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ABSTRACT

A linear response function (LRF) relates the mean-response of a nonlinear system to weak external forcings
and vice versa. Even for simple models of the general circulation, such as the dry dynamical core, the LRF
cannot be calculated from first principles due to the lack of a complete theory for eddy-mean flow feedbacks.
According to the Fluctuation-Dissipation Theorem (FDT), the LRF can be calculated using only the covari-
ance and lag-covariance matrices of the unforced system. However, efforts in calculating the LRFs for GCMs
using FDT have produced mixed results, and the reason(s) behind the poor performance of the FDT remains
unclear. In Part 1 of this study, the LRF of an idealized GCM, the dry dynamical core with Held-Suarez
physics, is accurately calculated using Green’s functions. In this paper (Part 2), the LRF of the same model
is computed using FDT, which is found to perform poorly for some of the test cases. The accurate LRF of
Part 1 is used with a linear stochastic equation to show that dimension-reduction by projecting the data onto
the leading EOFs, which is commonly used for FDT, can alone be a significant source of error. Simplified
equations and examples of 2 x 2 matrices are then used to demonstrate that this error arises because of the
non-normality of the operator. These results suggest that errors caused by dimension-reduction are a ma-
jor, if not the main, contributor to the poor performance of the LRF calculated using FDT, and that further

investigations of dimension-reduction strategies with a focus on non-normality are needed.

1. Introduction

In statistical physics, the Fluctuation-Dissipation Theo-
rem (FDT) relates the mean-response of a nonlinear sys-
tem to weak external forcing with the internal variabil-
ity of the system (see Marconi et al. 2008, for a review).
According to FDT, the system’s linear response function
(LRF), L, which relates the mean-response (x) to an im-
posed (external) forcing f via

L(x) = —(f) (L
can be calculated using only the covariance and lag-
covariances of the unforced system, i.e., when f = 0 and
the system fluctuates because of its internal dynamics (de-
tails are discussed in section 2). Here (-) means long-time
averaged and x is the state-vector response, i.e., deviation
from the time-mean state-vector of the unforced system.

Leith (1975) introduced the FDT to the climate science,
arguing that the climate system approximately satisfies the
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conditions for the theorem to hold, and formulated how
the LRF in Eq. (1) can be calculated using the fluctua-
tions of the unforced system. Since then many studies
have used climate models of varying degrees of complex-
ity to examine the LRFs calculated using different forms
of the FDT and the implications of this theorem (e.g., Bell
1980; North et al. 1993; Cionni et al. 2004; Gritsun and
Branstator 2007; Abramov and Majda 2007; Gritsun et al.
2008; Ring and Plumb 2008; Gerber et al. 2008a,b; Kirk-
Davidoff 2009; Majda et al. 2010; Gershgorin and Ma-
jda 2010; Achatz et al. 2013; Lutsko et al. 2015; Fuchs
et al. 2015). However, the competency of the FDT for
the climate system remains unclear as some of these stud-
ies found FDT to only work qualitatively, although some
other, such as Gritsun and Branstator (2007) and Fuchs
et al. (2015) found promising quantitative skills.

Whether the reported failure of the FDT is because of
the invalidity of the underlying assumptions for the cli-
mate system, or because of practical problems (e.g., as-
sociated with using limited datasets), or a combination
of both, is unclear (see section 2 for further discussions).
How accurately the FDT holds for the climate system is
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important, not only because of the possibility to construct
skillful LRFs from unforced GCM simulations or even
ambitiously, from observational records, but also because
some of the implications of this theorem. For example,
FDT relates the amplitude of the forced response to the
timescales of internal modes of variability of the system
(e.g., Ring and Plumb 2008; Shepherd 2014). Given that
idealized and comprehensive GCMs overestimate the per-
sistence of the leading mode of the extratropical variability
in both hemispheres, i.e., the Annular Modes, by factors as
large as 2 — 3 (and even larger in some cases), an important
implication of the FDT is that these models also overesti-
mate the mean-response to external forcings by such fac-
tors, which has significant consequences for the climate
sensitivity (see Shepherd (2014); Gerber et al. (2008a,b);
Ring and Plumb (2008); but also see Simpson and Polvani
(2016)).

In Part 1 (Hassanzadeh and Kuang 2016), for zonally-
averaged flows in the context of an idealized dry atmo-
sphere, we derive and discuss Eq. (1) and show that the
state-vector X can be reduced to § = (%, T ), where w and T
are zonal-mean zonal-wind and temperature. We also cal-
culate the LRF of an idealized GCM, the dry dynamical
core with Held-Suarez physics, using Green’s functions:
we apply hundreds of weak localized forcings (f) (of %
and 7)), one at a time, to the GCM and calculate the mean-
responses y, which are then used along with the applied
forcings to find the LRF through matrix inversion. To be
consistent with Part 1, the LRF calculated for this ideal-
ized setup will be denoted with M:

M{y) = —(f) 2)

where (f) is zonal-momentum and/or thermal forcing.
Several tests in Part 1 show that the LRF calculated us-
ing Green’s functions, Mggr hereafter, accurately repro-
duces the mean-response to imposed thermal/mechanical
forcings and vice versa.

The goal of the current paper (Part 2) is to use the same
idealized setup and Mgge to investigate why the LRF cal-
culated using the FDT, Mgpr hereafter, performs poorly
in some cases. The paper is structured as follows. In sec-
tion 2 the formulation of the FDT is presented, in section 3
the idealized GCM and calculation of Mgpt from the sim-
ulations are briefly described, and in section 4 the perfor-
mance of Mgpr for a few test cases (same as Tests 1-3
in Part 1) is discussed. In sections 5 and 6 we use linear
stochastic equations with, respectively, Mggrr and 2 x 2
matrices to show how the non-normality of the operator
can affect the performance of the FDT. The paper is sum-
marized in section 7.

2. Formulation of the FDT

According to the most common fﬂormulation, the so-
called quasi-Gaussian FDT, the LRF Mgpt that relates the

mean-response (y) to an imposed forcing (f) via Eq. (2)
can be calculated as

Mepr = — [/:C(T)C(O)—l dr} B 3)

where C(7) = (y(1)y(0)") is the lag-T covariance matrix
(1 denotes the adjoint). Recently, Majda et al. (2005)
and Gritsun and Branstator (2007) have demonstrated that
Eq. (3) can be derived under conditions that are more
closely satisfied by the atmosphere compared to those used
by Leith (1975) and Kraichnan (1959). Still, an important
assumption involved in (3) is that y has Gaussian statis-
tics; however, non-Gaussianity in dynamical and thermo-
dynamic variables has been found in observational data
(e.g., Ruff and Neelin 2012; Huybers et al. 2014; Loikith
and Neelin 2015) and GCM simulations (e.g., Berner and
Branstator 2007; Franzke et al. 2007; Sardeshmukh and
Sura 2009; Hassanzadeh et al. 2014)

Furthermore, there are practical problems with calculat-
ing Mgpr in Eq. (3) generally due to the limited length of
the dataset. Realistically, the upper bound of the integral
is replaced with a finite number 7., and while a small 7.
degrades the approximation of the integral, a large 7., can
lead to an imprecise |\7IFDT because of inaccuracies in C at
large 7 due to limited sample size. Additionally, the cal-

culation of Mgpt or M ;];T involves the inverse of the sum
of the lag-covariance matrices or C(0)~!. These matri-
ces can be close to singular because of short datasets and
anisotropic internal fluctuations, which together result in
the phase-space not being entirely excited by the fluctua-
tions. The common remedy for this problem is to calculate
C and Mgpr on reduced dimensions, e.g., by first project-
ing the data onto a specified number (ngor) of the leading
Empirical Orthogonal Functions (EOFs) (Penland 1989;
Gritsun and Branstator 2007; Ring and Plumb 2008). An-
other practical issue is the number of variables that are
included in the state-vector y. Some studies have used one
variable such as zonal-wind or temperature and some other
have used two or more variables.

It is plausible that the reported inaccuracies in FDT
and discrepancy in the previous studies are due to the in-
validity of the assumptions underlying Eq. (3), such as
non-Gaussianity in the data, and/or practical problems
such as short datasets and uncertainties in choosing 7,
ngor, and y. Several interesting studies have recently
attempted to systematically address the issues related to
sample size and dimension-reduction in calculations of
C (Fuchs et al. 2015; Lutsko et al. 2015; Cooper et al.
2013), state-vector reduction (Majda et al. 2010), and non-
Gaussianity (Cooper and Haynes 2011; Nicolis and Nico-
lis 2015); however, further work is evidently needed to
fully utilize the FDT for practical applications.

To further evaluate the performance of LRFs calculated
from FDT and to better understand the potential sources
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of their inaccuracies, in section 3 we have employed mul-
tivariate FDT and a long dataset to compute Mgpr for the
idealized GCM and in section 4 we have tested the perfor-
mance of Mgpr using Tests 1-3 of Part 1.

3. The Idealized Simulations and Calculation of Mpp

The model and setup are identical to Part 1. Briefly,
we use the GFDL dry dynamical core, which is a pseudo-
spectral GCM that solves the primitive equations on sigma
levels. The GCM is used with the Held-Suarez setup
(Held and Suarez 1994): the model is forced by Newto-
nian relaxation of temperature to a prescribed equinoc-
tial radiative-equilibrium state with a specified equator-
to-pole surface temperature difference, and Rayleigh drag
with a prescribed rate is used to remove momentum from
the low levels and V® hyper-diffusion is used to remove
enstrophy at small scales. The forcings, dissipations, and
boundary conditions are all zonally-symmetric and sym-
metric between the two hemispheres. A T63 spectral res-
olution with 40 equally-spaced sigma levels and 15 min
time-steps are used to solve the equations. Using the
control-run setup of the model, which is identical to the
control-run of Part 1 where all parameters are the same
as in Held and Suarez (1994), we have constructed Mgpt
from Eq. (3) using a one million-day dataset as described
below.

An ensemble of 10 simulations with the control-run
setup, each 50000 days, are used to create the employed
dataset, which contains daily-averaged anomalous % and T
of the last 49500 days of each simulations where each vari-
able is weighted by /cos it (where u is the latitude) and
normalized by area-averaged standard deviation of each
pressure level (we did not find the performance of FDT
sensitive to the weighting details). Covariance matrices
are then calculated for each hemisphere of each simulation
from (u,T) (stacked together). The 20 covariance matri-
ces are subsequently averaged to calculate the EOFs of
the ensemble. Then for a given (7., nEoF), the weighted
daily-averaged anomalous (i, T) is projected onto the first
ngor EOFs using least-square linear regression, and the
results are used to calculate the reduced-dimension covari-
ance and lag-covariance matrices for each hemisphere in
each simulation, which are then averaged for each 7 to
find C(7) for 1 =0,1,2,... T days. The integral in (3) is
evaluated using the trapezoidal rule.

To find the best performance of MFDT, for each test we
have tried 7.. = 20,30,45,60, and 90 days and ngor =
64(97.5%),113(99.0%),165(99.5%),200(99.7%), and
300(99.8%) where the parentheses show the explained
variance

4. Tests 1-3 for MFDT

Tests 1-3 of Part 1 are used to examine the performance
of Mgpr in predicting the mean-response to external forc-

ings and vice versa. The tests and the true mean-responses
are discussed in detail in Part 1 (section 4), but they are
also briefly described here and true mean-responses are
shown in Fig. 1. For each test of MFDT, the best results for
the attempted ranges of 7. and ngop are shown in Fig. 2
and discussed below.

In Test 1 we examine the accuracy of MFDT in calculat-
ing the time-mean response (y) to an external subtropical
thermal forcing

f=02xexp[—(p—450)%/125% — (|u| —25)*/15°] (4)

with units of K day~! (pressure p is in hPa and lati-
tude u is in degree). The true response, calculated us-
ing an ensemble GCM run forced with this forcing, is
shown in Figs. 1(a)-1(b) (see section 4.a of Part 1 for de-
tails). The mean-response to this forcing calculated using
MFDT is shown in Figs. 2(a)-2(b). Comparing with the
true response (Figs. 1(a)-1(b)) shows that while Mgpt can
crudely reproduce the patterns of the zonal-wind and tem-
perature response such as the poleward shift of the jet and
warming in the subtropical mid-troposphere, it cannot re-
produce the amplitude of the response or its patterns at
small scales. We have further tested the performance of
MFDT using an external tropical forcing

F=02xexp[—(p—300)*/100% — u*/20?]. (5)

The true mean-response is shown in Figs. 1(c)-1(d). The
mean-response calculated using |\7IFDT (Figs. 2(c)-2(d))
agrees better, both qualitatively and quantitatively, with
the true response compared to the subtropical forcing, but
there are still notable differences particularly in the pat-
tern of the zonal-wind and amplitude of the temperature
response. _

The purpose of Tests 2 and 3 is to test whether Mgpt
can accurately predict the forcing (f) needed to produce
a specified mean-response (i.e., the target). In these tests,
for a given target (y), (f) = —~Mppr(y) is calculated and
applied in the GCM to run a three-member ensemble,
where each member is 45000 days (note that although
we use (-) for notation consistency, the forcing f is time-
invariant). The mean-response is then calculated with re-
spect to a three-member control-run ensemble (see sec-
tion 4 of Part 1 for more details). To minimize the com-
putational cost given the large combination of (7w, nEOF),
we have first used MGRF, instead of the GCM ensemble
run, to test the accuracy of f calculated using Mgpr for the
specified targets of Tests 2 and 3. Once the (.., ngoF) that
produces the best results are found for each test, the GCM
ensemble run is used to calculate the results that are dis-
cussed below and shown in Fig. 2 (as expected from the
results of Part 1, the results of the GCM ensemble run and
MGRF agree well).
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True mean-responses of zonal-wind:
(a) Test 1 (subtropical forcing)
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FIG. 1. The true mean-responses for Tests 1 — 3. The left (right) panels show the time-mean zonal-wind in m s~ (temperature in K). (a)-
(b) Test 1: the time-mean response to an imposed Gaussian subtropical thermal forcing f = 0.2 x exp [—(p —450)?/125% — (Jju| —25)?/157]
calculated using an ensemble GCM run (see Fig. 1 in Part 1 for details). The units of f, p, and u are K day~!, hPa, and degree, respectively. (c)-(d)
similar to (a)-(b) but for tropical forcing f = 0.2 x exp [—(p —300)?/100% — u?/20%]. (e)-(f) Test 2: time-mean response of an ensemble GCM
run with Newtonian relaxation timescale that is 10% larger than that of the control-run (see Fig. 2 in Part 1 for details). (g)-(h) Test 3: the first EOF
(EOF1) of the control-run, which is the positive phase of Annular Mode (see Fig. 3 in Part 1 for details).

For Test 2, the target is the mean-response to 10% in-
crease in the Newtonian relaxation timescale of the Held-
Suarez setup (Figs. 1(e)-1(f)). As shown in Figs. 2(e)-
2(f), Mgpt reproduces the pattern of the zonal-wind re-
sponse relatively well, except in the tropical stratosphere,
and the relative error in the amplitude of the zonal-wind
response is 14%. The pattern and amplitude of the tem-
perature response, however, are poorly reproduced using
Megpr. For Test 3, the target is the leading EOF (EOF1) of
daily-averaged zonally-averaged anomalous (with respect
to the climatology) zonal-wind and temperature, which is
the positive phase of the Annular Mode (Figs. 1(g)-1(h)).
As shown in Figs. 2(g)-2(h), for Test 3 both zonal-wind
and temperature responses are reproduced reasonably well

using Mepr with the exception of the pattern of the tem-
perature response at high-latitudes. It should be high-
lighted that in all these tests, the best results are obtained
with 7., = 30 days, which is around the decorrelation time
of EOF1 in the control-run. Gritsun and Branstator (2007)
and Fuchs et al. (2015) also used 7.. = 30 days, although
their GCMs and setups are very different from ours.

The results of Fig. 2 show that the LRF calculated using
the FDT is relatively accurate for some problems, such as
Test 1 with the tropical forcing and Test 3, and inaccurate
and only qualitative for some other, such as Test 1 with
subtropical forcing and Test 2, consistent with the find-
ings of previous studies (e.g., Gritsun and Branstator 2007;
Lutsko et al. 2015; Fuchs et al. 2015). However, even in
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FDT-calculated mean-responses of zonal-wind:
(a) Test 1 (subtropical forcing)
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FDT-calculated mean-responses of temperature
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FIG. 2. Tests 1-3 for Mgpr. For each Test, the best results for the attempted ranges of .. and ngop are shown. The left (right) panels show the
time-mean zonal-wind in m s~ (temperature in K). (a)-(b) Test 1; the relative errors in amplitude are 21% and 31%, respectively. (c)-(d) similar to
Test 1 but for tropical forcing f = 0.2 x exp [—(p —300)?/100% — 2 /20%]; the relative errors in amplitude are 6% and 24%, respectively. Results
of (a)-(d) are obtained with 7. = 30 days and ngor = 165. (e)-(f) Test 2; the relative errors in amplitude are 14% and 44%, respectively. (g)-(h)
Test 3; the relative errors in amplitude are 13% and 14%, respectively. Results of (e)-(h) are obtained with 7. = 30 days and ngor = 200.

Test 3 where the FDT performs the best, some features
of the response, such as cooling in the high-latitudes, are
poorly reproduced, which can limit applications of Mepr,
for example for hypothesis-testing.

The source(s) of the poor performance of MFDT for
some problems and its inability to reproduce some pat-
terns of the response is unclear and difficult to identify
and might be due to violation of the assumptions underly-
ing Eq. (3) such as Gaussianity and/or one or some of the
practical issues discussed in section 1. The departure from
Gaussianity in the control-run is found to be substantial in
particular for temperature for which the skewness and kur-
tosis of daily averages can be as large as 2 and 14, respec-
tively. Although we use the equivalent of a 990000-day
integration to compute MFDT, the limited dataset can cer-

tainly still be a source of error. However, the results shown
in Fig. 2 are not substantially better than those obtained
using only one fifth of the dataset (but it should be noted
that the error in MFDT decreases as 1/ /N with the length
of the dataset N (Gritsun and Branstator 2007)). Nonlin-
earity and state-vector reduction are likely not the sources
of the poor performance of MEpT given the good perfor-
mance of MGRF for these tests (see section 4 of Part 1)
and the state-vector reduction analysis of Appendix A in
Part 1.

The dimension-reduction using projection onto a num-
ber of the leading EOFs is another likely source of error.
For example, Gritsun and Branstator (2007) and Fuchs
et al. (2015) have found that the LRFs calculated using
the FDT perform poorly when the forcings project onto
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the excluded EOFs. This happens when the forcing pat-
tern differs significantly from the leading EOFs, which is
the case for Gaussian forcings. In the following two sec-
tions, we show that the dimension-reduction alone can re-
sult in a significantly poor performance of Mgprt for sys-
tems with non-normal LRFs, and that the errors increase
rapidly with non-normality. This non-normality, not to
be confused with non-Gaussianity of the statistics of the
state-vector, refers to the non-orthogonality of the eigen-
vectors of the operator (i.e., the LRF) (Farrell and Ioannou
1996a,b; Trefethen et al. 1993; Butler and Farrell 1992;
Reddy et al. 1993) and can result in strong interaction be-
tween the components of the forcing and response that
project onto the included and excluded EOFs.

5. Tests using a linear stochastic equation with MGRF

To focus on the effect of dimension-reduction and elim-
inate other possible causes for a poor performance of the
LRF calculated using FDT, we use a dataset that consists
of daily-averaged Z obtained from integrating the linear
stochastic equation

7Z=Mcrpz+¢ (6)

using the Euler-Maruyama method (Higham 2001) with a
0.1 day timestep for 15 million days. In (6), {(7) is a 200 x
1A vector Qf Gaussian white noise, the 200 x 200 matrix
Mgrr is Mgrr after inaccurate fast modes are filtered out
(see section 3 of Part 1 for details), and z is a 200 x 1 state-
vector consisting of the coefficients of basis functions

2 2
— Mo P — Do
exp | LA 2“) ! ! ) ™
lJ“W pW
for u and T (similar to y) where u, = 10°,
U, = 0°,10°,20°,...90°, p, = 75 hPa, and

po = 100,200,300,...1000 hPa (see section 3 of
Part 1 for details). The advantage of investigating FDT
using (6) is that while its LRF has the same complexity
as that of the GCM, the problem is linear, it produces
Gaussian statistics, it can be easily integrated to generate
a very long dataset, and the noise is uniformly added to
excite all basis functions. As a result of the last two,
C(7) can be accurately calculated for large 7, and C(0)~!
and [[C(7)dt]”" can be computed without the need for
dimension-reduction.

Similar to the procedure used previously, Z normal-
ized with the standard deviation of each pressure level
is used to calculate C(7) for 7 = 0,1,...90 days, which
are then used to compute Mgpr from (3). The mean-
responses to a unit-amplitude thermal forcing of the ba-
sis function at (U,,p,) = (30°,400 hPa) calculated us-
ing MGRF (the true response) and MFDT (obtained without
dimension-reduction) are shown in Figs. 3(a)-3(d). The
amplitude and patterns of the two responses agree well.

When MFDT is calculated with dimension-reduction using
the first 81 EOFs (which explain 90% of the variance),
the performance of FDT declines significantly (Figs. 3(e)-
3(f)) and relative errors in amplitude as large as 60% arise.

The errors are not simply due to the inability of the
dimension-reduced |\7IFDT to capture part of the true re-
sponse that projects onto the excluded EOFs and is forced
by the excluded component of the forcing (i.e., compo-
nents of forcing that projects onto the excluded EOFs). In
fact similar differences in pattern and errors in amplitude
are found if only parts of the responses that project onto
the first 81 EOFs are compared (see the caption). There-
fore, the error is to due the inability of the dimension-
reduced Mgpt to capture part of the true response that
projects onto the included EOFs and is forced by the ex-
cluded component of the forcing. This component of the
response, which depends on the non-normality of the LRF,
can complicate understanding the relationship between the
error in the predicted response and the excluded part of the
forcing, and can be best understood using simple examples
of 2 x 2 matrices.

6. Tests using 2 x 2 normal and non-normal matrices

We focus on a simple linear system
z=Az+(+f ®)

where z = (z1,z2) is a 2 X 1 state-vector and {(¢) and f are
2 x 1 vectors of Gaussian white noise and time-invariant
external forcing, respectively. To start, we choose A to be
either a normal matrix A |

-1 0
or a non-normal matrix A/

-1 5
A=y 3

The spectral properties of these matrices are shown in
Figs. 4(a)-4(b). The matrices have the same eigenvalues
—1 57" and —2 s~ ! and the same slowest-decaying eigen-
vectors e1, which are parallel to the horizontal axis. How-
ever, while the other eigenvector of A is along the ver-
tical axis and hence orthogonal to e;, the second eigen-
vector of A, is nearly anti-parallel to e; with a 11.4° an-
gle. As a result, A/ is non-normal, i.e., AAAL #* AZAZ,
and consequently, in spite of having negative eigenval-
ues, can lead to non-normal growth in z and instability
(see Fig. 1 in Trefethen (1991)). Non-normal operators
are common in engineering and geophysical/astrophysical
flows (see page 579 of Palmer (1999) for an illustrative ex-
ample of why) and their significance for the dynamics of
the atmosphere and ocean has been recognized through the

(10)
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Mean-response of temperature:
(a) True response
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FIG. 3. Mean-response to a unit-amplitude thermal forcing of basis function centered at 30° and 400 hPa. Left (right) panels show temperature
in K (zonal-wind in m s~"). (a)-(b) the true response calculated using MGRF. (c)-(d) response calculated using MFDT without dimension reduction.
Relative errors in amplitude are 11% (c) and 8% (d). (e)-(f) response calculated using Mgpr with dimension reduction using the first 81 EOFs.
Relative errors in amplitude are 31% and 62%. If only the component of the response that projects onto the first 81 EOFs is compared, the relative
errors in amplitude are 12% (c), 8% (d), 25% (e), and 64% (f). Results of (c)-(f) are obtained with 7., = 50 days.

pioneering papers of Farrell and his colleagues (e.g., Far-
rell 1988, 1989; Farrell and Moore 1992; Butler and Far-
rell 1992; Farrell and Ioannou 1996a,b) and those of others
(e.g., Buizza and Palmer 1995; Penland and Sardeshmukh
1995; Ioannou 1995; Zanna and Tziperman 2005; Tziper-
man et al. 2008; Palmer and Zanna 2013).

For both matrices, Eq. (8) is integrated for f = 0 using
the Euler-Maruyama method with a 0.05 s timestep for
5 million seconds. The EOFs of the results are shown in
Fig. 4(a)-4(b). For the normal matrix, EOF1 and EOF2
are almost identical to e; and e;, respectively, while they
are different for the non-normal matrix. For both matrices,
the results are used to construct MFDT from Eq. (3) with-
out dimension-reduction (denoted as FDT-Full) and with
only EOF1 retained (denoted as FDT-EOF1). The mean-
responses of (8) with A | to external forcing f = EOF1
predicted using FDT-Full and FDT-EOF1 are shown in
Figs. 4(c). Both full and dimension-reduced LRF are

very accurate. When the forcing has 10% projection onto
EOF2, the LRF calculated using FDT-EOF1 shows a small
error, because it cannot capture the part of the response
that project onto EOF2 and is forced by the EOF2 compo-
nent of £. This becomes clear when (8) is transformed into
the EOF-space:

a= [EOF ! (EIG AEIG ')EOF| a+EOF 'f (1)

where a = (aj,ay) is a vector of the coefficients of the
EOF1 and EOF2, EOF and EIG are 2 x 2 matrices whose
columns are the EOFs and eigenvectors of A, respectively,
and A is a diagonal matrix of the eigenvalues of A. The
last term is simply a vector of the projections of f onto
the EOFs. The noise term is ignored for convenience. For
a normal matrix such as A |, EOF and EIG are identical
and the first term on the right-hand side reduces to Aa.
Hence the equations for a; and a decouple. Then if f
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FIG. 4. Comparison of the performance of FDT in calculating the mean-response of Eq. (8) with normal matrix A (left) and non-normal
matrix A/ (right). (a)-(b): the blue arrows show the eigenvectors e; and e with eigenvalues in parentheses; the red arrows show the EOFs
with the explained variance in parentheses for f = 0; and the green arrows show the neutral vectors (NV). In (a), e;, EOF1, and NV are almost
identical (as well as e, and EOF2). In (b), EOF1 and NV are very close. The similarity between EOF1 and NV is expected following the
discussion in section 5 of Part 1. (c)-(d): the end of the blue and red arrows show the mean-responses to unit-amplitude forcing f = EOF1 obtained,
respectively, from full FDT (FDT-Full) and dimension-reduced FDT that only uses EOF1 (FDT-EOF1). The black arrow shows the exact response
and the parentheses show the relative error in || - |2 (see Eq. (B3) in Part 1 for definition). (e)-(f) same as (c)-(d) but for unit-amplitude forcing

f= (0.9 x EOF1 +0.1 x EOF2)/[0.9 x EOF1 4 0.1 x EOF2||,.

does not have any projection on EOF2, (a;) = 0 and FDT-
EOF1 works as accurately as FDT-Full (Fig. 4(c)). If f
has a projection onto EOF2, then (a;) # 0 causes some
errors in FDT-EOF1, which can still accurately calculate
(ar) (Fig. 4(e)).

However, for non-normal matrices EOF #* EIG
(Fig. 4(b); also see North (1984)) and the off-diagonal ele-
ments of the matrix in the first term on the right-hand side
of (11) can be large, which strongly couples the two equa-
tions. In this case, a forcing that only projects onto EOF1
can result in large (ay), and part of a forcing that projects
onto EOF2, even if small, can have a large contribution
to (a;). Neither effects can be captured by FDT-EOFI
which can lead to large errors, as shown in Figs. 4(d)
and 4(f) for A,. The amplitude of these errors depends
on the non-normality of A. For example, as shown in
Fig. 5, for the same forcing f which has a 10% contribu-
tion from EOF2, the error in the response predicted using
FDT-EOF]1 rapidly increases as the acute angle between
the eigenvectors of A deceases. The decrease in the angle
results in a larger off-diagonal term (coefficient of ay) in
the equation of a;, which explains the increase in the error.

The effect of non-normality complicates understanding
the relationship between the error in dimension-reduced
FDT predictions and the excluded part of the forcings. For
example, non-normality might explain why Fuchs et al.
(2015) could not find a simple scaling relation between
the error in the amplitude of the response and the loss
of amplitude of the forcing due to dimension-reduction.
While the error in prediction using FDT-EOF1 for a nor-
mal matrix is proportional to the percentage of the forc-
ing that projects onto EOF2, the relationship is not lin-
ear for a non-normal matrix. This is seen in Fig. 6 which
shows the relative error of the response that is predicted by
the LRF constructed using FDT with only EOF]1 retained
(FDT-EOF1), as a function of the EOF2 contribution to
the forcing for the 2 x 2 linear stochastic system (8) with
either normal operator (9) or non-normal operator

-1 -5
0 =2
Finally it should be noted that while here we have fo-
cused on the effect of non-normality on the errors in the

mean-response arising from dimension-reduction, non-
normality can also induce errors in the forcing calculated

(12)
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FIG. 5. Performance of the dimension-reduced FDT in calculating the mean-response of Eq. (8) to unit-amplitude forcing f = (0.9 x EOF1 +
0.1 x EOF2)/]|0.9 x EOF1 + 0.1 x EOF2||, for three non-normal matrices with different angles between eigenvectors, which are, from top to
bottom, ~ 11.4°, 5.8°, and 2.8°. Left panels: the blue arrows show the eigenvectors e; and e;, which have eigenvalues —1 and —2, respectively;
the red arrows show the EOFs with the explained variance in parentheses for f = 0; and the green arrows show the neutral vectors (NV). Right panels:
for matrices on the left panels, the end of the blue and red arrows show the responses, respectively, from the full (FDT-Full) and dimension-reduced
FDT that only uses EOF1 (FDT-EOF1). The black arrow shows the exact response and the parentheses show the relative error in || - [|>.

using dimension-reduced FDT for a given mean-response
in a similar way.

The analyses presented in sections 5 and 6 show that
dimension-reduction alone can be a substantial source of
error in the results obtained from LRFs constructed using
FDT because of the non-normality of the system’s oper-
ator, and demonstrate that the error depends on the rela-
tionship between the included and excluded EOFs, eigen-
vectors of the system’s true operator, and the projections
of the forcing/response onto the eigenvectors and EOFs.
Based on these results, it is likely that errors arising from
dimension-reduction are a major, if not the main, contrib-
utor to the poor performance of the LRF calculated using
FDT in section 4. This is further supported by the fact that
the best performance of FDT is achieved for Test 3 where
the response projects mostly only onto EOF1 (there is lit-
tle projection onto other EOFs due to the different weight-
ings used in EOF calculations in section 4 of Part 1 and
section 4 of Part 2).

It should be noted that the problem with non-normality
and dimension-reduction discussed here cannot be re-
solved just by including more EOFs in the LRF construc-
tion, because the poorly sampled EOFs degrade the ac-
curacy of LRF, and excluding them is the rationale be-
hind the dimension-reduction strategy. In fact as reported
by Fuchs et al. (2015) and also found here, including too
many EOFs reduces the accuracy of |\7IFDT. Furthermore,
only focusing on forcings/responses that strongly project
onto the leading EOFs is an imperfect solution because it
can seriously limit the applications of Mgpr, as many phe-
nomena of interest do not project onto the natural modes
of variability (see, e.g., Scaife et al. 2009).

7. Summary

~ In Part 2 of this study, we have calculated the LRF,
Mgpr, for an idealized dry CGM using the FDT. Despite
efforts to maximize the performance of the FDT, for exam-
ple by using a one-million day dataset and trying a range of
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circles (red squares) show the results for the normal matrix Eq. (9) (non-normal matrix Eq. (12)).

(Te,nEOF), the MEpr is found to perform poorly for some
test cases (section 3). To eliminate some of the potential
causes of this poor performance, the accurate LRF of this
model, Mggrg, which has been calculated in Part 1 of the
paper using Green’s functions, is used in a linear stochas-
tic equation driven by Gaussian white noise. Calculating
Mgpr from very long integrations of this equation reveals
that dimension-reduction by projecting the data onto lead-
ing EOFs, which is commonly used for FDT, can signif-
icantly degrade the performance of the FDT (section 5).
We show in section 6 that the dimension-reduction causes
this error because the LRF of the system is non-normal.
For example, as a result of this non-normality, the coeffi-
cients of the EOFs can be strongly coupled (see Eq. (11)),
and even small projections of the forcing onto the ex-
cluded EOFs can have large contributions to the part of
the true response that projects onto the included EOFs.
Such contributions cannot be captured by the dimension-
reduced |\7IFDT which leads to erroneous predictions.

The results of this paper point to the operator’s non-
normality as a major source of difficulty for the practical
use of the FDT for the general circulation. The role of
non-normality might explain the mixed success and diffi-
culty in understanding some of the results obtained using
the FDT in other studies. Given that dimension-reduction
is inevitable for calculating LRFs using FDT from limited
datasets and that non-normality is common in the oceanic
and atmospheric flows, we suggest further investigations
of dimension-reduction strategies with a focus on non-
normality.

The results of this paper also provide another example
for the applications of the accurate LRF, MGRF, that has
been calculated in Part 1 of this study (see Hassanzadeh

and Kuang (2015) for another example). Furthermore, we
suggest that the linear stochastic equation (6) can be help-
ful in evaluating various strategies related to FDT and in
disentangling the contributions of different sources of er-
ror because while this equation closely retains the com-
plexity of a full GCM through MGrr, it is computation-
ally inexpensive to solve and flexible in terms of the driv-
ing noise. For example, replacing ¢ with correlated addi-
tive and multiplicative noise allows non-Gaussian statis-
tics (Sardeshmukh and Sura 2009), which provides a sim-
ple framework to investigate the performance of FDT in
non-Gaussian systems.
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