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Abstract Motivated by the scientific desire to align observations with quantities of

physical interest, we survey how scalar importance functions depend on vertically resolved

water vapor. Definitions of importance begin from familiar examples of water mass Im and

TOA clear-sky outgoing longwave flux IOLR, in order to establish notation and illustrate

graphically how the sensitivity profile or ‘‘kernel’’ depends on whether specific humidity S,

relative humidity R, or ln(R) are used as measures of vapor. Then, new results on the

sensitivity of convective activity Icon to vapor (with implied knock-on effects such as

weather prediction skill) are presented. In radiative-convective equilibrium, organized

(line-like) convection is much more sensitive to moisture than scattered isotropic con-

vection, but it exists in a drier mean state. The lesson for natural convection may be that

organized convection is less susceptible to dryness and can survive and propagate into

regions unfavorable for disorganized convection. This counterintuitive interpretive con-

clusion, with respect to the narrow numerical result behind it, highlights the importance of

clarity about what is held constant at what values in sensitivity or susceptibility kernels.

Finally, the sensitivities of observable radiance signals Isig for passive remote sensing are

considered. While the accuracy of R in the lower free troposphere is crucial for the physical

importance scalars, this layer is unfortunately the most difficult to isolate with passive

remote sensing: In high emissivity channels, water vapor signals come from too high in the

atmosphere (for satellites) or too low (for surface radiometers), while low emissivity

channels have poor altitude discrimination and (in the case of satellites) are contaminated

by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing

strategy.
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1 Introduction

Water vapor in the atmosphere is important for several reasons reviewed well in Sherwood

et al. (2010). It carries latent heat that is released upon phase changes. Also, both vapor and

condensed water interact strongly with radiation, with at least three major classes of

consequences:

a. Direct contributions to global top-of-atmosphere (TOA) radiative energy budgets;

b. Dynamical effects, via both radiative and latent energy budgets in air layers;

c. Observational implications for remote sensing.

Interactions among these effects offer many motivations to deepen our understanding,

and many possibilities for research. For instance, mid-level vapor affects low cloudiness,

with its strong impacts on global shortwave TOA radiation budgets (Adebiyi et al. 2015;

Stevens et al. 2017). Global atmospheric cooling importantly governs precipitation and the

hydrologic cycle (e.g., Stephens and Ellis 2008; Previdi 2010; DeAngelis et al. 2015).

Convective clouds depend on the vapor field, which in turn is shaped by convective fluxes

as well as by latent heating-induced winds that shape transport and surface flux patterns.

These couplings make water an intimate active tracer in the atmosphere.

One especially fruitful nexus of interests that can motivate remote sensing is the sci-

entific desire to align observations with quantities of physical interest—or, to turn that

around, to cast physical theory in terms of quantities that can be well estimated or strongly

constrained from observables. For this reason, item (c) above is kept in context of water’s

other physical science importances, and is not viewed as a standalone motivation toward

measurement for measurement’s sake.

2 Simplest: The Profile of Im 5 Mass Errors from Vapor Measurement
Errors

To pursue these ideas quantitatively, it helps to define importance (something one cares

about) in mathematical terms as a scalar–valued function I with complicated inputs. Such a

dimension-reducing function is called a functional, and its sensitivities are called func-

tional derivatives (see http://www.physicspages.com/2014/11/08/functionals-and-

functional-derivatives/). Here we develop notation for how I is distributed over altitude

in the atmosphere. From such a framework, progress toward the Grand Challenges moti-

vating this volume can hopefully be steered and assessed.

This paper shows profiles (vertical distributions) of 4 different importances of water

vapor at low latitudes. First, Im = column-integrated vapor mass is used to clarify notation

and fix ideas. As a second familiar example, IOLR = Outgoing Longwave Radiation (OLR)

illustrates the ‘‘kernel’’ approach of Soden et al. (2008). New results are then presented for

Icon = rainfall (latent heating) by deep convective cloud systems. Finally, Isig = radiative

signal in low and high emissivity channels is discussed in the context of observing system

design.
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For each of these definitions of importance I, we want to know the impact of an

increment (or a measurement error) of vapor, as a function of altitude. Such an increment

might be expressed as mass (specific humidity S), or relative humidity R, or of some

function thereof (for example, increments dln(R) are relevant to some radiative quantities).

In any partial derivative, it is necessary to specify what is held constant, so we will make

that part of the mathematical notation where needed for clarity.

In this elementary case, we define an importance scalar or functional as Im = column-

integrated water vapor mass (CWV, units: kg m-2, or mm of liquid equivalent), sometimes

called precipitable water (PW):

Im ¼
Zps

0

dp

g
ð1Þ

where the profile of specific humidity S may be expanded as

SðpÞ ¼ RðpÞ � SsatðTðpÞ; pÞ ð2Þ

Here we ignore any distinction between total pressure p versus the (p) notation for

hydrostatic pressure, our monotonic mass coordinate of the vertical domain.

For tropical applications, consider a reference T(p) that is a pseudo-adiabat character-

ized by its equivalent potential temperature he = 350 K. The corresponding Ssat profile is

shown in Fig. 1a. The curve to a good approximation decreases linearly with p from 18 g/

kg at 1000 hPa to near zero at about 300 hPa.

If a vapor concentration or specific humidity measurement had an error dS, which is

constant in height, (1) shows that this error dS would contribute equally from all pressure

levels to the error in Im. We denote the accompanying kernel, the sensitivity of vapor mass

m to an increment of S, as a functional derivative:

Fig. 1 a A reference profile of specific humidity relevant to the tropics: a saturated moist adiabat
characterized by he = 350 K. b, c Kernels expressing the vertical distribution of error in importance
function Im = column vapor mass, incurred by measurements with a constant profile of measurement error
dR (b) or dlnR (c)
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Km
S � dIm

dSðpÞ ð3Þ

Continuous function S(p) notation is retained, even though all calculations below are on

discrete levels, to spotlight the distinction between the layer depth appearing in the units of

the estimated K, versus the vertical resolution of particular discrete calculations used in the

estimate.

The functional derivative is defined as the sensitivity when S(p) is held constant at all

other altitudes. In our case, S also varies with time, latitude, and longitude, but these need

not be specified as being held constant since they are orthogonal to the vertical domain

(indexed by hydrostatic p in the usual way). The value of (3) is constant in pressure. Its

units are (units of Importance) (units of denominator)-1 (units of p)-1 and the value is

equal to 1.02 (kg m-2 of vapor mass) per (1 kg/kg of S) over (a 1 hPa layer), since an

increment dS = 1 g/kg over a 105 Pa atmosphere equates to 10/9.8 = 1.02 kg m-2 of

column vapor mass (mm of liquid equivalent).

Now instead suppose we have a measurement with constant in height relative humidity

error dR, like the relative humidity sensor in a radiosonde. What is the profile of its

contribution to the importance error dIm? That kernel can be notated as:

Km
R � dIm

dRðpÞ

����
T¼pseudoadiabat@350K

ð4Þ

Here the essential quantity held constant in the partial derivative (T) is specified overtly, as

is necessary for clarity in any non-orthogonal ‘‘phase space’’ (Nolte 2010) of abstract

variables such as thermodynamic quantities. The units are again (units of Importance)

(units of denominator)-1 (units of p)-1, or (kg m-2) per (1% of Ssat) over (a 1 Pa layer).

Since the contribution of an error dR to S(p), given a fixed T(p), is simply proportional

to Ssat by Eq. (2), the shape of this kernel (Fig. 1b) is identical to the Ssat curve in Fig. 1a.

To figure out its value, we can utilize the value of (3) quoted above, noting that where

Ssat = 10 g/kg (about 650 hPa), a 1% error will equal 10-4 kg/kg. Any real instrument’s

error profile dR(p) can be multiplied by the kernel and integrated to give its total impor-

tance (in this case, mass error).

Finally, consider the importance of a measurement error in fractional R, dln(R), which
is constant with altitude. For saturated spectral bands, the radiative impacts of vapor are

sometimes approximated as proportional to ln(R) (Spencer and Braswell 1997, Pierre-

humbert et al. 2007). The desired kernel

Km
lnR � dIm

d lnRðpÞ

����
T¼pseudoadiabat@350K;R

ð5Þ

will have units of (kg m-2) per (1% of the existing vapor) over (a 1 Pa layer). Its

derivation can be performed using the chain rule as follows:

Km
lnR � dIm

d lnRðpÞ

����
T;R

¼ dIm

dSðpÞ
oS

o lnR

����
T;R¼R0

¼ dIm

dSðpÞR0

oS

oR

����
T

¼ R0K
m
R ð6Þ

A new point of notation has been introduced here: the semicolon in the subscript. Items to

the right of the semicolon are not held constant in the differentiation, they are evaluated at

a given value of R(p), in this case R0(p). In this derivation, the core (definitional)

dependence of Im on S from (3) is converted into the desired dependence on ln(R) through a

chain rule (first equality). Then, using a calculus fact (second equality), the R dependence
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is exposed as a multiplication by R0(p). At that point, the subscript ;R can be dropped from

the last partial derivative.

The final equality simply notes that this result (Fig. 1c) is related to an earlier result

(kernel (4), Fig. 1b). Again, we can leverage the values and units above to build this kernel

for Fig. 1c.

With these bookkeeping notations and mathematical tools, we can express subtler

sensitivities of physical scalars to vapor profiles as functional derivatives.

3 Radiative Kernels: Sensitivity of OLR to Humidity

One familiar climate importance for water vapor is its impact on IOLR = outgoing long-

wave radiation (OLR) at top of atmosphere. The dependence of IOLR on the water vapor

profile is not a straightforward integral like Im, but rather a result of sophisticated columnar

radiative transfer computations. Following Soden et al. (2008), we may characterize this

computation’s dependencies as OLR(Tem(p), S(p), C(p)), where Tem is the emitting tem-

perature of the air, and C(p) is the radiation scheme’s own optical measure of cloudiness.

The negative of the zonal and time mean of the TOA OLR kernel for water vapor

(Fig. 2 of Soden et al. 2008) is reproduced here as Fig. 2. The negative sign was introduced

by Soden et al. (2008) because their application was climate feedback, and increased OLR

Fig. 2 Soden et al.’s (2008) ‘‘kernel’’ for OLR with respect to water vapor (their Fig. 2), averaged over
time and longitude. The top plot is averaged over all-sky conditions (based on a climate model-predicted
cloudiness field C) while the lower plot is with cloud radiative effects disabled. Units of the indicated
numbers are (W m-2) per (K in the Tsat(S, p) inversion of Ssat(T, p)) over (a 100 hPa layer)
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is a negative contribution to Earth’s heat budget. Here we instead use IOLR = ? OLR, to

express the impact of moisture on the physical process of upwelling longwave radiation.

In our notation, the two quantities plotted in Fig. 2 are:

KOLR
Tsat

¼ dIOLR

dTsatð/; pÞ

����
fTem;S;Cg¼sim

ð7Þ

and

KOLRclr

Tsat
¼ dIOLR

dTsatð/; pÞ

����
fTem;Sg¼sim;C¼0

ð8Þ

where Tsat indicates the inversion of the saturation specific humidity function S(T, p) and /
is latitude. The set notation {} = sim is used to denote that multiple variables are utilized

at climate model-simulated values. For brevity, we have ignored the fact that the kernel

computations were done at different longitudes and times, then averaged. The actual

computations behind Fig. 2 were performed by probing OLR(Tem, S, C) with small

increments dS at each altitude, with Tem and C held constant. Two separate calculations

were performed, with C held constant at both realistic model-simulated values (‘‘all-sky’’)

and C = 0 (‘‘clear sky’’ computations). Results of those computations were then recast by

those authors, using the chain rule:

dIOLR

dTsatð/; pÞ

����
Tem;S;C

¼ dIOLR

dSð/; pÞ

����
Tem ;C;S

oSsat

oT

����
p

ð9Þ

It is important to notice that the emission temperature Tem was held constant, while Tsat
was varied for Fig. 2, as the notation emphasizes. Allowing both to vary consistently leads

to the well-known cancelation between the lapse rate feedback and water vapor feedback

in climate sensitivity estimation, as discussed in Soden et al. (2008) and elsewhere. Here

we wish to characterize IOLR’s dependence on moisture profiles in more direct units of S, R,

or ln(R), holding actual T constant. To do this, we must convert the kernels of Fig. 2 into

other units as follows. For definiteness, line plots of the kernel profiles at specific longi-

tudes and months are shown in Fig. 3a (using digital kernel data for two different climate

models, downloaded from http://people.oregonstate.edu/*shellk/kernel.html and http://

www.rsmas.miami.edu/personal/bsoden/data/kernels.html).

The easiest conversion is simply to reverse the post-processing done by Soden et al., by

rearranging Eq. (9) above:

KOLR
S ¼ dIOLR

dSð/; pÞ

����
Tem ;C¼0;S

¼ dIOLR

dTsatð/; pÞ

�����
Tem;S;C¼0

oSsat

oT

����
p;T

 !�1

ð10Þ

The first factor on the right is kernel (8), the quantity in the bottom panel of Fig. 2 and the

top row of Fig. 3. However, the conversion profile (second factor) must be evaluated at

some reference profile T(/, p), as emphasized with the subscript ;T. For simplicity, since

Fig. shows a tropical point, we use the 350 K pseudo-adiabat again as this reference

T profile, a reasonable approximation. We can already anticipate that, since the slope of

Ssat(T) increases with T, this factor (the inverse of that slope) will reduce the value of the

kernel in the lower troposphere relative to the upper troposphere. In other words: molecule

for molecule (or kg for kg), high-altitude vapor is much more important to OLR than low-
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altitude vapor (Fig. 3, middle row), as emphasized in climate literature (e.g., Held and

Soden 2000, Allan 2012).

Converting the denominator to reflect the sensitivities of OLR to relative humidity

increments (dR) is then straightforward, following the steps in Sect. 2:

KOLRclr

R ¼ dIOLR

dRðpÞ

����
fT;Sg;C¼0

¼ dIOLR

dSðpÞ

�����
fT;Sg;C¼0

oS

oR

����
T;p

 !
¼ KOLRclr

S Ssat ð11Þ

Further converting the sensitivity to increments dlnR involves multiplying by a R0

profile as in (6), which would have to be obtained from these models’ climatology of the

Arabian Sea:

KOLRclr

lnR ¼ R0K
OLRclr

R ð12Þ

This final conversion is not shown here, although the seasonality can be imagined in this

region with its wet-summer monsoon climate. Even though (as noted above) molecule for

Fig. 3 Top row: The clear-sky kernel of Fig. 2b at a point in the Arabian Sea from a CAM and b GFDL
climate models, using kernel datasets downloaded from the web sites of B. Soden and K. Shell. The twelve
colored curves indicate 12 calendar month averages, with dry winter and moist summer monsoon conditions
yielding distinctly different sensitivities to increments of moisture. Middle: kernel expressed in terms of
increments dS instead using Eq. (10). Bottom: Kernel expressed in terms of increments dR using Eq. (11)
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molecule, high-altitude vapor is especially important to OLR, the bottom row of Fig. 3

indicates that an increment of RH in the lower troposphere is approximately as conse-

quential as an increment at other levels (Held and Shell 2012; Vial et al. 2013). For some

measurement systems, the attribution of altitude to detected water molecules might be

another way to express the important uncertainties incurred in a retrieval process.

4 Importance of Vapor for Deep Convection

Deep convection’s sensitivities to water vapor increments (or observation errors) are much

less straightforward to estimate than the radiative sensitivities, because ‘‘convection’’ is not

an instantaneous, local column process—or even a well-defined one (as elucidated in the

Introduction of Sherwood et al. 2010). Simple parcel buoyancy arguments (as embodied in

algorithms for convective available potential energy (CAPE) and other simple parcel

indices) embody the assertion that only low-level (parcel source level) humidity matters.

Indeed, if virtual temperature effects are considered, free-tropospheric moisture reduces

naı̈vely computed CAPE. Meanwhile, in reality, mid-level moisture clearly impacts con-

vection positively, as illustrated by the steep dependence of conditional rainfall on column

water vapor (Bretherton et al. 2004; Neelin et al. 2009).

The next complexity of a theoretical account is to allow for mixing (entrainment) into

updrafts. The buoyancy of a small-scale updraft then depends on humidity in the source

layer, as well as in the layers that it has traversed and mixed with. For instance, the steep

dependence on column vapor mentioned above may be usefully interpreted as a threshold-

like dependence on parcel source-level humidity, plus a linear dependence on humidity in

the free troposphere above that (Muller et al. 2009). Microphysical processes such as

precipitation shedding during the finite time of parcel ascent are another ambiguity in

determining bulk density and thus parcel buoyancy.

Even such a dressed-up (mixing-allowing, microphysics-respecting) parcel theory

remains badly incomplete, however. The ‘‘importance’’ of convection as a process lies not

in the fate of one hypothetical lone updraft, but rather in the time-integrated, net behavior

of ensembles of convective circulations (perhaps in a scale-truncated sense) that must obey

mass continuity in a particular geometrical configuration. Essentially, the kernel we seek is

a subset of the cumulus parameterization problem (Arakawa 2004). For this reason,

explicit convection-permitting models (CPMs) are needed to fill the gap between parcel

theory and reality in estimating our desired sensitivity kernel, or even defining it with

sufficient specificity.

In a convecting atmosphere, a humidity increment provokes a complex time-dependent

and multi-scale response that includes thermally driven large-scale ascent as well as local

cloud-scale overturnings. Observationally, all this is further superposed with noise. Simple

regression of local convection measures on humidity observations thus gives us only a faint

and distorted glimpse of moisture’s true impact on convection (as discussed in Mapes et al.

2017). Active probing of models is required to even begin to interpret observations

properly.

Early computation-limited studies used short integrations over small domains, in an

initial-value approach with newly triggered convection, in 2D (Nicholls et al. 1988) or 3D

(Takemi and Satomura 2000). Mapes (2017) discusses in more detail how domain con-

straints translate into function or importance measures. As computers have advanced, fully

developed convection fields in larger and longer runs have been probed, for instance using

Surv Geophys (2017) 38:1355–1369
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humidity field relaxation experiments (Derbyshire et al. 2004 in that special issue) or

transient impulses (Tulich and Mapes 2010; Kuang 2010). Long-time integrations make

cyclic boundary conditions appealing for conservation reasons. The unreality of cyclicity is

compensated by forcing applied through time, which subtly but profoundly reshapes the

questions being asked and addressed. Taken together, all these approaches indicate that

GCM convection parameterizations almost universally have inadequate sensitivity to mid-

level moisture, rooted foreseeably in their use of simplistic updraft instability indices.

However, offering a better quantitative estimate is more difficult than offering a critique.

Because deep convection is a ‘‘noisy’’ process, with lots of internal free variability,

ensemble runs of cyclic CPMs (CCPMs), each with its internal ensemble of convective

circulations, are required to find the systematic response. But although the response of

convection to humidity is not very deterministic, its expectation value is very linear

(Tulich and Mapes 2010). Unfortunately, probing such an ensemble produces large

numbers of time-dependent responses that are difficult to summarize. However, the

mathematical linearity of responses opens another avenue.

That linearity was exploited by Kuang (2010) to construct a time-invariant linear

response matrix M through an elegant matrix inversion procedure. The time-dependent

responses mapped by Tulich and Mapes (2010) were shown to be merely a facet of M,

specifically exp(Mt), as illustrated in his Appendix. A finite-time propagator matrix

G = (exp(Dt�M) - exp(0�M))/Dt is another facet of M, and such matrices for Dt = 4 h

are depicted in Fig. 8 of Kuang (2012).

Here let us define Icon = rainfall anomalies over the subsequent 3 h in a convecting

patch of atmosphere of size o(102–103) km. Our desired kernel or sensitivity profile can be

obtained by integrating one quadrant of G over atmospheric mass. But what has been held

constant in such a computation? An important part of the answer is domain-averaged

vertical motion [w] = 0 at all altitudes, by the cyclic boundary conditions of a CCPM. All

the other parameters specified in running the CCPM are also important, such as domain

geometry and size. The kernel we seek can be expressed as:

Kcon
S ¼ dIcon

dSðpÞ

����
RCE:f½w�¼0;geometry;SST;Qrad;...g

ð13Þ

where the set of conditions {…} for the radiative-convective equilibrium (RCE) reference

state includes all of the parameters of the CCPM’s forcing and configuration.

To better appreciate the role of domain geometry, consider two RCE configurations:

128 km 9 128 km isotropic flow with no wind shear to break symmetry, and

2048 km 9 64 km, also unsheared. Column water vapor maps for a 2048 km square

sample of these two unbounded (but cyclic) domain symmetries are shown in Fig. 4.

Domain-mean profiles are inset. Two differences are obvious: (1) convection is ‘‘orga-

nized’’ in the sense of quasi-two-dimensional in the long-domain run, and (2) the long-

domain average is warmer and drier, because a large area with thermally capped (stable)

dry air contributes a lot toward the domain average. One way to look at this is that the

ensemble of convective circulations defining Icon has all the descending branches con-

centrated and reinforcing each other in the long domain, rather than distributed randomly

and canceling each other as they do in the isotropic domain. This is a symmetry condition

as in crystallography, not a domain ‘‘size’’ issue per se, since both atmospheres are really

horizontally unbounded.

The kernel (13) differs substantially between these two cases, as seen in the right-hand

panels of Fig. 5b, d. The left panels of Fig. 5a, c also show the sensitivity to temperature

Surv Geophys (2017) 38:1355–1369
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for completeness (discussed briefly below, as this is a novel result). The plot titles

emphasize Unorganized (isotropic) versus Organized (long) geometries as the nature of the

difference, but interpretation must be considered more carefully than that. The units in

Fig. 5 should be self-explanatory after the discussions above.

Consider first the Unorganized sensitivity profiles in Fig. 5a, b, derived from the iso-

tropic CCPM of modest size (128 km) with no wind shear. Convection consists of inter-

mittent scattered cumulonimbus (Cb) clouds. As predicted by parcel notions of buoyant

moist convection, an increment of water vapor dS in the lowest kilometer or two has the

biggest effect, but the same dS of vapor added to other levels still has a positive effect. All

levels above about 700 hPa are about equally important to rainfall production (panel 5b),

in this geometry and RCE base state. Temperature sensitivity can be similarly understood

in parcel buoyancy terms (panel 5a). There is positive sensitivity to temperature in the low-

level parcel source layer, while ambient environment warmth from 900 to 500 hPa acts to

reduce parcel buoyancy, an ‘‘inhibition’’ effect, but one that is much deeper than naı̈ve

undiluted parcel computations would suggest.

By contrast, Organized convection (long domain, panels 5c, d) is much more sensitive to

water vapor increments at all levels, especially in the free troposphere (panel 5d). In this

elongated domain (sometimes called ‘‘bowling-alley’’ geometry), convective circulations

necessarily take the form of squall-like ‘‘layer overturning’’ (Kuang 2012) rather than spo-

radic buoyant parcel ascent. Interpretation thereforemust recognize such layer overturning as

the systemwhose response to a horizontally uniform increment dS is being measured. Such a

horizontally uniform perturbation may seem like a fiction, but could perhaps be viewed as

being generated by advection by a much larger-scale adiabatic vertical motion.

In the long geometry, a deep layer of lower-tropospheric air is rising, so enhanced

humidity or temperature in that layer can enhance domain-mean precipitation for reasons

that do not involve horizontal mixing (entrainment) into a convective-scale buoyant

updraft. Apparently for this reason, humidity and temperature sensitivities are strong and

positive up to 700 hPa. Upper-tropospheric dS increments also have a very strong impact

on domain precipitation (panel 5d), presumably by enhancing stratiform precipitation from

upper-level stratiform cloud (Houze 1997) and not from mixing effects on buoyancy in the

upper levels of Cb updrafts. Upper-level temperature has a negative impact. Might that also

be interpreted as an effect involving the precipitating upper-level stratiform cloud, or is it

Fig. 4 Column water vapor maps for 2048 9 2048 km samples of the unbounded atmospheres embodied
by cyclic cloud-permitting model (CCPM) simulations with a 128 9 128 km grid and b 2048 9 64 grid.
Grid mesh size is 2 km in all cases. Inset line plots show that the domain average of the long domain with
‘‘organized’’ convection is warmer and drier in the lower free troposphere, as well as warmer near the
tropopause
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again an ‘‘inhibition’’ effect on convection—a reduction of the updraft buoyancy that is the

ultimate energy source for the convective circulation (through the buoyancy flux b’w’

source term in the kinetic energy equation)?

Our take-away lessons about moisture sensitivity must notice that the domain-mean

condition is very much drier in the ‘‘Organized’’ (long domain) case (insets to Fig. 4), or to

put it more sharply, organized convective systems can exist in drier mean conditions than

ordinary convection (Takemi and Satomura 2000). In these CCPMs, background S(p) is

not imposed, and cannot easily be changed without breaking the equilibrium condition of

RCE, so this is a result in itself. In nature, the asymptotically long-time equilibrium of the

moisture field enforced in steady CCPM runs is rarely or never observed on the scales of

Fig. 4b. In the burgeoning literature on radiative-convective equilibrium (RCE) (Wing

et al. 2017; Mapes 2016), the[20 mm dynamic range of column water vapor (CWV) in

Fig. 4 would take many days to develop, making it an artifact of cyclic boundaries that

may not directly correspond to nature (Holloway et al. 2017).

Fig. 5 Profiles of the importance of an increment of temperature (left) or water vapor (right) at any given
altitude to rainfall rate (expressed in mm/day) averaged over the subsequent 3 h. Results are for a cyclic
convection-permitting model at equilibrium with a forcing that produces a rainrate of about 4 mm/day. Top
row: Unorganized refers to convection in small cyclic domains with no wind shear. Black curve and yellow
band show estimates from ensembles of simulations. Early estimates made with smaller domains and a
2-dimensional computation (blue, green, red) are repeated in both panels for reference. Bottom row:
Organized refers to convection in a 2048 9 64 km elongated cyclic domain. An ensemble approach has
been used to estimate uncertainty (yellow) around a lightly vertically smoothed mean estimate (heavy black
curve)
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If the most important result of these experiments is that organized convection can

survive in drier environments, the functional lesson for nature might be that it is less

sensitive to dryness than ordinary convection—opposite in sense from the face value of

Fig. 5 (enhanced sensitivity). For instance, the ability of quasi-2D squalls to survive hostile

environments can widen the time-mean tropical rainfall belt relative to its treatment only as

vertical plume convection (Nolan et al. 2016). Sahelian Africa may similarly be the

beneficiary of rain from organized storms, in environments too dry to support local vertical

precipitating convection (e.g., Section 5 of Nicholson 2013).

To re-express the denominator of these kernels in terms of dR would involve multi-

plying them by Ssat(T), making them much more bottom-heavy, as in the middle to bottom

row differences of Fig. 3. This is a useful insight: it actually takes a very large or even

unrealizable RH perturbation to account for 1 g/kg of dq in the middle or upper tropo-

sphere, as postulated in the units of Fig. 5, so the large kernel values at upper levels in

Fig. 5b. may be somewhat irrelevant in practical terms.

5 Importance Functions for Passive Remote Sensing

To extend the radiative reasoning of Sect. 3, consider another Importance function:

Isig = signal detected by some instrument. Figure 6 sketches kernel profiles for Isig = -

brightness temperature for down-looking microwave instruments in spectral regions where

water vapor has low (cyan, purple) and high (blue) emissivity. In this figure (following

Fig. 6 Contributions of water vapor to brightness temperature seen from above, as a function of altitude, in
a low and b high emissivity channels, with a radiatively cold background (water, with its high reflectivity
and thus low emissivity). Conventions as in Mech et al. (2014)
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Mech et al. 2014), our ‘‘kernel’’ K is depicted as a ‘‘weighting function’’ W, whose

denominator is calibrated to increments not of S or R but of vapor density q.

Ksig
q ¼ dIsig

dqvðzÞ

����
fT ;backdropg;q

� WqðzÞ ð14Þ

The units can be unpacked as (K of signal) per (1 g m-3) over a (1 m layer), while the

small 1e-3 label clarifies that the axis numbers are really over a 1 km layer. Perhaps more

clearly, it can be read as (K of signal) per (1 kg m-2 of a local layer of vapor mass,

centered at each altitude).

In the limit of low emissivity in the measurement band, every molecule of vapor sends

photons to the detector with equal efficiency, with no blockage by the intervening vapor.

The cyan curve is near this limit and is greater at low levels because the emitting tem-

perature is greater there, not because distant molecules are more efficacious than close ones

at contributing to the detected signal. Meanwhile, the higher the emissivity in the band

being observed, the more the photons come solely from the vapor nearest the detector, as

indicated by blue curves for high emissivity bands. Using high emissivity bands, multi-

channel passive sensors can achieve fine vertical resolution, but only in a robust manner in

areas close to the sensor.

Unfortunately, the only way to achieve fine resolution far from a passive sensor is

through the error-prone differencing of highly overlapping kernels. In the downward-

looking case, surface emission introduces further errors and ambiguities to such an exer-

cise. As a result, no combination of kernels like Fig. 6 will yield good profile resolution

and accuracy at low-middle levels, as desired based on the motivating physical process

sensitivity kernels above. Upward-looking passive sensors could utilize high emissivity

channels to achieve high resolution near the surface, but vertical discrimination in the

lower free troposphere is harder, and made harder still by the decrease in both S and the

emitting temperature with altitude. In practice, conventional microwave sensors achieve

only about 2–3 distinct degrees of freedom in whole-troposphere moisture profiling

(Brogniez et al. 2016; Zhang et al. 2017; see also Fig. 1 of Pincus et al. 2017, this volume).

While hyperspectral passive methods with very high sensitivity and precision can

improve on existing technology, it seems clear that the best way to probe vertically

resolved vapor in the lower free troposphere is with active sensors (Nehrir et al. 2017, see

also Fig. 10 of Stevens et al. 2017; both in this volume). Light Detection And Ranging

(LiDAR) and its radio cousin (RADAR) systems use time (range) gating to achieve the

desired vertical resolution. Limb occultation uses angular geometry (see also Fig. 3 of

Pincus et al. 2017, this volume). One challenge of LiDAR is to achieve sensitivity across a

wide dynamic range: to best serve our needs, radiation must get through intervening layers,

twice, and still interact to an accurately measurable degree with vapor in the desired mid-

tropospheric layers. These may be quite dry, and yet the physical importance of accuracy

may grow with background dryness, for instance in their radiative importance (Spencer and

Braswell 1997; Pierrehumbert et al. 2007), raising the demands on laser power and/or

detector sensitivity, especially when looking upward from the surface through optically

thick intervening layers. Spaceborne active platforms have an advantage in this regard, and

the use of multiple frequencies helps break up the extreme dynamic range challenge into

more tractable chunks (Fig. 1 of Nehrir et al. 2017, this volume).

Radiative cooling of clouds at the top of the planetary boundary layer (PBL) is crucial to

their dynamics, longevity, vigor, albedo, and thereby to the climate impact they exert in the

visible spectrum (rejecting sunlight). Low-middle troposphere vapor is thus especially
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important to these clouds, by modulating cloud-top cooling, as discussed in Stevens et al.

(2017) and elsewhere. Yet these are precisely the altitudes and dry conditions for which

vapor measurement physics poses the greatest bind for both passive and active measure-

ments, as sketched in the paragraphs above. Here lies an especially enticing opportunity for

technological glory.

Designing such glorious systems will require a clear view of ‘‘importance’’ functions of

vapor for both physical climate system impacts (radiation and convection) and

detectability. It is hoped that this paper may help to clarify the challenge and the hopes for

surmounting it.

6 Summary and Conclusions

We have explored the sensitivity of important processes (measured by scalars) to water

vapor as a function of height. In every case, lower-middle troposphere is important.

Unfortunately, passive measurements are poor for this region of the atmosphere. Active

sensing (see Nehrir et al. 2017) is advocated as a crucial technology approach to improve

measurements and, thereby, our understanding of important processes. Synthesis of all

observations within atmospheric analysis systems will be a final challenge, with modeling

as well as detection aspects (Pincus et al. 2017, this volume), but is a path to demonstrate

such understanding as a powerful estimation and prediction capability in regions beyond

the observed.
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