Upward shift of the general circulation in response to climate warming

Paul O'Gorman, MIT

In collaboration with Martin Singh, MIT

March 2012

Many aspects of circulation shift upwards with warming in CRM and GCM simulations

Radiative convective equilibria in cloud resolving model

Tompkins and Craig, J. Climate, 1999

Upward shift with warming

- Is the upward shift a property of the moist governing equations?
- If so, can we use it to predict the vertical structure of the response of the general circulation to warming?

Upward-shift transformation

Given a (time-dependent) solution to the primitive equations:

 $u(\lambda,\phi,p)$

Can we find another transformed solution that is shifted upwards:

$$u'(\lambda, \phi, p) = u(\lambda, \phi, \beta p)$$

...where $\beta > 1$ corresponds to an upward shift

Transformed solution: Dry primitive equations

$$u'(\lambda, \phi, p) = u(\lambda, \phi, \beta p)$$
$$v'(\lambda, \phi, p) = v(\lambda, \phi, \beta p)$$
$$\omega'(\lambda, \phi, p) = \frac{\omega(\lambda, \phi, \beta p)}{\beta}$$
$$T'(\lambda, \phi, p) = T(\lambda, \phi, \beta p)$$

...where $\beta > 1$ corresponds to an upward shift

cf. Garner JAS 2007

Transformed solution: Dry primitive equations

$$\begin{split} u'(\lambda, \phi, p) &= u(\lambda, \phi, \beta p) \\ v'(\lambda, \phi, p) &= v(\lambda, \phi, \beta p) \\ \omega'(\lambda, \phi, p) &= \frac{\omega(\lambda, \phi, \beta p)}{\beta} \end{split} \text{Veakening of vertical velocities} \\ T'(\lambda, \phi, p) &= T(\lambda, \phi, \beta p) \end{split}$$

...where $\beta > 1$ corresponds to an upward shift

Moist primitive equations are more difficult

$$u'(\lambda, \phi, p) = u(\lambda, \phi, \beta p)$$

$$v'(\lambda, \phi, p) = v(\lambda, \phi, \beta p)$$

$$\omega'(\lambda, \phi, p) = \frac{\omega(\lambda, \phi, \beta p)}{\beta}$$
Pot. temp. offset
$$T'(\lambda, \phi, p) = T(\lambda, \phi, \beta p) - \Delta \theta \Pi(\beta p)$$

$$\mathcal{R}(\lambda, \phi, p) = \mathcal{R}(\lambda, \phi, \beta p)$$
Relative humidity
$$\Pi = (p/p_0)^{\frac{R}{C_p}}$$

Moist transformed solution valid for saturated and unsaturated motions

Valid if:

$$\Delta \theta = \left(\frac{\beta - 1}{\beta}\right) \left(\frac{R_v}{L_v}\right) T\theta$$

which ensures saturation specific humidity transforms correctly

$$q'_s(x, y, p) = q_s(x, y, \beta p)$$

But then need $T\theta$ approximately constant....

Radiative cooling term

Also need radiative cooling to shift upwards:

$$\dot{Q}'_{rad}(p) = \dot{Q}_{rad}(\beta p)$$

Some support from FAT hypothesis (Hartmann & Larson, 2002)

Remaining free parameter β is set by the change in near-surface temperature

$$\delta T_{BL} \simeq (\beta - 1) \left[p \frac{\partial T}{\partial p} - e_s \frac{dT}{de_s} \right]$$

$$\frac{\beta - 1}{\delta T} \approx 0.05 \ \mathrm{K}^{-1}$$

Other surface boundary conditions may not be satisfied

First test: pseudoadiabatic parcel ascents

Transformation reproduces pseudoadiabatic parcel ascent under 2K increase in SST

Error small (<2%) except for very high temperatures

Apply to simulations with idealized moist GCM

- Aquaplanet with prescribed SST distribution a function of latitude
- GFDL dynamical core, Betts-Miller like convection (Frierson 2007), no clouds or ice
- Idealized radiation scheme that conforms to upward shift transformation (radiative cooling a function of specific humidity)
- Increase SST by 2K

Idealized GCM: change in temperature (K)

Simulations

Transformation

Fit β at each latitude

Changes in lapse rate (K/km) mostly reproduced

Simulations

Transformation

Captures weakening in streamfunction (10⁹ kg s⁻¹)

Problem with zonal wind (m/s)

Meridional wind (m/s) is well captured

Zonal wind variance (m²s⁻²) mostly captured

Meridional wind variance (m²s⁻²) mostly captured

Detailed changes in relative humidity are captured

Next apply to CMIP3 simulations under AIB

CMIP3 multimodel mean: similar to idealized GCM but worse agreement in lower troposphere

Relative humidity changes captured in middle and upper troposphere

Conclusions

- Upward shift a robust response to warming in many variables in both GCMs and CRMs
- Found upward-shifted solution for moist primitive equations
 - Temperature is not just shifted upwards
 - Pressure vertical velocity weakens with warming
- Captures many features of vertical structure of response; Provides framework (based on governing equations) to analyze circulation response more generally