T > �10�C. At �40�C < T < �10�C, the phase is
determined with a linear relation in between.
[29] Within the NCAR parameterization, four types of

condensate may exist and are expressed as mixing ratios of
liquid and ice phases for suspended condensate with min-
imal fall speed associated with sedimentation, and liquid
and ice phases for falling condensate (i.e., precipitation).
Only the suspended condensates are carried forward in time,

with precipitation falling out instantaneously. Precipitation
is formed by explicitly considering individual physical
quantities like droplet or ice number concentration, shape
of size distribution of precipitate, etc. The precipitate may
be a mixture of rain and snow, and is treated in diagnostic
form. In addition, the conversion from condensate to
precipitate as well as the evaporation of condensate and
precipitate are parameterized. There is a direct link to the
convective scheme even though the scheme itself does not
include the ice phase (i.e., all detrained condensate is in
liquid form). Convective detrainment can still contribute to
the IWC of the large-scale clouds in the model at cold
temperatures, with a portion of the detrained liquid parti-
tioned into ice according to the temperature considerations
given above. After convection processes and sedimentation
have occurred, the liquid and ice mixing ratios are recalcu-
lated from the total cloud condensate. For the comparisons
presented later in the paper, the IWC values have been
generated by the CAM3 using specified sea surface temper-
atures (SSTs) for the period from 1979 to 1999. While not in
the version presented here, it is worth noting that X. Liu et
al. [2007] have implemented a prognostic equation in
CAM3 for ice crystal number concentration together with
an ice nucleation scheme. The effective radius of ice
crystals is calculated from model-predicted mass and num-
ber of ice crystals rather than as a function of temperature. A
water vapor deposition scheme is added to replace the
condensation and evaporation (C-E) method in the standard
CAM3. The new scheme also removes the temperature-
dependent repartitioning of total water into liquid and ice in
mixed-phase clouds. In addition, ice supersaturation is
allowed. The resulting IWC in the modified CAM3 shows
much better agreement with the MLS values than that in the
standard CAM3 [see X. Liu et al., 2007, Figure 3].
3.2.2. CRM-like GCMs With Multiple Frozen Species:
Clouds, Snow, and Graupel
[30] This section describes two models that utilize the

multispecies ice framework. These two models are of a
different class of GCM, in that they try to more explicitly
account for the representation of subgrid-scale processes.
For this reason, they are referred to collectively in this study
as Cloud-Resolving Model (CRM)-like GCMs. While this
aspect deserves mention, the most relevant point of the
discussion is that their ice microphysical schemes include
representations of cloud ice, snow and graupel, which allow
for an additional consideration in terms of the model-data
comparisons. However, it is important to recognize that the
CRM-like nature of these models is not a requisite to
incorporating this three-species framework into a GCM.
[31] In what is now commonly referred to as the multi-

scale modeling framework (MMF; also known as ‘‘super
parameterization’’), the conventional cloud parameteriza-
tions are replaced with a CRM in each host GCM grid
column [Grabowski, 2001; Khairoutdinov and Randall,
2001; Randall et al., 2003]. The MMF is designed such
that the GCM provides large-scale forcing to a CRM within
each GCM grid column. The CRM then provides subgrid
fluxes, cumulus convection and clouds, etc., to the parent
GCM. This allows for explicit simulation of cloud processes
and their interactions with radiation and surface processes
within the GCM, and a two-way interaction between the
cumulus and large scale. The NASA fvMMF was developed
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using a finite volume GCM (fvGCM) with 2� � 2.5�
resolution and a version of the two-dimensional (2D)
Goddard Cumulus Ensemble (GCE) model [Tao et al.,
2003] embedded in each GCM grid box. The fvMMF
employs a single-moment bulk microphysical scheme with
two liquid (cloud and rain) and three frozen (cloud, snow
and graupel) hydrometeor classes. This six-class (water
vapor plus five hydrometers) bulk scheme includes com-
prehensive microphysical processes among the water vapor
and hydrometeors. The density for solid hydrometeors are
assumed to be 0.917, 0.1, 0.4 g cm�3 for cloud ice, snow
and graupel, respectively (e.g., Figure 6). The sedimentation
processes of precipitating condensates as well as cloud ice
crystals are also considered. For this comparison, the IWC
values are based on simulations with prescribed SSTs for the
months July 1998 and January 1999.
[32] Kuang et al. [2005] proposed a different kind of

approach for improving the cumulus scale called Diabatic
Acceleration and REscaling or Reduced Acceleration in the
VErtical (DARE or RAVE). RAVE is a computationally
efficient method for simulating the interactions of large-
scale atmospheric circulations with deep convection in a 3D
cloud-resolving model by reducing the scale difference
between the large-scale and convective circulations. Data
used in this comparison are from a near-global (70�N, S)
prescribed SST simulation for the period 1998 using the
Weather Research and Forecasting (WRF) model with the
RAVE approach implemented. The horizontal grid spacing
is �80 km, and the RAVE factor is 20. The microphysics

scheme is a single-moment, six-class microphysics scheme
that includes the interaction between water vapor, cloud
water, cloud ice, rain, snow, and graupel [Hong and Lim,
2006]. In this case, the density for snow and graupel are
assumed to be 0.1 and 0.5 g cm�3, respectively, but not a
quantity defined/used for cloud ice in this implementation.

4. Model-Data Comparisons

[33] Before model-data comparisons can be made, a
number of considerations have to be made in terms of
sampling the model output in a manner that leads to the
most meaningful comparison to the retrievals. In this
section, we highlight some of the more notable issues,
including sampling the model output to account for com-
parable populations and the influence of the diurnal cycle,
and considerations of instrument/algorithm sensitivity asso-
ciated with observed IWC thresholds and ranges. We then
focus our discussion on the degree that all frozen hydro-
meteors are represented in the retrieved values as well as
model representations. Aspects of the first two issues as
they pertain to model-data comparisons between MLS and
ECMWF analysis have been discussed by Li et al. [2007]
and will only be touched on briefly here.
[34] To illustrate the importance of proper sampling,

Figure 7 shows the mean and the day minus night (i.e.,
1330–0130 local equatorial crossing time) difference in
MLS IWC at 215 hPa. Evident is the impact of the strong
diurnal cycle of deep convection over the tropical conti-

Figure 7. (a) Mean annual MLS IWC (mg m�3) at 215 hPa for 2007 and (b) the day minus night
difference of the IWC values, where the daytime (nighttime) values come from the ascending
(descending) portion of the orbits having local equatorial crossing times of 1330 local time (0130 local
time). (c and d) Same as Figures 7a and 7b, respectively, except for CloudSat IWC values for 2007 and
for altitude of 11 km (�215 hPa).
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nents, accounting for fluctuations in IWC on the order of
±50% of the mean. Over the tropical oceans, convection
typically peaks in the early morning, accounting for the
opposite sign relative to the land. Figure 7 also shows a
similar result based on CloudSat IWC values, with similar
implications [cf. Liu et al., 2008]. From this standpoint, it is
obvious that a well-posed model-data comparison should
take into account the diurnal sampling consistent with the
satellite sensors, and thus it is necessary to sample the
model output in accordance with the satellite orbit. It should
be noted here that of all the products mentioned in section 2,
a number of the cloud products based on ISCCP (albeit not
IWC owing to its reliance on visible channels) have the
virtue of 3-h sampling giving a much more robust depiction
of the diurnal cycle. Future work might examine the virtues
of combining the strengths of better time-resolved ISCCP
cloud products with the more penetrating retrievals of IWC
from CloudSat and MLS to construct a more comprehensive
characterization of the diurnal cycle of IWC. Li et al. [2007]
illustrated the impact of sampling the 4xdaily ECMWF
analysis according to the MLS orbital sampling pattern. In
that case, the satellite-sampled mean IWC at 215 hPa

differed from the mean of the 4xdaily values in some
tropical regions by up to 25%. Note that such a result will
be strongly dependent on the model depictions of the
diurnal cycle which have been shown to have significant
shortcomings [Dai and Trenberth, 2004; Yang and Slingo,
2001].
[35] A second, and significantly more complex issue that

needs to be considered is the sensor and algorithm sensi-
tivities in conjunction with the model representations.
Figure 8a shows histograms for MLS IWC values at
147 hPa (green solid line). Evident is the lower limit of
MLS sensitivity at about 0.5 mg/m3 and its upper limit of
about 50 mg/m3 that was mentioned in section 2. Note that
histograms for MLS data for a complete year (green solid
line) along with a single month (green dashed line) of data
are shown to illustrate that a month of (A-Train) sampling
provides a representative sample when a large enough
region is considered (in this case global, with the nonzero
values effectively just coming from the tropics). Also shown
is an analogous histogram from CloudSat (black solid line)
that shows the larger lower, and considerably larger upper,
sensitivity limits relative to MLS. Note that both the MLS

Figure 8. (a) Histograms of IWC values at 147 hPa from CloudSat, two periods for MLS, and two
versions of the ECMWF analysis system (R30 and R31) for the periods August 2006, January–
December 2006, August 2006, August 2005 to July 2006, and July 2006, respectively. The MLS and
solid-line CloudSat values are based on raw footprints. The dashed-line CloudSat values are based on
data first aggregated to 1� � 1� grid boxes. (b) CloudSat and ECMWF values shown are same as in
Figure 8a, additions are for GEOS5 (January 2006), and NASA fvMMFs for the periods July 1998,
where the latter includes values of graupel, snow, cloud, and total ice. (c) MLS_IWC values are same as
shown in Figure 8a, labeled as MLS_ANN. CldSat_total values are same as Figure 8a, labeled as
CldSat_R04. Additions are the values associated with surface precipitation (CldSat_P), convective clouds
(CldSat_C), and the CldSat_total values with both CldSat_P and CldSat_C removed (see section 4).
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and CloudSat histograms are based on the inherent sensor
footprint resolutions, with CloudSat’s being a considerably
smaller volume (see section 2).
[36] Values of IWC from two different recent versions of

the ECMWF analysis are also shown (Figure 8, purple solid
and dashed lines); the differences between the two versions
will be discussed in more detail at the end of this section.
The model(s) can have very small to near-zero values of
IWC and in order to make a fair model-data comparison it
may be necessary to set values that are less than the lower
sensitivity limit to zero. Consideration may also be made in
a similar way for the upper bound, meaning one might take
model values larger than the upper sensitivity limit of the
retrievals and reduce them to this (saturation) value. An
example of accounting for such sensitivities in a model-data
comparison is described by Li et al. [2007]. In that case, the
ECMWF instantaneous (i.e., 4� daily analyses) IWC values
less than the MLS lower limit of sensitivity were set to zero
before computing the time-mean values for comparison to
MLS. The impact of the sensitivity sampling was less than
10%, but again, the impact in any given model-data
combination will depend on both the model representation

of the field (e.g., PDF) and the sensitivity limits of the given
retrieval.
[37] If consideration were made to perform the above

procedure on the ECMWF data on the basis of the histo-
gram of the raw CloudSat retrievals, the differences would
be greater than for the case of the MLS-applied sensitivity
limits. This is because CloudSat’s lower sensitivity limit is
larger and thus a greater number of higher IWC values
within the ECMWF would be set to zero leading to a greater
impact on the mean ECMWF values. However, it is
important to point out that for the MLS and ECMWF
case described above, the model and satellite values have
approximately the same spatial resolution (�100 km) and
thus they average over the similar subgrid-scale variability.
On the other hand, CloudSat spatial resolution is consider-
ably smaller; in fact one could say it is sampling the
subgrid-scale of the MLS and ECMWF. To make a fair
comparison, the CloudSat values need to be averaged to a
comparable spatial resolution (Figure 8, black dashed line).
Because this process averages ‘‘clear’’ (relative to Cloud-
Sat’s lower sensitivity limit) and cloudy values, the lower
sensitivity limit is no longer apparent. In fact in the low
IWC regime, the ECMWF and 1� � 1�CloudSat values

Figure 9. Annual and zonal mean values of cloud ice water content (IWC; mg m�3) from (a) NCAR
CAM3 (1979–1999), (b) NASA GEOS5 (January 1999 to December 2002), (c) ECMWF R30 analysis
(August 2005 to July 2006), (d) fvMMF (July 1998 and January 1999), and (e) RAVE GCM (1998).
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show better agreement. (Averaging CloudSat to 2� � 2�
makes only minor changes to the histogram relative to 1� �
1� averaging. Note that the CloudSat and ECMWF data
been averaged over the same vertical extent in this analysis.)
While a direct comparison may be more appropriate
between these two curves (Figure 8, black dashed and
purple lines), the two populations are still biased because
nothing has yet been done to account for the lower sensi-
tivity limit of CloudSat in this case.
[38] Although this alone will not account for the intrinsic

sampling mismatch just discussed, the most ideal manner of
comparison is to construct from the model fields the radar
reflectivity that would be observed by CloudSat and then
perform the IWC retrieval on the constructed reflectivity
(see ISCCP simulator [Klein and Jakob, 1999; Webb et al.,
2001]). This approach has been used to assess CloudSat
IWC retrievals from CRM output with multiple ice species
[Woods et al., 2008] using a 94-GHz radar simulation
package called QuickBeam [Haynes et al., 2007]. To

account for the possible spatial sampling mismatch, it
would be best to average the observed reflectivity values
over a grid box comparable to the model resolution, then
perform the cloud retrieval on them. Then from the PDF of
this population, apply any lower and upper sensitivity limits
of the sensor/algorithm to the model-derived values com-
puted from the above approach.
[39] While the above approach has its strengths, it is not

conducive for assessing most climate and numerical weather
prediction GCMs that only consider cloud ice and not other/
larger frozen hydrometeors (e.g., snow and graupel). In such
cases, the resultant reflectivity, and thus IWC retrieval, will
be intrinsically unrealistic, or else can only be compared to
observed cases where the larger hydrometeors are not
expected or observed in the column. In a few cases, such
as the NASA fvMMF and RAVE GCMs and regional cloud
resolving models (CRMs), the additional constituents are
modeled. This raises questions about what components of
the frozen hydrometeors are represented by the retrievals,

Figure 10. Annual mean values of IWP (gm m�2) for (a) graupel, (b) cloud ice, (c) snow, and (d) their
sum from the RAVE GCM, along with (f) their zonal mean values and (e) percent contribution of each of
the constituents to the total ice (middle right) (black, total; red, snow; blue, graupel; green, cloud ice).
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and then in turn, how they can be judiciously used to
compare to the models. For example, in section 2, it is
mentioned that CloudSat is expected to be sensitive to these
larger hydrometeors and thus represent more than just
(floating) cloud ice water content. Meanwhile, the charac-
teristics of MLS sampling (see section 2) make it appear to
be more representative of just the cloud ice. It is imperative
to consider these issues to utilize the data for model
comparison and validation.
[40] Figure 9 shows zonal and annual mean values of

IWC from three GCMs that only carry/simulate cloud ice,
NCAR-CAM3, GEOS5, and ECMWF, in addition to the
cloud-ice only components of the two CRM-like GCMs,
RAVE and fvMMF. There are two main areas of disagree-
ment among these models. First, there is discrepancy in the
overall magnitude of about a factor of two to three. Second,
their spatial distribution with respect to height is consider-
ably different. Apart from their spatial distribution, it should
be pointed out from Figure 8 that the histogram of the three
cloud ice fields from GEOS5, ECMWF, and fvMMF have

considerably different structures, particularly on the high
end, although this part of the distribution is particularly
sensitive to the grid resolution which are not identical in
these models. These characteristics beg the question, do
CloudSat and/or MLS data provide the means to discrimi-
nate which of these distributions is more realistic? Compar-
ing to Figure 5, it is evident that the CloudSat zonal mean
values are quite different, for example, much larger in
magnitude, than any of these model distributions. However,
as mentioned above, CloudSat is expected to be sensitive to
larger frozen hydrometeors that are not part of the repre-
sentation in many model distributions, for example those
shown in Figure 9. On the other hand, the magnitudes of the
IWC in the MLS zonal average profile shown in Figure 5
which are thought to be more representative of cloud ice for
the reasons mentioned in section 2, are much closer to the
modeled values.
[41] To shed additional light on these model-data com-

parisons, Figures 10 and 11 show multicomponent IWP
distributions of the frozen hydrometeors simulated by two

Figure 11. Same as Figure 10, except for NASA fvMMF.
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Figure 12. Annual and zonal mean values of IWC (mg m�3) for (a and e) graupel, (b and f) cloud ice,
(c and g) snow, and (d and h) their sum from the (left) RAVE and (right) NASA fvMMF GCM. Dotted
line in Figures 12d and 12h at 300 hPa is for purposes of comparison to Figure 5.
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CRM-like GCMs, RAVE and fvMMF, respectively. For
each model, the annual mean values of graupel, cloud ice,
snow and total IWP are shown as horizontal maps. Also
shown are the zonal mean values and the percent contribu-
tion of each constituent to the total. As there are yet no
global observations that claim to readily distinguish these
various components, the model distributions are being used
here as somewhat of a guide, since their model microphys-
ics were developed in consideration of field experiments/
data, albeit temporally and spatially sparse. In general
agreement between these two models are the following

features: the total, graupel and snow IWP distributions have
overall magnitudes that agree relatively well between the
two models. There is a considerable difference in the magni-
tudes of the cloud IWP as was also evident in Figure 9.
There is a considerable difference in the magnitudes of the
cloud IWP as was also evident in Figure 9. Beyond this
there are considerable differences in the regional-scale
features of the distributions. Most important for this dis-
cussion, are the relative contributions of the various frozen
hydrometeor components to the total IWP. In the RAVE
GCM, each component represents about 30% of the total

Figure 13. Annual and zonal mean values of CloudSat IWC (mg m�3) when considering (a) clear cases
and those with IWC > 0 but flagged as having no precipitation at the surface (NP), (b) cases flagged as
nonconvective clouds (NC), and (c) those cases that meet either of these criteria (NP & NC). (d, e, and f)
Same as Figures 13a, 13b, and 13c, respectively, except for different plotting format for comparison to
MLS inset in Figure 5c.
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frozen mass in the tropics, while in the fvMMF, the graupel,
snow and cloud are about 50%, 30% and 10%, respectively.
Thus in the case of these two models, the overall message is
that each of the three frozen components contributes a
sizable fraction to the overall total. If this is the case in
nature, this must be considered in regards to applying the
satellite retrievals, interpreting the model-data comparisons
and in particular designing new observing systems. An
interesting feature is that the magnitude and spatial distri-
bution of the total IWP somewhat resembles the CloudSat
IWP (and to some degree the MODIS and CERES) values
that are shown in Figure 4, with the reminder that CloudSat
is sensitive and may be accounting for most of the larger
frozen hydrometeors and larger IWC values.
[42] Figure 12 shows the zonal and annual mean vertical

profiles of IWC from the two CRM-like GCMs. Except for
the distributions of cloud ice, the distributions for the other
frozen components from the two models agree relatively
well, particularly given the complete lack of global obser-
vations that would adequately guide and constrain GCM
development in this area. Notable is the relatively good
agreement in the total IWC values in Figure 12, namely in
terms of general morphology and magnitude, with those of
CloudSat shown in Figure 5. Moreover, Figure 8 shows that
there tends to be slightly better agreement between the
CloudSat (1� � 1�) histogram (black dashed line) and the
fvMMF total IWC (solid thick blue line) than with that of
any other constituent. However, one item worth pointing out
is the differences in vertical distribution, particularly with
respect to the tropics. For CloudSat, the greatest concentra-
tion of IWC is between 250 and 400 hPa, while for the
models the peak values are found around 500–600 hPa.

Presuming such distributions relate in some way to the
latent and radiative heating profiles, this disagreement is
somewhat troubling and might indicate shortcomings in the
underlying microphysical schemes in these models as they
relate to convection and the large-scale circulation. Consid-
eration should also be given to the possibility that the height
of the peak CloudSat values might also be artificially
influenced by the algorithm’s method of (linearly) combining
the liquid and ice water retrieval solutions via temperature.
[43] The results described above indicate that CloudSat

IWC values may be a useful estimate of total IWP, at least
for the purposes of representing a very preliminary and
somewhat qualitative form of validation for models that
carry a more comprehensive system of frozen hydrome-
teors. However, this still does not provide a constraint on
the cloud ice component that is typically the only compo-
nent represented in many GCMs (i.e., Figure 6) and to the
extent MLS might provide such a constraint, the latter is
very limited in vertical extent. To help address this problem,
it is possible to make judicious subsets of the CloudSat data
based on additional flags and information in the retrieval
products [Stephens et al., 2008]. The additional information
used here includes the cloud classification (e.g., cirrus, deep
convective, altostratus) which is given for each (cloudy)
retrieval and the flag that indicates whether surface precip-
itation is detected which is given for each profile.
[44] The specific subsampling/filtering employed here is

to recalculate the average (e.g., zonal and annual mean)
IWC in three different ways: (1) excluding all the retrievals
in any profile that is flagged as precipitating at the surface
(NP), (2) excluding the retrievals that are flagged as
‘‘convective’’ (NC), where ‘‘convective’’ includes the

Figure 14. Annual and zonal mean values of CloudSat sampling frequency for cases that are flagged as
having (a) precipitation at the surface, (b) convective clouds (cumulus + deep convection), and (c) either
conditions from Figure 14a or 14b. (d) Total number of CloudSat samples (i.e., retrievals) that are used in
computing the zonal and annual average total IWC (Figure 5d). Note that the increase in the number of
samples with decreasing pressure is due to the mapping from CloudSat’s constant height resolution to the
pressure coordinate used in this analysis. Figures 14a–14c show the percentage of the total number of
samples (i.e., Figure 14d) removed for computing Figures 13a–13c.
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‘‘deep convection’’ and ‘‘cumulus’’ cloud classification, and
(3) excluding retrievals that meet either of these conditions
(NP and NC). For example, the NP case includes all IWC =
0 (i.e., clear) and the IWC > 0 retrievals that did not have
precipitation detected at the surface. Figure 13 shows the
annual and zonal mean of the CloudSat IWC NP, NC and
NP and NC values. Figure 14 shows the total number of
CloudSat samples (Figure 14d) and the percentage of total
samples removed in the three different subsampling proce-
dures (Figures 14a–14c). In regions of appreciable IWC
(see Figure 5), the samples removed account for about 5–
30% of the total samples. Figure 8c shows the part of the
IWC distribution from that is removed by the above
filtering. The main impact is to remove the larger IWC
values (those typically above the sensitivity of MLS), with
the number of values being reduced by a factor of about 2,
and up to a factor about 5 for the largest values. Evident
from Figure 8c is that the CloudSat NP and NC case and
MLS have an overlapping range of sensitivity of roughly
2–50 g m�3, which would include all but very thin cirrus
and of course a reduced sampling of the very high IWC
values. Keep in mind that the amount of small-value IWC
mass (e.g., thin cirrus) that CloudSat misses, which is not
affected by the filtering in any case, is estimated to be less
than 10% (see Figure 5 and discussion by Wu et al. [2009]).
[45] For interpretation of Figure 13, it is useful to start

with the most stringently filtered case, i.e., NP and NC. In
this case, the IWC is considerably lower than the total
shown in Figure 5. In some regions, the reduction in IWC is
well over 50% through the exclusion of the cases that
exhibit precipitation at the surface and those denoted as
convective. Both of these excluded cases would be expected

to contain significant amounts of large frozen hydrometeors
(e.g., snow, graupel). In support of this, Figure 8c shows
that most of the removed IWC values are those with the
largest values. For the NC case, there is a significant
increase in IWC in the midlatitudes over the NP and NC
case. Because the midlatitude synoptic regime more readily
allows for precipitation without convection, the IWC
retained is considerably greater, in fact very near the
original total in Figure 5. However, including the precipi-
tating cases does not have a significant impact in the
Tropics because most precipitation is associated with con-
vection. This is why all three cases tend to be the same for
the tropics; that is, they retain only about 30% of total cloud
ice observed by CloudSat (Figure 5). Interestingly, this
fraction of retained ice, inferred here to be more represen-
tative of the (suspended) cloud ice, is within a factor of 2 or
so of the same fraction of cloud to total ice as in the two
CRM-like GCMs.
[46] The main point of the discussion above is that with

the additional constraints applied to CloudSat IWC, for
example, NP and NC, the values are more likely to reflect
only ice content within clouds with significantly less
contribution from graupel and snow [cf. Stephens et al.,
2008]. Additionally, these constrained values have a strong
resemblance to the tropical values estimated by MLS. This
can be seen by comparing the MLS IWC values shown in
the inset panel of Figure 5 to Figures 13d, 13e, and 13f,
which are the same as Figures 13a, 13b, and 13c but plotted
in a manner that can be more readily compared to the MLS
values. The agreement between these two observational
resources, along with an understanding of their sampling
characteristics/constraints, indicates that these might serve
as a preliminary guide for evaluating GCM-simulated cloud
ice which is typically the floating/suspended constituent
(albeit in some cases with small sedimentation velocities but
yet typically not considered precipitation).
[47] One such comparison is derived by comparing the

IWP estimate from CloudSat, with the NP and NC con-
straints applied, shown in Figure 15 to the GCM-simulated
values of (cloud-only) IWP in Figure 3. This tentative
comparison indicates that about a third of the models that
contributed to the IPCC Fourth Assessment do a fair job at
representing the pattern and magnitude of IWP (i.e., BCCR,
CNRM, GFDL2.0, MIROCHR, MIROCMR, MPI), and a
few that significantly underestimate the IWP (i.e., INMCM,
CCCMAT63, NCAR, IAP). There are a few that greatly
overestimate the IWP, such as the two GISS versions, IPSL
and to some extent CSIRO. The two UKMO versions
appear to greatly underestimate (overestimate) IWP in the
Tropics (extratropics). While these comparisons are illus-
trative of the possible shortcomings related to clouds and
their feedbacks, it is useful to consider these in conjunction
with similar comparisons to the cloud liquid water path [Li
et al., 2008].
[48] A second comparison is given in Figure 16 that

shows the IWC field at 215 hPa from MLS and from
CloudSat with the NP and NC constraints applied, along
with the GEOS5 and NCAR CAM3 GCMs, and the
ECMWF R30 analysis. Within the context of this compar-
ison, the two GCMs perform relatively well, considering the
wide disparity displayed in the first MLS-GCM compar-
isons [Li et al., 2005]. It is worth noting that while the

Figure 15. (a) Mean annual IWP (gm m�2) for CloudSat
values flagged as either nonprecipitating (NP) or noncon-
vective (NC) (August 2006 to July 2007). (b) Same, except
with color scale matching Figure 3.
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ECMWF analysis R30 values are considerably less than the
two satellite-derived values, efforts were undertaken to
increase the cloud ice as well as upper tropospheric water
vapor through improved microphysics based on the arrival
of MLS data and associated comparisons [Li et al., 2007].
The improvement, relative to the MLS estimates, is illus-
trated in Figure 17 and Figure 8. The changes in the cloud
ice microphysics for this model, which is in the category
represented in left side of Figure 6, involved allowing ice-
phase supersaturation and a new scheme for ice crystal
sedimentation and snow autoconversion rate [Tompkins et
al., 2007], with the latter counteracting the expected
decreases in IWC from the former and leading to an overall
increase in IWC. While the former condition would typi-
cally reduce the amount of IWC, the slowing of the rates in
the latter revision accounted for the overall increase in IWC,
and the better agreement with the satellite-derived values.

[49] As a means of reemphasizing the challenge at hand
with respect to modeling and measuring cloud ice and
making comparisons between the two, putting our prelim-
inary results in this context, and indicating areas of needed
work, Figure 18 shows a bar chart illustrating the global,
extratropical and tropical mean IWP values for the GCM
shown in Figure 3, a number of the satellite retrievals
including our subsampled version of CloudSat, and
ECMWF. As with Figure 1, wide model disagreement is
quite evident, and as with Figure 3, the disagreement is
exacerbated with considering regional values, in this case
just distinguishing between tropical and extratropical aver-
ages. In the case of the latter, this plot demonstrates that
except for a few of the GCMs, most models have extra-
tropical IWP values that are considerably larger than the
tropical values by often factors of 2 or more. When
considering the ‘‘observed’’ values, most retrievals show

Figure 16. Mean annual IWC (mg m�3) at 215 hPa for (a) MLS (2007), (b) CloudSat values flagged as
either nonprecipitating (NP) or nonconvective (NC) (August 2006 to July 2007), (c) GEOS5 (January
1999 to December 2002), (d) ECMWF analysis R30 (August 2005 to July 2006), and (e) NCAR CAM3
(1979–1999).
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the extratropical and tropical values to be similar, except for
the ISCCP values which exhibit larger extratropical values
as well. In general, the CloudSat total values are not too
different than the MODIS values, but a factor of two, or
more, larger than the ISCCP, NOAA/NESDIS and ECMWF
values. The latter being one of the few cases that have an
extratropical average considerably less than the tropical
value. As demonstrated above, the NP and NC subsampled
version of CloudSat, suggested to be a slightly better

representation of just the cloud ice component of the IWP,
is about one third or so of the CloudSat total IWP. To the
extent the subsampled version is a better rough IWP
estimate, many models are within about a factor of 2 of
this value, although they themselves differ by well over a
factor of 4 and actually a factor of 20 when considering the
outliers, and their extratropical to tropical average ranges
between about 1 to 5. These issues point to the need for
continued work in refining both the retrievals and the model

Figure 17. Mean May–July 2006 IWC (mg m�3) at 215 hPa for (a) ECMWF analysis R30, (b) R31,
(c) the relative percent change ((R31 - R30)/R31 � 100), and (d) the overlapping MLS values.

Figure 18. Global (blue), tropical (30�N–30�S; red) and extratropical (>30�N,S; yellow) spatial mean
values of cloud IWP (kg m�2) for the GCM simulations shown in Figure 3, a subset of the satellite
retrievals shown in Figure 4, and the CloudSat NP and NC filtered values shown in Figure 15, and the
ECMWF values shown in Figure 17b. Note that the blue (yellow) bars of GISSEH and GISSER that
extend above the top of the plot have values of 0.21 and 0.22 (0.34 and 0.36), respectively.
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[Morrison and Grabowski, 2008] representations, and in
doing so, striving to make them more consistent and readily
comparable. These issues are discussed in section 5.

5. Summary and Discussion

[50] The accurate simulation of tropospheric ice clouds in
GCMs continues to represent a significant challenge to the
model development community. Shortcomings in the rep-
resentation of these clouds impacts both the latent and
radiative heating processes, and in turn the circulation
and the energy and water cycles, leading to errors in weather
and climate forecasts and to uncertainties in quantifying
cloud feedbacks associated with global change (e.g.,
Figures 1 and 3). Much of the challenge has been associated
with a lack of high-quality, global observations of ice clouds
and related quantities. While retrievals from passive nadir-
viewing sensors have been available for some time (see
section 2), their cloud ice retrievals provide little vertical
structure information (albeit three levels from ISCCP), have
thus been generally limited to estimates of IWP, are severely
hampered in multilevel cloud systems, and have undergone
little systematic comparison and validation (e.g., Figures 2
and 4). Despite these shortcomings, model development has
progressed over the last decade in terms of more models
including prognostic cloud schemes and introducing more
sophisticated microphysics representations (e.g., section 3
and Figure 6). With the arrival of the EOS-era of satellite
measurements, considerable new resources have become
available to help address this problem. These include the
moderate spectral and high spatial resolution of MODIS
(see section 2) and the stereoscopic capabilities of MISR
[Diner et al., 1989]. Most relevant however to the chal-
lenges associated with cloud ice have been the products
introduced by MLS and CloudSat, and soon CALIPSO (see
section 2). These latter products include vertically resolved
estimates of IWC (e.g., Figure 5) and have allowed for the
first time global-scale comparisons of observed ice mass at a
given level to GCM representations [Li et al., 2005].
[51] The arrival of these new cloud ice products heralds a

new era for model diagnosis, development and validation
with respect to cloud mass, structure and microphysical
characterization. However, exploiting the measurements/
retrievals comes with considerable challenges, since both
the observing systems and the present model parameter-
izations and frameworks related to cloud ice have largely
developed independently of each other. Thus, it is not a
simple matter of comparing the model output with the
retrieved quantities, as might be the case for more straight-
forward quantities like sea surface temperature, top of the
atmosphere radiation, or total column water vapor. The
algorithm teams are still in the process of characterizing
and validating their observed estimates [Stephens et al.,
2008; Wu et al., 2009] and GCMs exhibit considerable
variation in their representations of ice clouds [e.g., Jakob,
2002, section 3], meaning even comparisons among the
retrievals themselves [e.g., Wu et al., 2009, Figure 4] or the
models themselves is fraught with challenges. In the case of
the former, the retrievals/sensors often have very different
detection and particle size sensitivities, as well as spatial/
temporal sampling characteristics. The background, results
and discussion in this paper are meant to bring the model

and satellite communities closer in order to make more
rapid progress on this problem. Very fundamental yet basic
information on the satellite side of the problem as well as
the modeling side is presented so that greater common
ground can be found for coordinating research and devel-
opment in this area.
[52] The most fundamental question addressed in this

paper is can the MLS and/or CloudSat IWC be used to
evaluate IWC values from GCMs? With this, comes dis-
cussion of what are the considerations that must be made to
make meaningful comparisons between the models and the
retrievals. Inherent to this challenge is that the sensitivity and
sampling characteristics of the instruments (e.g., Figures 7
and 8) make their products only applicable to certain
components and/or ranges of IWC. For example, MLS
tends to represent IWC in the low to medium range of
values (e.g., 0.5 to 50 mg m�3), and because it samples only
the upper most levels of the troposphere where precipitation
and mixed phase have less influence, might be most
representative of the cloud ice field (see section 2 and Wu
et al. [2009]). On the other hand, CloudSat is much less
sensitive to the smaller IWC values and is sensitive to larger
hydrometeors and IWC values (see Figure 8).
[53] Using our present understanding of the strengths and

limitations of the IWC values from MLS and CloudSat,
along with knowledge and findings regarding the model ice
fields, the analysis works to constrain how the data can best
be applied for model evaluation. A chief consideration is the
degree the floating (or slowly sedimenting; i.e., cloud) and
precipitating (e.g., snow, graupel) hydrometeor fields are
represented. For example, typically GCMs represent and/or
output the ice associated with clouds, with a few GCMs that
explicitly represent precipitating hydrometeors as well (i.e.,
Figures 9–12). On the basis of the information at hand at
this time and a number of qualitative inferences, the find-
ings in this study lead to the suggestion that CloudSat IWC
might provide a rough estimate of the total IWC field (i.e.,
including cloud, snow, graupel) that can be compared to
GCMs that carry/simulate a more complete budget of the
total ice field (Figures 4, 5, and 10–12). In addition, MLS
IWC, along with judiciously subsampled CloudSat IWC,
might provide a preliminary estimate of IWC associated
with ice clouds in a GCM (Figures 13–16, including con-
tributing models to the IPCC assessments, e.g., Figure 3).
[54] The subsampled CloudSat values (NP and NC)

exclude retrievals that have either surface precipitation
detected or that are identified as convective (i.e., deep
convection or cumulus). The motivation is to develop a
preliminary way to limit the contribution from larger, and
thus typically falling, frozen hydrometeors. The caveats to
this approach are that surface precipitation is not an ideal
indicator of surface precipitation in the column; thus there
may in fact be precipitation at upper levels that does not
manifest precipitation at the surface owing to reevaporation
and advection. Moreover, there is not a one-to-one relation-
ship between precipitation and/or convective clouds and the
larger, falling hydrometeors, which one might attempt to
remove from the retrievals in order to better compare to the
models. An additional caveat is that in the present analysis,
the models were not subsampled in the same way. This is
not trivial to carry out owing to the differences in spatial
sampling between the retrievals and the model, as well as
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the sensor/algorithm sensitivity that must be replicated to
some degree when applying the analogous procedure to the
model (i.e., applying a precipitation threshold to the model
but taking into account the differences in spatial sampling).
[55] Future work involves taking the above considera-

tions into account, namely by applying the CloudSat radar
simulator [Haynes et al., 2007] and retrieval to the model
output. Such an approach accounts for most of the assump-
tions in the retrieval and most aspects of the sensor
sensitivity, and can help to match temporal sampling issues
if properly applied. However, it must be emphasized that the
output from the CloudSat radar simulator will only exhibit
signals from the hydrometeors represented in the model.
Thus, if a model’s ice fields do not contain graupel and
snow for example, simulator output is not representing the
same information/fields as in the CloudSat observations.
Apart from this, there can still be issues of spatial sampling
mismatch that are not easily accounted for (e.g., typical
GCMs are not representing cumulus on the kilometer scale
like CloudSat). In any case, at the present time, the amount
of new/unique information is tremendous, relative to the
case without the recent products from CloudSat, MLS etc.
Again, it has to be stressed that these new retrieval products
are still undergoing characterization and our community is
just beginning to learn how to apply these retrievals to
model-data comparisons. In any case, the limited capabili-
ties of previous estimates (e.g., only IWP), coupled with
their relatively poor agreement (e.g., Figure 4), along with
the critical need to provide some form of model constraint/
validation for what has largely been an unconstrained yet
important quantity (model-model discrepancies of factors of
10 or more), dictates that even preliminary model-data com-
parisons along the lines discussed here be performed and
provided with these new resources with some expediency.
[56] There are a number of additional avenues that could

and/or need to be explored in order to refine the types of
preliminary comparisons presented in this study. On the
observational side, additional validation studies, particularly
those that may offer cross comparison and validation of
MLS, CloudSat and CALIPSO, to help enhance confidence
and characterization of the retrievals. The fact that these
sensors fly in formation makes this a relatively productive
and efficient undertaking. In addition, if more specific
information could be relayed regarding a given product’s
applicability and/or sensitivity to quantities explicitly rep-
resented in models (e.g., cloud ice alone, snow, graupel), the
easier it will be to extend and interpret these types of
studies. Further, developing auxiliary products, such as
the CloudSat cloud classification flags, and or learning to
use other complementary A-Train sensors, may help
immensely to characterize the context of the measurement
and further refine the data-model comparison. For example,
CloudSat provides particle size distribution (PSD) parame-
ters as part of their retrievals. We have explored the use of
these to reconstruct the size distribution and separate icemass
contributions from small and large particles to facilitate
model-data comparisons (C. P. Woods et al., Partitioning
CloudSat ice water content for comparison with upper-
tropospheric cloud ice in global atmospheric models, sub-
mitted toGeophysical Research Letters, 2009). Another very
complimentary data set/methodology to explore in the pres-

ent context is the hydrometer profile estimates from TRMM
which are thought to represent precipitating ice particles
[Jiang and Zipser, 2006]. As we continue to learn about
the strengths of the current data and where hard limitations
exist, follow-on mission design should be particularly
cognizant of the model quantities and specific validation
needs. Having additional microphysical information (e.g.,
particle size) or dynamic information (e.g., vertical velocity)
would be exceptionally helpful for further guiding and
validating model development.
[57] As with the observation side, a clear(er) articulation

by the modelers of the mass and particle size ranges being
represented in the cloud parameterizations is needed to
make the model-data comparisons most meaningful. Simi-
larly, for the models that tend to only represent and output
their cloud ice values, it would be useful to output the ice
mass that is presumed to have precipitated out on a level-by-
level basis. This is a quantity that is not typically output but
yet may provide through the use of CloudSat IWC an
additional constraint on the model’s ice physics. Beyond
just getting the mean fields of ice mass correct, it will also
be important to explore and validate in greater detail the
distributions of ice mass values (e.g., Figure 8), paying
close attention to equitable sampling methodologies. Note
that the recent ice microphysics scheme of Morrison and
Grabowski [2008] takes a novel approach at representing a
more seamless distribution of ice in the atmosphere without
the artificial categories such as cloud, graupel and snow.
Schemes such as this lend themselves better to comparisons
to the types of retrievals presented here. Finally, for those
models that carry a more comprehensive range of frozen
hydrometer mass (e.g., cloud, snow, graupel), it would be
helpful if the modelers considered the incorporation or use
of QuickBeam [Haynes et al., 2007] and the CloudSat
retrieval algorithm(s) to allow for a close correspondence
between model and observed quantities. Overall the chal-
lenge is quite clear regarding our model simulations of
cloud ice (e.g., Figures 1 and 3) but given the new A-Train
resources in hand, in conjunction with those from a number
of others that bring complementary information (e.g., see
those in Figure 4), we should expect to see a significant
reduction in the shortcomings associated with our cloud ice
simulations and in the uncertainties associated with (high)
cloud climate change feedback by the time of the next IPCC
assessment report. An encouraging sign is that ECMWF has
already introduced changes that bring their IFS system into
better alignment with the available observations, and the
latter have also played a role in the recent development of
the GEOS5 GCM which also exhibits quantitatively good
model-data agreement (e.g., Figures 16 and 17).
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