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ABSTRACT

For a linearized system such as ]c/]t 5 Mc, singular vector analysis can be used to find patterns that give
the largest or smallest ratios between the sizes of Mc and c. Such analyses have applications to a wide range
of atmosphere–ocean problems. The resulting singular vectors, however, depend on the norm used to measure
the sizes of Mc and c, as noted in various applications. This causes complications because the choices of norm
are generally nonunique. Based on perturbation theory, a derivation of how singular vectors change with norms
typically used in the atmosphere–ocean literature is provided, and it is shown that the norm dependences observed
in previous studies can be understood as general properties of singular vectors. This will hopefully clarify the
interpretation of these observed norm dependencies, and provide guidance to new studies on how singular vectors
would vary for different norms. It is further argued, based on these results, that there may not be as much norm-
related ambiguity in problems, such as designing targeted observations or ensemble forecasts, as is often assigned
to them.

1. Introduction

Singular vectors are useful tools for a wide range of
atmosphere–ocean problems. Singular vectors with rap-
id growth have been invoked to explain phenomena
ranging from extratropical cyclogenesis (Farrell 1989)
to El Niño–Southern Oscillation (ENSO; Penland and
Sardeshmukh 1995), and have been used to understand
the predictability of weather systems (Molteni and
Palmer 1993) and coupled atmosphere–ocean systems
(Moore and Kleeman 1996), to construct initial pertur-
bations of ensemble weather forecasts (Molteni et al.
1996; Ehrendorfer and Tribbia 1997), as well as to de-
sign targeted observations for prediction (Palmer et al.
1998). Singular vectors with small time tendencies, on
the other hand, have been used to study, for example,
the low-frequency atmospheric variability (Navarra
1993; Goodman and Marshall 2002).

One complication often encountered when using sin-
gular vectors is their dependence on the norms used for
their derivation. This has been widely noted and dis-
cussed (Palmer et al. 1998; Thompson 1998; Errico
2000; Goodman and Marshall 2002; Kim and Morgan
2002). Such dependence casts ambiguity on the deter-
mination of singular vectors because choices of norm
are in general not unique. This is quite problematic,
particularly for targeted observations, because the op-
timal locations for targeted observations may vary sub-
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stantially for different, but equally plausible, norm
choices.

The goal of this paper is to provide a general under-
standing of this norm dependence. We shall begin with
a brief introduction to singular vectors and their appli-
cations (section 2). The various norm dependences, as
documented in the atmosphere–ocean literature, are
summarized in section 3. In section 4, we derive the
general norm dependence of singular vectors based on
perturbation theory. Using these results, the norm de-
pendence exhibited by singular vectors in various sys-
tems described in section 3 can be understood as general
properties of these vectors (section 5). We conclude with
a summary of the main results (section 6). Additional
discussions for mathematical completeness are included
in the appendix.

2. A brief introduction to singular vectors

Consider the linearized problem

]
c 5 Mc, (1)

]t

where c is a size N vector describing the state of the
system and M is the N 3 N linear tendency matrix. Using
singular value decomposition, one may decompose M
as ULV*, where the superscript asterisk denotes the
adjoint; U and V are unitary matrices and their columns
will be referred to as the left and right singular vectors,
respectively; L is diagonal; and the jth diagonal element
of L, sj, is the singular value associated with the jth
pair of left and right singular vectors, so that Mvj 5 sjuj.
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The singular values are real and nonnegative. Clearly,
columns of U and V are also the eigenvectors of matrices
Au 5 MM* and Ay 5 M*M, respectively, with the di-
agonal elements of L2 being the eigenvalues of Au and
Ay. For simplicity, we shall assume that the singular
values are distinct (nondistinct cases are discussed in
the appendix). And for convenience, we arrange the
singular vector pairs so that the associated singular val-
ues are in ascending order (i.e., s1 , s2 · · · , sN).

To quantify the growth of a perturbation, that is, to
evaluate how the size of the tendency ]c/]t relates to
the size of c, one needs to first define a measure of
size, that is, the norm. If the Euclidean norm is used,
the squared ratio between sizes of ]c/]t (or Mc) and
c, \]c/]t\ 2/\c \ 2 is ^Mc, Mc&/^c, c&. The inner prod-
uct of two vectors x, y is defined as ^x, y& 5 y*x 5
Sk xk , where the overbar denotes the complex con-yk

jugate. With this definition of the inner product, we have

^Mc, Mc& ^M*Mc, c&
5 . (2)

^c, c& ^c, c&

It follows that when c takes the form of the jth right
singular vector, ]c/]t (or Mc) takes the form of the jth
left singular vector and the ratio between the sizes of
Mc and c is simply the jth singular value sj. Given the
initial time t0 and the time lag t, instead of Eq. (1), one
may also write the system as

c(t 1 t) 5 R(t , t)c(t ),0 0 0 (3)

where R(t0, t) 5 limdt→0 e is the prop-n21 (t5t 1jdt)dtM 0P j51

agator matrix (dt 5 t/n), and examine the ratio between
sizes of c(t0 1 t) and c(t0). The analysis remains the
same, except that M is replaced by the propagator R.

At this point, the connection between singular vectors
and the growth of small perturbations over a finite period
of time becomes apparent. When one is interested in
patterns of c that give the highest Mc-to-c ratios (fast-
est growth) as measured by the selected norm,1 one
seeks to find the pairs of singular vectors associated
with the largest singular values, where the right singular
vectors of these pairs represent the perturbation (some-
times called the optimal perturbation patterns), and the
left ones represent the response. As mentioned in section
1, these singular vectors have been applied to problems
ranging from ensemble weather forecasting (Molteni et
al. 1996) to ENSO prediction (Thompson 1998; these
will be referred to as type I problems).

In another type of problem, instead of perturbation
patterns in c that give the maximum time tendency, one
is interested in patterns of external forcing (f ) that for
a given size, induce the maximum stationary (or steady
state) responses (this will be referred to as the type II

1 Throughout the rest of the paper, M will be used with the un-
derstanding that it will be replaced by R if Eq. (3) instead of Eq. (1)
is used.

problem). Because, for stationary responses, the time
tendency term vanishes, one can write this problem as
0 5 Mc 1 f. [This is not to be confused with the
statistically stationary response, in which case it is the
ensemble mean statistics that do not change with time
(Farrell and Ioannou 1993).] The goal here is therefore
to maximize the ratio of the size of the response \c \
to the size of the forcing \ f \ or equivalently \Mc \,
that is, to minimize \Mc \/\c \. Clearly, patterns from
this optimization problem are the pairs of singular vec-
tors associated with the smallest singular values. In this
context, the right singular vectors of these pairs rep-
resent the response of the system, and the left singular
vectors represent the optimal forcing patterns. The right
singular vectors here are sometimes called the neutral
vectors for their small time tendencies in the corre-
sponding transient problem (Marshall and Molteni
1993), and are linked to the leading empirical orthogonal
functions of the system’s low-frequency responses to
random forcing (Navarra 1993). An example of a type
II problem is the climate system’s low-frequency vari-
ability and its long-term response to external forcing
(Navarra 1993; Goodman and Marshall 2002).

3. General aspects of the observed norm
dependence of singular vectors

Some rather interesting norm dependences of singular
vectors have been documented in the literature on at-
mosphere–ocean systems, and are briefly summarized
here. (The references are not meant to be exhaustive.)
In the studies to be summarized, the same norm was
used for both c and Mc.

Observation 1: Asymmetric norm sensitivity between
left and right singular vectors

In the study of a linearized global quasi-geostrophic
atmospheric model, the neutral vectors (the right sin-
gular vectors associated with the smallest singular val-
ues) are found to be insensitive to different norm se-
lections while their forcing patterns (the corresponding
left singular vectors) display a much greater sensitivity
(Goodman and Marshall 2002). On the other hand,
Palmer et al. (1998) found that the right singular vector
associated with the largest singular value is much more
norm sensitive than the corresponding left singular vec-
tor. Similar behaviors were found for the singular vec-
tors of the Eady model (Kim and Morgan 2002).

Observation 2: When the norm weighs certain
components more strongly, these components are
more suppressed in the left (right) singular vectors
associated with the smallest (largest) singular values

For example, Goodman and Marshall (2002) found
that, when the kinetic energy instead of the stream-
function variance is used as the norm, amplitudes of the
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high-wavenumber components are reduced in the left
singular vectors associated with the smallest singular
values. A similar result is found for the right singular
vector associated with the largest singular value (Palmer
et al. 1998). When enstrophy is used as the norm, the
right singular vector associated with the largest singular
value becomes even broader in scale (Palmer et al.
1998).

This behavior was documented more quantitatively
in the study of a linearized ENSO model (Thompson
1998). We shall refer to the right singular vector as-
sociated with the largest singular value (vN) as the ‘‘dy-
namic optimal’’ when it is derived under a norm that
puts all weights on the ocean dynamic variables, which
include the thermocline depth along with its dynami-
cally consistent upper layer ocean currents, and zero
weight on the sea surface temperature (SST). The vector
vN derived under a norm that puts all weights on the
SST and zero weight on the ocean dynamic variables
will be referred to as the ‘‘SST optimal.’’ Thompson
(1998) found that, for a more general norm that weights
the ocean variables by w1 and the SST by w2, the re-
sulting vN can be approximated by a linear combination
of the dynamic optimal and SST optimal, and the ratio
of the two components is proportional to (w2/w1)2, pro-
vided that t is sufficiently large [Eq. (3) was used in
Thompson (1998)].

4. Perturbation analysis

The various norms of a vector x used in previous
studies may be expressed as \x\ 5 ^Lx, Lx&1/2, with the
definition of the inner product unchanged and L being
a weighting matrix that acts on a set of orthogonal bases
spanning the linear space of interest. Since these bases
constitute the orthogonal eigenvectors of L with the
weights being the real eigenvalues (this can be viewed
as the definition of a weighting matrix), L is self-adjoint
(Hermitian). We shall restrict ourselves to these norms,
which belong to the so-called Riemannian metric.

We shall use the Euclidean norm in c and Mc as the
reference norm for our perturbation analysis, so that the
identity matrix I is our reference weighting matrix (uni-
form weighting). No generality is lost because non-Eu-
clidean reference norms can always be transformed to
the Euclidean norm through redefinitions of M and c.2

To change from the reference norm to a new norm is
therefore to change the weighting from I to a nonuniform
weighting matrix L.

We can always write L 5 I 1 dL, where dL is a
perturbation, and examine how singular vectors change
when L instead of I is used. Following L, dL is also
self-adjoint.

2 For any non-Euclidean reference norms in Mc and c, ^L1Mc,
L1Mc&, and ^L2c, L2c&, one can always redefine M as L1 and21ML 2

c as L2c, so that the reference norm is Euclidean in the redefined
linear spaces.

We shall allow the norms for Mc and c to be dif-
ferent, so that in place of Eq. (2), the squared ratio
between the sizes of Mc and c is

21 21^L Mc, L Mc& ^L ML c9, L ML c9&1 1 1 2 1 25 , (4)
^L c, L c& ^c9, c9&2 2

where L1,2 5 I 1 dL1,2 are the nonuniform weighting
matrices at the initial and final times, and c9 5 L2c.

By decomposing M9 [ L1 into U9L9V9*, we21ML 2

have

M9v9 5 s9u9.j j j (5)

(All primed quantities have meanings analogous to the
unprimed ones defined in section 2.) This means that,
when c is equal to (i.e., c9 is equal to ) mul-21L v9 v92 j j

tiplied by a nonzero scalar, Mc is equal to (i.e.,21L u91 j

M9c9 is equal to ) multiplied by the nonzero scalar,u9j
and the squared ratio between the sizes of Mc and c
under the new norms [Eq. (4)] is ( )2. Therefore, col-s9j
umns of V9 and U9 are the right and left singular21 21L L2 1

vectors of M under the new norms.
Let us now consider dL1,2 to be sufficiently small so

that second- and higher-order terms can be neglected.
Note that columns of U9 and V9 are the eigenvectors
of matrices 5 L1 ( )*M* and 521 21 *A ML L L A9 9u 1 y2 2

( )*M* L1 , while columns of U and V are the21 21*L L ML12 2

eigenvectors of Au and Ay . Differences between U9, V9
and U, V can thus be estimated from differences be-
tween , and Au , Ay using perturbation theory, asA A9 9u y

described in, for example, Franklin (1968).
Since the departure of L1 from M is to the first21ML 2

order, dM 5 dL1M 2 MdL2( is approximated by I21L 2

2 dL2), the difference between and Au can be writtenA9u
as

dA 5 dMM* 1 MdM*u

2 25 dL UL U* 1 UL U*dL 2 2ULV*dL VLU*.1 1 2

(6)

We have used the fact that dL1,2 are self-adjoint. The
deviation of the jth eigenvector of from that ofu9 A9uj

Au, u j, given by perturbation theory is
N ^dA u , u &ju ku9 2 u 5 u , (7)Oj j k2 2(s 2 s )^u , u &k51 j k k k

k±j

where u j, uk are the jth and kth columns of U. The
derivation of Eq. (7) is given in textbooks in matrix
theory such as Franklin (1968), and will not be repeated
here.

In order to obtain the jth left singular vector of M
under the new norms ũ j, which is in the c space, we
need to transform , which is in the c9 space, to theu9j
c space, that is, ũ j 5 [also see discussions fol-21L u91 j

lowing Eq. (5)]. Its departure from u j, the jth left sin-
gular vector under the reference norm, is to the first
order:
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N ^dA u , u &ju kdu 5 ũ 2 u 5 2dL u 1 u .O1j j j j k2 2(s 2 s )^u , u &k51 j k k k
k±j

We shall scale the new singular vectors so that du j only
contain components that are orthogonal to u j:

N

du 5 « u , (8)Oj jk k
k51
k±j

where

^dA u , u &ju k« 5 2 ^dL u , u &.1jk j k2 2(s 2 s )j k

High-order terms resulting from the scaling have been
neglected.

Substituting Eq. (6) into ^dAuu j, uk& and recognizing
that U and V are unitary and L is diagonal, we have
(intermediate steps are presented in the appendix)

2 2^dA u , u & 5 (s 1 s )^dL u , u &u 1j k j k j k

2 2s s ^dL v , v &. (9)2j k j k

Substituting this into Eq. (8) and combining terms
gives

2s ^dL u , u & 2 2s ^dL v , v &j j1 2k k j k« 5 s . (10)jk k 2 21 2s 2 sj k

Applying the same analysis to Ay leads to

N

dv 5 s v ,Oj jk k
k51
k±j

with

2s ^dL u , u & 2 2s ^dL v , v &j j1 2k k j ks 5 s . (11)jk j 2 21 2s 2 sj k

Note that terms in the square bracket are identical for
both the right and left singular vectors [Eqs. (10) and
(11)], which will be referred to as V jk. The sizes of the
changes in the singular vectors are therefore3

N

2 2 2D 5 s V , and (12)Ou k jkj
k51
k±j

N

2 2 2D 5 s V . (13)Ov j jkj
k51
k±j

3 We have used the reference norm (which is Euclidean in this
case) to measure sizes of the changes. We could also measure them
using the new norms. The size difference from the two measures
involves only second- or higher-order terms of dL1,2 and may be
neglected.

5. Observed norm dependences as general
properties of singular vectors

For each j, let us define weights as . From2 2 2w s Vk j jk

Eqs. (12) and (13), it is clear that
2 2w (s /s )O k k j2Du k±jj 5 , (14)

2 2D wOv kj
k±j

that is, the weighted average of / . For j 5 1, the2 2s sk j

maximum of / is / and the minimum is / , as2 2 2 2 2 2s s s s s sk j N 1 2 1

we have assumed s1 , s2 · · · , sN. Because all weights
are positive and every individual term is bounded by

/ and / , the weighted average must obey2 2 2 2s s s sN 1 2 1

1 , s /s # D /D # s /s .2 1 u v N 11 1
(15)

Alternatively, one may think of / as the weighted2 2D Dv uj j

averaged of / with the weights being . (Cases2 2 2 2s s s Vj k k jk

where D 5 D 5 0 are discussed in the appendix.) Byu vj j

the same argument, we have

1 , s /s # D /D # s /s .N N21 v u N 1N N
(16)

We have therefore shown that for the smallest singular
value, the associated right singular vector has lower
norm sensitivity than the left singular vector, and the
reverse is true for the largest singular value. Matrix M
being singular (i.e., s1 5 0) may be considered as a
special case, where D 5 D 5 0. This asymmetricu vN 1

norm sensitivity holds regardless of the form of M. The
asymmetry is strictly true for singular vectors associated
with the largest or the smallest singular value. For in-
termediate singular values (i.e., 1 , j , N), whether
D /D is greater or less than 1 depends on the problem.u vj j

However, for N sufficiently large, one expects the asym-
metry shown for j 5 1 (and j 5 N) to extend to the
smallest (and largest) singular values as well.

For properties that do not depend on the specific
forms of M, analogous behaviors of the singular vectors
associated with the largest and the smallest singular val-
ues, with left and right reversed, should come as no
surprise. This is because the singular vectors associated
with the largest singular values for M are the singular
vectors associated with the smallest singular values for
M21 (assuming M is not singular), with right and left
reversed. Recall that we are interested in singular vec-
tors associated with the smallest singular values in type
II problems and those associated with the largest sin-
gular values in type I problems. Also note that the re-
sponse and forcing/perturbation fields are reversed in
terms of right and left in the two types of problems.
Properties that are independent of the forms of M are
therefore shared by singular vectors of the response field
in both types of problems. The same is true for general
properties of singular vectors of the forcing/perturbation
field. For example, singular vectors of the response field
are less norm sensitive than singular vectors of the forc-
ing field in both types of problems [Eqs. (15) and (16)].

From Eqs. (10) and (11), we also see that if ^dL1u1,
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uk& and ^dL2v1, vk& are of similar magnitude, L1 (or L2)
tends to have greater effects on the singular vectors
associated with the smallest (or largest) singular values.
Again, this means that changes in the norm of the forc-
ing field have greater influence on the singular vectors
than changes in the norm of the response field in both
types of problems.

We shall now make use of the fact that for many
atmosphere–ocean systems of interest, the largest (or
smallest) singular values are substantially larger (or
smaller) than the rest of the singular values. For ex-
ample, Fig. 10 of Palmer et al. (1998) shows the rapid
decrease of singular values from the high end downward
in the global atmospheric system that they studied. Sim-
ilar behavior is found in the ENSO model used by
Thompson (1998). On the other hand, singular values
for the neutral vectors of Goodman and Marshall (2002)
show a rapid increase from the low end upward (J.
Goodman 2003, personal communication), and so do
those in an earlier study based on a global barotropic
model (Navarra 1993). Satisfaction of this condition in
these systems is not coincidental, and is in fact linked
to the usefulness of the singular vector analysis in these
types of problems: when singular vector analyses are
used to identify patterns that, for a forcing of certain
size, give larger responses than other patterns, their re-
sults are most meaningful when the largest (or smallest,
depending on whether the problem is of type I or type
II) singular values are sufficiently larger (or smaller)
than the others.

Given the above arguments, let us now consider s1

K s2. We shall base our discussion on singular vectors
associated with the smallest singular value, that is, on
type II problems. The results, being independent of the
forms of M, remain valid for type I problems when they
are cast in terms of the response and forcing/perturba-
tion fields. For the studies summarized in section 3, the
same norm was used for both Mc and c; that is, L1 5
L2 5 L. However, it is easy to see from Eq. (10) that,
so long as ^dL1u1, uk& and ^dL2v1, vk& are of similar
magnitude, L2 has little effect on u1 and v1 when s1 K
s2. Equation (10) can thus be simplified to «1k 5
22^dL1u1, uk&, or

du ø 22dL u .11 1 (17)

Note that the size of the change in u1 is about | 2dL1u1 | .
Therefore, the difference in the norm sensitivities of v1

and u1 arises from reduced norm sensitivity in the sin-
gular vector of the response field v1 rather than from
enhanced sensitivity in the singular vector of the forcing
field u1. From Eq. (15), it is clear that when s1 K s2,
the response pattern v1 would be rather insensitive to
norm changes. A similar statement can of course be
made for uN. The asymmetric norm sensitivity between
left and right singular vectors stated in observation 1
can therefore be understood as a general property of
singular vectors.

Equation (17) and an analogous equation for uN and

vN are also, to the limit of the perturbation analysis, the
mathematical equivalents of observation 2, which states
that when the norm weights certain components more
strongly, these components are more suppressed in the
left (right) singular vector associated with the smallest
(largest) singular value. Again, for N sufficiently large,
the properties shown for j 5 1 (and j 5 N) are expected
to extend to the smallest (and largest) singular values
as well.

Neglecting higher-order terms, Eq. (17) can also be
written as

22ũ ø L u ,1 1 1 (18)

where ũ1 is the first left singular vector (the optimal
forcing pattern) under the new norms. This gives a sim-
ple formula that describes how optimal forcing patterns
change with norm. While Eq. (18) is derived from a
perturbation analysis, the same equation can be shown
to hold for finite norm changes by regarding Eq. (18)
as the ‘‘differential’’ form and integrating it to give the
response to finite norm changes (appendix). The results
from Thompson (1998) as described in observations 2
directly follow from these results.

Here, as an example, we apply Eq. (18) to the neutral
vectors derived under different norms for a global three-
layer quasigeostrophic atmospheric model (Goodman
and Marshall 2002). In Figs. 1a and 1b, we show the
first left singular vectors associated with the smallest
singular value (the optimal forcing patterns, as this is a
type II problem) in terms of the streamfunction under
the kinetic energy norm (KE norm) and the squared
streamfunction norm (psi norm), respectively. When
spherical harmonics are chosen to be the coordinates,
the KE norm may be viewed as weighting each har-
monic prior to the inner product by the square root of
the coefficient that represents the Laplace operator (Eh-
rendorfer 2000). Equation (18) in this case states that
applying the Laplace operator to the first left singular
vector derived under the KE norm (the result is shown
in Fig. 1c) should give approximately the first left sin-
gular vector under the psi norm (Fig. 1b). This statement
is confirmed to a remarkable precision. The cosine of
the angle formed by the two vectors, cosu, is 0.998.
Note that the difference between the KE norm and the
psi norm is quite substantial. Equation (18) also works
well for the second left singular vector (cosu 5 0.94),
although the error becomes large for the third left sin-
gular vector (cosu 5 0.60).

6. Discussion and summary

In this paper, we derived some general results of the
norm dependence of singular vectors using perturbation
theory. We have done so for the norms (of a vector x)
that may be expressed as \x\ 5 ^Lx, Lx&1/2, with L being
a weighting matrix that acts on a set of orthogonal bases
spanning the linear space of interest. These are the
norms typically used in the atmospheric–ocean literature
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FIG. 1. The optimal forcing patterns in terms of streamfunction of a three-layer global quasi-geostrophic atmospheric model (Goodman
and Marshall 2002) derived under (a) the KE norm, (b) the psi norm, and (c) by applying Eq. (18) on (a). While the model contains three
levels, only the 800-mb level is shown.

on singular vectors. We are interested in singular vectors
associated with the smallest singular values in type II
problems (e.g., low-frequency climate variability), and
those associated with the largest singular values in type
I problems (weather forecasting, ENSO prediction, tar-
geted observations, etc.). We found that, as general
properties of singular vectors, those of the response field
(vN for type I problems and u1 for type II problems)
have reduced norm sensitivity compared to those of the
forcing/perturbation field (uN for type I problems and
v1 for type II problems). This is true regardless of the
specific forms of the linear tendency matrix (or the prop-
agator). Moreover, norm changes of the response field
tend to have greater influences on singular vectors than
those of the forcing/perturbation field. We further ob-
serve that for singular vector analyses to be useful, the
singular value spectrum should be sufficiently sharp in
the portion that is of interest (the lower end for type II
problems and the higher end for type I problems). Sat-
isfaction of this condition is confirmed in many atmo-
sphere–ocean systems where singular vector analyses
were found useful. Under this condition, singular vec-
tors of the response field become norm insensitive, as
observed in many studies. Moreover, norm changes of
the response field become ineffective in changing the
singular vectors, and the effect of norm changes on
singular vectors tends to be dominated by that of the
forcing/perturbation field. A formula was derived that
describes how singular vectors of the forcing field
should change with the norm of the forcing field [Eq.
(18) and its equivalent for vN]. Although Eq. (18) was
derived from a perturbation analysis, it can be extended
quite well to finite norm changes.

As argued by Palmer et al. (1998), for targeted (or
adaptive) observations, the appropriate norm for the forc-
ing field should be uniquely determined by the one for
which all unit amplitude forcing patterns are equally like-
ly a priori. This requirement would eliminate the ambi-
guity in the norm of the forcing/perturbation field. In this

case, the optimal forcing/perturbation patterns also be-
come norm insensitive, because norm uncertainties of the
response field are not effective in changing the singular
vectors. This implies that it is possible for targeted ob-
servations to obtain optimal forcing patterns that are in-
sensitive to different norm choices for the response field
(so long as they are Riemannian metrics). The same ar-
gument applies to other problems such as designing en-
semble forecasts. These results therefore suggest that
there may not be as much norm-related ambiguity in these
types of problems as is often assigned to them.

In summary, we derived in this paper some general
results that explain the norm dependencies of singular
vectors as observed in many previous studies. It is hoped
that these results would help clarify the interpretations
of these observed norm dependences, and provide guid-
ance to new studies on how singular vectors would differ
for different norms. In addition, our results suggest that
there may not be as much norm-related ambiguity in
problems such as designing targeted observations or en-
semble forecasts as is often assigned to them.
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APPENDIX

Additional Discussion for Mathematical
Completeness

a. Nondistinct singular values

For simplicity, I have assumed the singular values to
be distinct. If a singular value is repeated for m times,
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then the right or left singular vectors can be any arbitrary
orthogonal base of the m-dimensional subspace spanned
by the right or left singular vectors that share this sin-
gular value. Variations in the singular vectors should
thus be generalized into variations in this subspace. The
results will still hold with this generalization when the
singular values are not distinct.

b. Derivation of Eq. (9)

To derive Eq. (9), we substitute Eq. (6) into ^dAuu j,
uk& and use the fact that U and V are unitary and L is
diagonal. This gives us

^dA u , u & 5 u*dA uu uj k k j

2 25 u*dL UL U*u 1 u*UL U*dL u1 1k j k j

2 2u*ULV*dL VLU*u2k j

2 25 s u*dL u 1 s u*dL u 2 2s s v*dL v1 1 2j k j k k j j k k j

2 25 (s 1 s )^dL u , u & 2 2s s ^dL v , v &.1 2j k j k j k j k

c. The case where D 5 D 5 0u vj j

In Eqs. (12) and (13), it is possible that D 5 D 5u vj j

0 when dL1u j } u j and dL2v j } v j. (It is not possible
for ^dL1u j, uk&/^dL2v j, vk& 5 sj /sk because the left-hand
side stays the same when j and k are exchanged, as dL1

and dL2 are self-adjoint, while the right-hand side does
not as sj ± sk.) In this case, the ratio between the two
is undefined. Since these pairs of singular vectors also
have no effect on changes in the other singular vectors,
we can eliminate these pairs from the list of singular
vectors.

d. Extending Eq. (18) to finite norm changes

Now let us take a look at how Eq. (18) may be ex-
tended to finite norm changes by regarding it as the
differential form. Let us consider a weighting matrix Lw

that deviates from the identity matrix substantially. For
simplicity, we consider Lw to be real and diagonal (No
generality is lost because Lw is self-adjoint so that it can
be transformed to a real diagonal one by a similarity
transformation, which does not change the singular vec-
tors.) One can always write Lw as Lm 5 (I 1 dL)m. For
a sufficiently large m, L becomes sufficiently close to
the identity matrix to warrant the perturbation analysis.
The effect of Lw can be viewed as applying L for m
times. Now let us again consider s1 K s2 so that

22 2u (i 1 1) 5 {L 1 O[(dL) ]}u (i),1 1 (A1)

where u1( i) is the first left singular vector after applying
L i times. If the norm change does not disrupt the general
singular value structure of the system so that s1 K s2

always holds, we have

22 2 mu (m) 5 {L 1 O[(dL) ]} u (0).1 1 (A2)

When the departure of L from I is of order 1, it can be
shown that, for large m, Eq. (A2) can be written as

22m 22u (m) ø L u (0) 5 L u (0)1 1 1 (A3)

to an excellent degree of approximation. Equation (18),
therefore, can be applied to weighting matrices that are
substantially nonuniform. A similar extension can, of
course, be made for vN.
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