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Abstract

We estimate the natural rate of interest—the real short-term interest rate consis-

tent with economic output equaling its natural rate and constant inflation—for the

United States, the Euro Area, and Canada following the COVID-19 pandemic. To

do so, we introduce time-varying volatility and add a persistent supply shock to the

Holston-Laubach-Williams and Laubach-Williams models of the natural rate of inter-

est to address the extraordinary effects of the COVID-19 pandemic on the economy.

These two extensions are necessary to account for the extreme magnitude and nature of

the demand and supply shocks associated with the pandemic, which violate key model

assumptions. This problem is not unique to our models, and we propose a general so-

lution that can be applied to estimate other unobserved variables after extreme shocks.

Resulting estimates of the natural rate of interest in the second quarter of 2023 are

close to their respective levels estimated directly before the pandemic; that is, we do

not find evidence that the era of historically low estimated natural rates of interest has

ended. In the context of our model, the main consequence from the pandemic period

was a reduction in estimated natural rates of output.
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1 Introduction

Estimates of the natural rate of interest reached historically low levels in many advanced

economies prior to the COVID-19 pandemic, following a decades-long decline (Holston,

Laubach, and Williams, 2017). This downward trend has garnered considerable attention

and debate about its sources and consequences (Laubach and Williams, 2016, Gourinchas

and Rey, 2019, Rachel and Summers, 2019).1 The events of the past few years, including the

COVID-19 pandemic and subsequent policy actions, have renewed the debate over whether

historically low natural rates of interest will persist in the post-pandemic era (International

Monetary Fund, 2023, Obstfeld, 2023). Answering this question using empirical models of

the natural rate of interest has been challenging owing to the unprecedented macroeconomic

volatility across the globe during the pandemic. This paper develops and implements a data-

driven approach that addresses the extraordinary effects of the pandemic using the Holston,

Laubach, and Williams (HLW, 2017) and Laubach and Williams (LW, 2003) models of the

natural rate of interest. Our approach preserves to the greatest extent the basic structure

and flexibility of the original models, while providing consistent model estimates of natural

rates before, during, and after the pandemic period. We provide a general solution that can

be applied to models that estimate latent variables using frequentist (as in HLW and LW)

and Bayesian methods during and after periods of extreme volatility, as long as the timing

of increased volatility is known.

The HLW and LW models apply the Kalman filter to translate movements in real GDP,

inflation, and short-term interest rates into estimates of trend growth, the natural rate of

output, and the natural rate of interest. The model’s structure is flexible and incorporates

transitory and permanent shocks to supply and demand and dynamic endogenous behavior

of inflation and output. However, like other models that use the Kalman or other statistical

filters, identifying assumptions regarding the nature of the shock processes are imposed.

In particular, the shocks are assumed to be serially uncorrelated and described by time-

invariant Gaussian distributions. The COVID-19 pandemic generated extraordinary swings

in macroeconomic data that are dramatically at odds with both of these assumptions.

First, the assumption of a time-invariant Gaussian distribution for the shock processes

is clearly contradicted by the data. Relative to the historical experience of the prior half

century, the COVID-19 pandemic is an extreme tail event in terms of its effects on economies

around the world. Figure 1 plots the normalized quarterly log changes in GDP in the United

States, Canada and the Euro Area from the first quarter of 2020 through the second quarter

of 2023. Each series is normalized relative to their respective means and standard deviations

from 1970-2019 (1972-2019 for the Euro Area). The fluctuations in GDP growth during

1There is a related literature on the history of real interest rates over a very long time span. See, for
example, Rogoff, Rossi, and Schmelzing (2022) and references therein.
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the first three quarters of the pandemic (2020:Q2-2020:Q4) are enormous relative to pre-

pandemic behavior. In addition, an unusually high number of observations in 2021 are

outliers relative to historical behavior.

Second, the assumption of serially uncorrelated shocks is inconsistent with the highly

negatively-correlated sequence of swings in output associated with the shutdowns and re-

openings caused by COVID-19. For example, in all three economies, GDP declined sharply

in the second quarter of 2020, then rose sharply in the following quarter. If uncorrected,

these two stark violations of the assumptions significantly distort the estimation of model

parameters and latent variables.

We make two modifications to the HLW and LW models that address the two violations

of the original models’ assumptions. First, we allow for time-varying volatility of the shocks

to output and inflation during the pandemic period consistent with the appearance of

extreme outliers in the data. We build on the insight from Lenza and Primiceri (2022)

that if the timing of increased volatility is known, one can introduce time-varying volatility

in the model directly by applying a scale factor to the innovation variances. Due to the

presence of shocks to both observed and latent variables, we follow Harvey and Koopman

(1992) and Harvey et al (1999) in measuring outliers in terms of auxiliary residuals. These

have the advantage of providing a direct interpretation and test for outliers.

Second, we incorporate a proxy for a persistent, but not permanent, supply shock that

is designed to capture the effects of COVID-19 and related policy responses. Specifically,

we create a COVID-adjusted measure of the natural rate of output, where the magnitude

of the adjustment is proportional to the country-specific COVID-19 Stringency Index from

the Oxford COVID-19 Government Response Tracker (Hale et al., 2021). The magnitude

of the effect of COVID policies on the natural rate of output is estimated for each economy.

This COVID shock is in addition to the full set of innovations already present in the models.

The HLW model with these two modifications is estimated on data from the United

States, Canada, and the Euro Area through the first half of 2023.2 The estimation results

demonstrate that these two modifications effectively address the two main econometric

issues associated with the pandemic.3 The estimation procedure yields parameter estimates

consistent with the model structure, and the pre-pandemic estimates of the natural rates of

output and interest and the trend growth rate are very similar to those estimated on data

2In addition, we make some technical adjustments to the HLW model and the estimation procedures
for both models. Specifically, consistent with the specification of the LW model, we now estimate the
relationship between trend growth and the natural rate of interest in the HLW model, instead of restricting
it to unity. We also make minor technical adjustments that align the assumptions used in the various stages
of the model estimation procedure, described in Appendix A1.

3In HLW (2017), the model was also estimated using data from the United Kingdom. Extending the
sample to include the most recent years has weakened the estimated relationship between the output gap
and real interest rates in the UK data, making estimates of the natural rate of interest highly unreliable.
For that reason, we no longer estimate the model for the United Kingdom.
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ending in 2019.

The patterns of historically low estimates of trend GDP growth and the natural rate

of interest experienced before the pandemic persist after the COVID-19 pandemic. In all

three economies, the estimates of trend growth and the natural rate of interest in the first

half of 2023 are within a few tenths of a percentage point of the corresponding estimates for

2019. In particular, these estimates provide no evidence of a reversal of the trend decline

in estimates of the natural rate of interest based on data through the first half of 2023.

In all three economies, estimates of the COVID-adjusted natural rate of output in the

first half of 2023 are significantly lower than what the model predicts based on pre-pandemic

data. These declines reflect both the estimated effects of COVID-related restrictions and

permanent negative shocks to the natural rate of output. According to the model, these

declines in the natural rate of output are the most economically significant lasting effects

of the COVID era.

This paper is organized as follows. Section 2 describes the HLW model and the evidence

of significant departures from the model’s assumptions brought on by the COVID-19 pan-

demic. Section 3 describes the modifications to the model to address the pandemic-related

effects. Section 4 reports estimation results. Section 5 reports results from robustness

exercises. Section 6 concludes.

2 Results from the Pre-Pandemic Model

In this section, we provide a short description of the original HLW model. We show that the

data during the pandemic generate large outliers that are inconsistent with the assumptions

of the model.

2.1 The Original HLW Model

In the HLW model, the natural rate of interest, r∗t , is the real interest rate consistent with

output equaling its natural rate, y∗t , and stable inflation. As is standard in this literature

(e.g., see Woodford, 2003), we model the output gap and inflation dynamics as a function

of the real interest rate gap, rt − r∗t , using an intertemporal IS equation and Phillips curve

relationship, in line with the New Keynesian framework:

ỹt = ay,1ỹt−1 + ay,2ỹt−2 +
ar
2

2∑
j=1

(rt−j − r∗t−j) + ϵỹ,t (1)

πt = bππt−1 + (1− bπ)

4∑
j=2

πt−j + byỹt−1 + ϵπ,t (2)
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The output gap is defined as ỹt = 100 ·(yt−y∗t ), where yt and y∗t are logarithms of real GDP

and the unobserved natural rate of output, respectively, rt is the real short-term interest

rate, and πt denotes consumer price inflation.4 The stochastic disturbances ϵỹ,t and ϵπ,t are

transitory shocks to the output gap and inflation equations, respectively, and do not affect

the natural rates of interest or output.

We use the Kalman filter to estimate the latent variables, which are the natural rate

of output, its trend growth rate, and a process capturing other low-frequency determinants

of the natural rate of interest. In keeping with the standard Kalman filter approach, the

stochastic innovations to the measurement equations – the IS and Phillips curve equa-

tions – are assumed to follow a Gaussian distribution with standard deviations σỹ and σπ,

respectively, and to be mutually and serially uncorrelated.

In contrast to the transitory shocks to the output gap and inflation equations, movements

in r∗t reflect highly persistent, or permanent, shifts in the relationship between the real short-

term interest rate and the output gap (Williams, 2003). The law of motion for the natural

rate of interest is given by

r∗t = c · gt + zt (3)

where gt is the trend growth rate of the natural rate of output, and zt captures other

determinants of r∗t .
5 We specify the three latent variables in our state-space model as

follows. The logarithm of the natural rate of output follows a random walk with a stochastic

drift, gt, that itself follows a random walk,

y∗t = y∗t−1 + gt−1 + ϵy∗,t (4)

gt = gt−1 + ϵg,t (5)

and the component zt, which captures other low-frequency determinants of r∗t , is assumed

to follow a random walk as well,

zt = zt−1 + ϵz,t (6)

We assume that the disturbances ϵy∗,t, ϵg,t, and ϵz,t are normally distributed with standard

deviations σy∗ , σg, and σz, respectively, and are serially and contemporaneously uncorre-

lated with all other disturbances.

4See HLW (2017) Section 2 and Appendix A for details of the model specification. We take as a start-
ing point the open-economy New Keynesian model specification as in Gaĺı (2008) and relax two standard
restrictions to work with reduced-form IS and Phillips curve equations with adaptive expectations.

5Note that, consistent with LW (2003), we relax the assumption in HLW (2017) of a one-for-one relation-
ship between trend growth and the natural rate of interest and estimate this relationship. See Appendix A1
for details on changes to the HLW (2017) model.
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Equations 1 and 2 make up the measurement equations in our state-space model and

can be expressed as

yt = A′ · xt +H′ · ξt + ϵt (7)

with stochastic innovations ϵt. Equations 4, 5, and 6 make up the state equations in our

state-space model, written as

ξt = F · ξt−1 + ηt (8)

where ξt is the state vector of latent variables and ηt is the vector of stochastic innovations.

See Appendix A1 for the full state-space representation of the model.

2.2 Outliers in Estimation with 2019:Q4 Model Parameters

We now analyze how the extreme movements in GDP and inflation during the COVID-19

pandemic yield large outliers in the standard HLW model. We then show that estimates of

the latent variables are heavily affected by these sizable outliers, even when we constrain

the model parameters at their pre-pandemic values, and demonstrate that modifications to

the HLW and LW models are necessary.

Before making any adjustments to the models, we begin by estimating the standard

HLW model in Section 2.1 with data through 2019:Q4, prior to the onset of the COVID-

19 pandemic.6 For reference, the upper three panels of Figure 2 show the full samples of

data. We fix the model parameters at their estimated values and re-estimate the latent

variables through 2023:Q2 using the Kalman filter, taking all parameter values as given

from the 2019:Q4 estimated model. We also fix the initial vector of unobserved states

and its covariance matrix at the 2019:Q4 values.7 This exercise is equivalent to dropping

observations beginning in 2020:Q1 through the end of the sample during the maximum

likelihood estimation of model parameters, while allowing the Kalman updating procedure

to continue without modification through the end of the sample. In other words, we make

no modifications to the state-space model, except that the model coefficient matrices and

covariance matrices in the Kalman filtering procedure are fixed at their 2019:Q4 values. This

would be a suitable approach if we take the view that the pandemic period is not informative

6Throughout the paper, we use the current data vintage at the time of publication, regardless of the
sample period. Estimation using the 2023:Q2 vintage includes the BEA’s September 2023 data revision.

7We store the estimated parameter vector θ from the final (stage 3) model as well as the signal-to-noise
ratios λg and λz from the median unbiased estimation procedures following stages 1 and 2, respectively. See
HLW (2017) for a description of the estimation procedure and footnote 6 for the initialization process of the
vector of unobserved states, its conditional expectation ξ1|0 in the first period, and the covariance matrix
P1|0.
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for the model parameters, such as the slopes of the IS and Phillips curve equations, but is

informative for the latent variables.

The final step of the Kalman filtering procedure to estimate the vector of unobserved

state variables at time t (denoted as ξ̂t|t, and conditional on the information set at time t)

is given by the Kalman updating equation,

ξ̂t|t = ξ̂t|t−1 +Kt · (yt −A′ · xt −H′ · ξ̂t|t−1)︸ ︷︷ ︸
one-step-ahead prediction error

(9)

where ξ̂t|t−1 is the initial estimate of the state vector during the period, conditional on the

information set at time t − 1, and Kt is the Kalman gain matrix. The final term contains

the one-step-ahead prediction errors (or forecast errors) corresponding to the measurement

equations in the model. These one-step-ahead prediction errors are the residuals to the

IS and Phillips curve equations, using the forecast of yt (the vector of contemporaneous

endogenous variables, that is, the output gap and inflation) based on the data at time t and

information at time t− 1, corresponding to the state vector ξ̂t|t−1:

yt − E[yt|xt, ζt−1] = yt − (A′ · xt +H′ · ξ̂t|t−1) (10)

In Equation 9, the Kalman gain matrix dictates the weight placed on the one-step-ahead

prediction errors during the latent variable estimation. A larger Kalman gain Kt indicates

that the final estimates of the latent variables are more heavily influenced by the gap

between the realized data and the model’s prediction, relative to ξ̂t|t−1, the prior estimate

of ξt conditional on information in the preceding period.

In this initial exercise, the coefficient matrices H′ (on the state vector ξ̂t|t−1) and A′

(on the data xt) are fixed at their 2019:Q4 values. The resulting one-step-ahead prediction

errors are very large during much of the pandemic period. These large forecast errors

translate directly to the estimated vector of unobserved latent variables (y∗t , gt, zt), so that

the data during this period has large effects on estimates of these latent variables.

Because the HLW model is an unobserved-components model, there exists another set

of model residuals in addition to the one-step-ahead prediction errors that are commonly

used for diagnostic testing. These auxiliary residuals are smoothed estimators of the dis-

turbances to the measurement equations, ϵt, and to the state equations, ηt, meaning that

they incorporate all available information over the full sample period and provide a differ-

ent interpretation of the stochastic innovations (Harvey and Koopman, 1992; Harvey et al.

1999). They have the advantage in applying a test for outliers: under the assumption that

the stochastic innovations are from a Gaussian distribution, standardized auxiliary residu-

als greater than 2 (in absolute value) indicate either the presence of outliers or structural
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change.

We use the algorithm from Koopman and Durbin (2000) to obtain the standardized

auxiliary residuals to the measurement equations, ϵ̃t/σ̂ϵ,t, and to the state equations, η̃t/σ̂η,t.

The gold lines in Figure 3 show that the standardized auxiliary residuals to the measurement

equations, given by

ϵ̃t
σ̂ϵ,t

=
E[ϵt|yT ,xT , ζT ]

SD[ϵt|yT ,xT , ζT ]
, (11)

indicate extreme outliers to the output gap equation in all economies in our sample, un-

der the standard HLW model using 2019:Q4 parameter values. In the United States and

Canada, standardized auxiliary residuals to the IS equation are 9 to 10 times the outlier

threshold for a Gaussian model in the second quarter of 2020, and 17 times the threshold

in the Euro Area. While not as extreme, the model residuals also detect outliers to the

inflation equation in each of the three economies, with standardized auxiliary residuals to

the Phillips curve equation reaching double the outlier threshold in the United States.

Standardized auxiliary residuals to the unobserved state equations are given by

η̃t
σ̂η,t

=
E[ηt|yT ,xT , ζT ]

SD[ηt|yT ,xT , ζT ]
(12)

As shown by the gold lines in Figure 4, these residuals demonstrate the presence of extreme

outliers to the natural rate of output in the standard HLW model across all of the economies

in our sample.

This observation is not unique to the HLW model. Figure 1 shows that GDP realizations

during the pandemic are outliers with respect to historical data. Macroeconomic fluctua-

tions of this magnitude would result in outliers in any standard macroeconomic model. As

expected, even when pandemic-era GDP and inflation data are excluded during parameter

estimation, using the Kalman filter with these extreme outliers present in the sample sig-

nificantly distorts estimates of the latent variables during the pandemic period. The gold

lines in Figure 5 display large swings in the estimates of the latent variables using the model

with 2019:Q4 parameter values. The extreme volatility in these estimates is in conflict with

the specification of these latent variables as reflecting lower-frequency movements.

3 COVID-adjusted Model

The objective of this paper is to estimate the natural rate of interest following the COVID-

19 pandemic in a way that is consistent with the HLW model outlined in Section 2.1. The

large movements in economic activity and the persistent supply shocks during the pandemic
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period violate two standard, but important, model assumptions in HLW. As we show in

Section 2.2, dropping the observations from this period during the maximum likelihood

estimation of model parameters is insufficient to overcome these violated model assumptions,

with model residuals indicating the presence of large outliers. The resulting estimates of

the natural rates of output and interest are extremely volatile and inconsistent with our

specification of r∗t as a medium-run concept that is driven by low-frequency movements.

This section details two adjustments to the HLW model that, taken together, address

the violations to the original model. The first is the introduction of time-varying volatility

in the model, which we implement by allowing the variances of the stochastic innovations to

the output gap and inflation equations to be higher in the COVID era relative to the non-

pandemic period. The second is the introduction of a persistent, but ultimately temporary,

COVID supply shock, in addition to the transitory and permanent demand and supply

shocks that are already present in the model. Each of these modifications alone is insufficient

to overcome the estimation challenges posed by the pandemic, but in conjunction with each

other they allow for continued estimation of the natural rate of interest.

Importantly, because we are estimating latent variables that are specified as random

walks, simply dropping the observations during the pandemic period would not only under-

state the true uncertainty associated with this period, but would also necessitate interpo-

lating these latent variables from their pre-pandemic values. Instead, rather than imposing

that these variables do not change as a result of the COVID-19 pandemic, we are able to let

the data inform the estimated natural rates of interest and output after the pandemic has

abated. While the introduction of time-varying volatility has a similar effect on the latent

variables as dropping the observations from 2020, our approach provides more flexibility

in the later years of the pandemic and does not require the strong assumption that sev-

eral years of data has no effect on the latent variables. Additionally, the HLW model with

time-varying volatility but without serially correlated shocks to supply would constrain how

the natural rate of output could evolve in response to the pandemic data. Modeling the

persistent COVID supply shock is necessary in order to capture the effects of the pandemic

on the natural rate of output.

3.1 Time-Varying Volatility during COVID-19

COVID-19 represents an extreme tail event relative to the assumption of Gaussian distur-

bances. As we show in Section 2.2, the resulting outliers contaminate estimates of the latent

variables even when we exclude them from the estimation of model parameters. This is a

statistical problem that is not unique to our model or to estimation of the natural rate of

interest. We present a straightforward approach to account for the substantial increase in

volatility during this period by introducing time-varying volatility in the model during the
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window of time associated with the COVID-19 pandemic. We build on an insight from

Lenza and Primiceri (2022): if the timing of increased volatility is known – as is the case for

the COVID pandemic – we can introduce time-varying volatility in the model directly by

applying a scale factor to the innovation variances during the period of increased volatility.

We apply this insight to our unobserved-components model in order to estimate the natu-

ral rate of interest, but our approach can generalize to any state-space model with latent

variables.

In particular, we introduce three new model parameters, κ2020, κ2021, and κ2022. These

are the variance scale parameters for 2020, 2021, and 2022, respectively, which multiply the

variances of the innovations to the output gap and inflation equations. We define the vector

κt of variance scale parameters at time t, that takes the values

κt =



κ2020 2020:Q2 ≤ t ≤ 2020:Q4

κ2021 2021:Q1 ≤ t ≤ 2021:Q4

κ2022 2022:Q1 ≤ t ≤ 2022:Q4

1 otherwise

(13)

We estimate the three variance scale parameters by maximum likelihood together with the

other model parameters, with the constraints κ2020 ≥ 1, κ2021 ≥ 1, and κ2022 ≥ 18. κt takes

the value of 1 before the pandemic period and in 2023 and beyond. Section 5.1 considers

alternative specifications of time-varying volatility.

The covariance matrix of the stochastic innovations to the output gap and inflation

equations is now time-varying and is given by

Rt = κ2t ·R =

[
(κtσỹ)

2 0

0 (κtσπ)
2

]
(14)

with time-varying innovation variances to the IS curve and Phillips curve equations of

(κtσỹ)
2 and (κtσπ)

2, respectively.

Outside of the pandemic period, the innovation variances are specified exactly as in

HLW (2017). That is, the innovation variances to the output gap equation, σ2
ỹ , and inflation

equation, σ2
π, are constant over the sample prior to 2020 and after 2022. During the year

2021, for example, the innovation variances take the values (κ2021 · σỹ)2 and (κ2021 · σπ)2,
respectively. Therefore κt is a ratio of the standard deviations of the disturbances to the

measurement equations (the output gap and inflation equations) at time t relative to the

8The restriction that κt ≥ 1 is necessary to ensure that the likelihood estimation cannot down-weight the
variance of certain observations, which would in effect allow it to place more weight on favorable observations.
Instead, the estimated κt factors can only increase the innovation variances during the pandemic period.
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standard deviations in the non-pandemic sample. When κt > 1, as we find for 2020 through

2022 in all economies in our sample, the innovation variances are greater than in the non-

pandemic sample.

Introducing time-varying volatility to the stochastic innovations via the variance scale

factors in κt has the effect of down-weighting extreme outlier observations in the maximum

likelihood estimation of model parameters as well as in estimation of the latent variables

via the Kalman filter. When κt > 1, the diagonal covariance matrix Rt of the disturbances

to the output gap and inflation equations is larger relative to the case where κt = 1, and

the resulting Kalman gain is smaller. As shown in Equation 9, the Kalman gain dictates

the weight placed on the one-step-ahead prediction errors – the difference between realized

values of the output gap and inflation in a given period and the model’s predicted values

based on information in the prior period – in updating the filtered estimates of the latent

variables. As the innovation variances in a given period become large, the Kalman gain

shrinks, so that the Kalman filter places relatively little weight on these new observations

and the estimates of the latent variables in the state vector (that is, y∗t , gt, zt and therefore

r∗t ) remain close to the estimates from the prior period.

In the limit as the innovation variances tend toward infinity, the Kalman gain approaches

zero, so that no weight is placed on the time-t observations in estimating the state vector.

In effect, the model does not make use of time-t information, so that the forecast of the

state vector at time t given the time-t information set is unchanged from the forecast given

the information set at time t−1. This limiting case is equivalent to dropping the COVID-19

observations when estimating the latent variables. The same holds for parameter estimation:

when κt is large, the model forecast error in this period is down-weighted when computing

the log likelihood function, such that the data in this period have relatively little impact on

the set of parameters that maximize the log likelihood function.

We see our approach as preferable to outright discarding the COVID-19 outliers by

treating them as missing data for several reasons. It is not our primary goal to provide

estimates of r∗t during the height of the COVID-19 pandemic, and we treat these estimates

with extreme caution. Rather, our objective is to deliver a framework for estimation of the

natural rate of interest that is consistent with our approach in HLW, so that we are able

to parse permanent changes to r∗t from transitory shocks once the pandemic has abated.

While the timing of the onset of the pandemic is clear, selecting an end date for the set of

observations to discard would not be straightforward, and estimation of r∗t may be sensitive

to this choice. Additionally, a binary decision to drop or keep pandemic-related observations

necessitates treating the entire period universally. Our approach is flexible in that we allow

for increased volatility during the three years following the onset of the pandemic, but

we do not impose higher innovation variances. We also do not impose any relationship
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between κ2020, κ2021, and κ2022. By estimating these parameters together with the remaining

model parameters, including the innovation variances during the non-pandemic period, our

approach instead allows the data to inform the choice of variance scale factors, so that

more extreme outliers are more heavily down-weighted. Indeed, when we allow the model

to treat the later quarters of the pandemic differently from the earlier quarters, we find

that it chooses to do so. Finally, it is well-known that estimates of the natural rate of

interest are highly uncertain. Excluding data associated with the COVID-19 pandemic

would understate the true uncertainty about future r∗t estimates (Lenza and Primiceri,

2022). Our approach preserves estimation of the model standard errors over the full sample.

Lenza and Primiceri (2022) first implement this approach of applying scale factors to

the covariance matrix of model forecast errors in order to introduce time-varying volatility

within a fixed period to estimation of a vector autoregression. In the VAR setting, multi-

plying the innovations by a scale factor is equivalent to transforming the (observed) data

directly by dividing by the scale factor. One can estimate the VAR with transformed data

with no other modifications. In contrast, estimating a model with latent variables requires

an additional modeling choice: treatment of the stochastic innovations to the state equa-

tions. To see this, note that the measurement equations in a model with latent variables,

written in state-space form as Equation 7, include the vector of unobserved state variables

ξt. Because these latent variables appear in the measurement equations, we cannot simply

transform the observed variables without also transforming the latent variables. Transform-

ing the latent variables would have the effect of applying the same variance scale factor to

the stochastic innovations to the latent variables. This embeds the assumption that the

variances of the permanent shocks to the natural rate of output, its trend growth rate, and

the other determinants of the natural rate of interest have increased in the same proportion

as the transitory shocks to the output gap and inflation. Instead, we model the increase in

shock volatility within the covariance matrix of the transitory shocks only, so that we do

not introduce this assumption.

The choice to allow for increased volatility in the output gap and inflation innovations

during the pandemic, but not increased volatility in the innovations to the latent variables, is

consistent with the original HLW approach. We maintain the ability of the model to distin-

guish transitory shocks that do not affect the latent variables from low-frequency movements

that do. The outsized movements in GDP and inflation during the early pandemic period,

while extraordinarily large, were ultimately short-lived. Rather than explicitly modeling an

increase in the volatility of the unobserved latent variables, we let the data speak by mod-

eling an increase in the volatility of the transitory shocks only and leaving the specification

of the latent variables unchanged. In the event that pandemic-induced movements in GDP

and inflation are long-lasting, the Kalman filter will infer this accordingly and will ascribe
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permanent changes to r∗t and y∗t .

3.2 COVID-19 Supply Shock

The second feature of the COVID-19 pandemic that is at odds with the HLW model spec-

ification is the persistence of the associated supply shock. The HLW model incorporates

transitory shocks to supply as innovations in the Phillips curve equation. Stochastic in-

novations to the IS and Phillips curve equations are assumed to be mutually and serially

uncorrelated. Because the effects on supply of the sequence of shutdowns and re-openings

associated with COVID-19 are highly serially correlated during the pandemic, they are not

adequately captured by a sequence of serially uncorrelated transitory shocks. This is the

case even once we have accounted for the increased variances of the stochastic innovations

during the pandemic. We modify the model to incorporate a persistent, but ultimately

temporary, COVID supply shock, in addition to the transitory and permanent demand and

supply shocks already present in HLW.

The direct effects of COVID-19 on the economy are incorporated in the model as an

adjustment to the natural rate of output in the output gap specification. We introduce one

new variable, denoted dt, as a proxy for the direct effects of the government restrictions and

shutdowns implemented in response to the pandemic. We set this COVID indicator variable

equal to the quarterly average of the COVID-19 Stringency Index from the Oxford COVID-

19 Government Response Tracker (OxCGRT) for each country or region, as shown in the

lower panel of Figure 2.9 The stringency index, which ranges between 0 and 100 with larger

numbers indicating stricter restrictions, aggregates measures of government containment

and closure policies such as school and workplace closures, travel restrictions, bans or limits

on public gatherings, and shutdowns of public transportation.

We choose this indicator because it is comprehensive and publicly available for all of the

economies in our sample. We recognize that such an index of government responses cannot

capture the full set of behavioral responses or compliance; nonetheless, it should provide

a reasonable first-order approximation to the time-series properties of the direct effects of

the pandemic and associated public health actions on economies. For the Euro Area, we

use a GDP-weighted stringency index with 2019 GDP weights. As the OxCGRT project

suspended data collection at the end of 2022, we assume each indicator variable declines

linearly beginning in 2023:Q1, reaching zero in 2024:Q4. The COVID indicator is set equal

to zero up to and including 2019:Q4 in all economies. It is assumed to be an exogenous

variable.

We incorporate the COVID variable as an adjustment to the natural rate of output,

9See Hale et al. (2021). We use the national weighted average of the stringency indices for vaccinated
and unvaccinated populations, and our results are robust to using the index for vaccinated individuals only.
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within the output gap specification. In particular, the COVID-adjusted natural rate of

output is given by

y∗t,COV ID = y∗t +
ϕ

100
dt (15)

where y∗t is the standard natural rate of output, dt is the COVID-19 indicator, and ϕ is

an estimated parameter that translates the COVID variable dt into effects on output. The

output gap is correspondingly modified, with the COVID-adjusted natural rate of output

replacing the standard natural rate of output:

ỹt,COV ID = 100(yt − y∗t,COV ID) = 100(yt − y∗t )− ϕdt (16)

where yt is the logarithm of real GDP. We estimate the parameter ϕ together with the

remaining model parameters by maximum likelihood, including the variance-scaling param-

eters κ2020, κ2021, and κ2022.

The COVID-adjusted output gap replaces the standard output gap in the measurement

equations, which are the IS and Phillips curve equations. The state equations describing

the law of motion for the unobserved state variables, including those for the natural rate of

output and its trend growth rate, are unchanged.

4 Empirical Findings

In this section, we describe the main empirical findings using data through the end of the

sample. We start with the estimation results and then analyze the behavior of key latent

variables over the pandemic period. We then consider contributions to the output gap and

inflation during the pandemic period from the shocks to the model equations. We estimate

the COVID-adjusted HLW model for the United States, Canada, and the Euro Area. In

previous work, we estimated the HLW model for the United Kingdom. Extending the

sample to include pandemic-era data has weakened the estimated relationship between the

output gap and the real interest rate gap in the UK data, making estimates of the natural

rate of interest highly unreliable. For that reason, we no longer estimate the model for the

United Kingdom. We present estimates from the COVID-adjusted LW model in Appendix

A4.

4.1 Estimation Results

Table 1 reports the estimates of model parameters for the three economies. For comparison,

the corresponding estimates from the model estimated through 2019:Q4 are reported in the

Appendix Table A1. The parameter estimates are broadly similar to estimates from the pre-

pandemic sample. Worth noting is that for Canada and the United States, the estimated
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values of λg (λz) are somewhat higher (lower) than in the pre-pandemic sample. The

estimated values of the parameter c, linking the trend growth rate to the natural rate of

interest, are close to unity (the value imposed in HLW 2017).

Figure 6 shows key estimated latent variables for the United States, Canada, and the

Euro Area, respectively. The left panels show the time series of the estimated COVID-

adjusted output gap and model-based real interest rate gap, defined to be the model defini-

tion of the ex-ante real interest rate less the estimated value of the natural rate of interest.

The right panels show the estimates of the natural rate of interest and the trend growth

rate, gt. All three economies display the secular decline in estimates of the trend growth

rate and the natural rate of interest highlighted in HLW (2017).

The model parameters introduced to address COVID-related effects on the economy are

generally statistically significant at the 5 percent level. As discussed below, the estimated

values of the parameter on the COVID shock variable, ϕ, have economically large effects.

Consistent with the observations of enormous outliers early in the pandemic, the estimated

values of the parameter κ2020 are sizable for 2020:Q2-Q4 and statistically significant in all

economies. For the United States and the Euro Area, the estimated values of κ2021 and κ2022

are between 1-1/2 and 2; estimated values for the United States are statistically significant,

while those for the Euro Area are less precisely estimated. For Canada, the estimated κ2021

is close to unity and κ2022 is around 1-1/2, and both are less precisely estimated than for

the United States.

The effects of the model modifications can be seen by comparing the standardized aux-

iliary residuals from the unadjusted model to those from the COVID-adjusted model de-

scribed in Section 3. The blue lines in Figure 3 show the standardized auxiliary residuals,

described in Section 2.2, to the output gap and inflation equations, with the horizontal lines

indicating two standard deviations. The gold lines show residuals from the version of the

model with parameters held fixed at 2019:Q4 values. In all three economies, IS equation

residuals in 2020 indicate extreme outliers to the model. The magnitude of the estimated

κ2020 parameters is consistent with these extreme outliers. The blue lines show auxiliary

residuals from the modified HLW model. With the two modifications, these residuals are

of similar magnitude to the pre-pandemic period, and no longer indicate the presence of

outliers. A similar, albeit less extreme, pattern is seen in the comparison of standardized

auxiliary residuals from the inflation equation. The blue lines in Figure 4 display the stan-

dardized auxiliary residuals from the equation for the natural rate of output. As with the

output gap equation, the massive outliers in the standard version of the model are no longer

present in the COVID-adjusted model, despite the fact that the model specifications of the

natural rate of output and of the associated stochastic processes are unchanged.
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4.2 The Effects of the COVID-19 period on g, r∗, and y∗

We now trace the evolution of key latent variables since the onset of the pandemic. This

analysis reveals three key findings. First, the modified estimation procedure yields results

that are overall quite similar to those from the original model during the pre-pandemic

period. Second, the current estimates of the natural rate of interest are similar to those

estimated directly before the pandemic. Third, the estimates of the natural rate of output

are generally lower than predicted before the pandemic, and estimation of y∗ is much more

uncertain than before the pandemic.

Over the pre-pandemic sample, the estimates of the output gap, trend growth, and the

natural rate of interest from the modified model are close to the corresponding estimates

from the model without the COVID modifications (i.e. ϕ = 0, κt = 1 for all periods).

Figure 5 compares the estimates for the United States, Canada, and the Euro Area, respec-

tively, from the modified model estimated through 2023:Q2 with estimates from the model

with all parameters fixed at their 2019:Q4 values. While the two sets of estimates are very

similar through 2019, they differ sharply during the acute period of the pandemic, when

the estimates from the model without COVID adjustments exhibit large swings due to the

presence of extreme outliers.

The estimates of the trend growth rate of output in all three economies are slightly lower

in the first two quarters of 2023 than in 2019. Table 2 reports the estimates of the trend

growth rate, gt, in selected years as well as changes over sub-samples. It also reports forecasts

of trend growth rates from various sources, which are generally little changed from 2019 to

the first half of 2023. This represents a continuation of the pattern of declining estimates of

trend growth observed over the preceding three decades, as seen in the columns in the table

that report the changes in estimates over 1990-2007 and 2007-2019. Interestingly, for each

economy, the 2023 estimates from the HLW model are reasonably close to outside forecasts.

In all three economies, the estimates of the natural rate of interest in the first half of

2023 are within a few tenths of a percentage point of the corresponding estimates in 2019.

Table 3 reports annual averages of the estimates for selected years, along with changes over

sub-samples. For comparison, it reports selected forecasts and market-based measures of

longer-run real interest rate expectations. Note that market-based measures include term

premia that can change over time, so they are not directly comparable to estimates of

natural rates. Market-based measures of longer-run real interest rates rose from 2019 to

2023, but these increases generally brought them closer to the HLW estimates.

The HLW estimates of r∗t for Canada, the Euro Area, and the United States show no

evidence of a quantitatively meaningful reversal of the decline in estimated natural rates of

interest evident in prior decades. This result that the estimates of the natural rate of interest

have not changed much since the start of the pandemic runs counter to some commentary
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that very large fiscal stimulus and rising levels of government debt, alongside evidence of

large output gaps and high inflation, points to a higher level of the natural rate than before

the pandemic. One reason why the HLW estimates of the natural rate of interest are little

changed over the past three years is that lower estimates of trend growth work to offset any

increase in the estimates of z.

Because our conception of r∗ is a longer-run measure of the short-term real interest rate

that would prevail in the absence of transitory shocks to demand and supply, when output

is at its natural level and inflation is constant, it is not inconsistent that estimates of r∗ have

remained close to their pre-pandemic levels despite large movements in actual real interest

rates over the past few years. In fact, a key advantage of our approach is the model’s ability

to distinguish transitory demand and supply shocks, which do not affect the natural rates

of interest and output, from permanent movements in these low-frequency variables. In the

context of our model, large swings in macroeconomic data during the pandemic period are

matched by movements in the output gap and the real rate gap. In other words, our model

does not infer a change in r∗ because the movements in output, inflation, and interest rates

over the past few years are consistent with the economic relationships in the model without

a shift in the lower-frequency natural rate of interest.

The largest differences between model estimates pre- and post-pandemic relate to the

level of each economy’s natural rate of output. Figure 7 compares the model projections of

the natural rate of output based on estimates using data through 2019:Q4 (the black lines)

with estimates from 2023:Q2 (the blue lines). The figure also shows the effect of the COVID

adjustment over this period (the difference between the blue and gold lines). As seen in

the figure, the estimated shortfalls in the COVID-adjusted natural rate of output relative

to pre-pandemic projections are economically sizable. For example, at the end of 2022,

the COVID-adjusted level of the natural rate of output in the United States was about 4

percent below the pre-pandemic projection, with nearly half of that shortfall explained by

the COVID shock measure and the remainder a permanent change in the natural rate of

output. In the second quarter of 2023, neither the natural rate of output nor the COVID-

adjusted natural rate of output had fully recovered to the pre-pandemic projection in the

United States and Canada. The natural rate of output is much closer to the pre-pandemic

projection in the Euro Area.

A second consequence of the pandemic for natural rates of output is evident from the

lower portion of Table 1, which reports standard errors averaged over the entire sample

and for the final observation (2023:Q2). We compute standard errors using the procedure

described in Hamilton (1986), which accounts for both filter and parameter uncertainty.

A hallmark of estimation of natural rates of interest and output is high uncertainty, as

shown by the large standard errors around pre-pandemic r∗ and y∗ estimates reported in
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Appendix Table A1. The standard errors around y∗ estimates in the second quarter of 2023

are substantially higher across all three economies relative to the end of 2019. Interestingly,

this is not true for the standard errors around r∗ estimates, which are little changed from

before the pandemic.

4.3 Sources of Variation

Figure 8 shows the decomposition of movements in the output gap from the first quarter of

2020 through the second quarter of 2023 due to shocks to the output gap equation, changes

to the monetary policy stance, and changes in r∗ over the pandemic period in the United

States. The solid line captures the cumulative effects of the pandemic-era shocks on the

output gap.10 The dark blue bars show the cumulative effects of transitory demand shocks,

which are residuals from the IS equation in the model estimated over the full sample, on the

level of the output gap. The light blue bars show the cumulative effects of deviations of the

real interest rate from the estimated value of r∗ at the end of 2019; that is, they capture the

contribution of monetary policy relative to its pre-pandemic neutral benchmark on the level

of the output gap. Taken together, the light blue bars and gray bars show the contribution

from the real rate gap over the pandemic period. The contribution of a change in r∗ is

negligible.

In all economies, the estimated slope coefficient of the IS equation (ar in Table 1) is

small, so that on a period-by-period basis the level of the output gap is determined largely

by its own lagged values, and the contribution of the real rate gap is small. However, because

of the autoregressive nature of the output gap process, these small contributions of the real

rate gap to the output gap can have large cumulative effects. Figure 8 shows the sizable

contribution of output gap shocks to the level of the output gap from the second quarter

of 2020 to the first quarter of 2022 in the United States, indicating that transitory demand

shocks were the dominant driver of changes to the output gap early in the pandemic period

in our model. The cumulative contribution of monetary policy is positive and increasing

over time. The contribution from output gap shocks turns from positive to negative by

the end of the sample. Figure 9 shows the same decomposition for the inflation rate in

the United States. While transitory supply shocks, captured by innovations to the Phillips

curve equation, were the primary driver of changes to inflation from 2020 through the first

quarter of 2022, both output gap shocks and monetary policy have contributed positively

10The solid line in the figure differs from the actual output gap estimate because the latter also includes
the effects of pre-2020 shocks, which slowly die out over time. In the counterfactual scenario with no new
output gap and inflation shocks after the final quarter of 2019, no changes in r* (i.e. no trend growth or
z shocks), and no deviations of the ex-ante real interest rate from r*, the output gap would not be zero
because of the autoregressive terms and, in the first two quarters of 2020, the lagged real rate gap terms.
We subtract the output gap under this counterfactual without new shocks in 2020:Q1 through 2023:Q2 from
the estimated output gap in order to decompose the cumulative effects of pandemic-era shocks only.
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to inflation since 2021.

5 Robustness

This section examines the sensitivity of the empirical findings to alternative specifications

of the model. We consider two alternative specifications of time-varying volatility by ad-

justing the start and end dates over which we introduce scale factors to the variances of

the stochastic innovations. Next, we estimate a version of the model without the COVID

supply shock. We then consider several alternative measures of real interest rates for the

United States, including market-based measures of nominal interest rates and expected in-

flation and alternative model-based inflation expectations from the Federal Reserve Bank

of Cleveland. Finally, we consider two alternative specifications for output. Our finding

that estimates of the natural rate of interest remain low following the COVID-19 pandemic

is robust to these alternative specifications.

5.1 Specification of Time-Varying Volatility

In order to account for the extreme GDP and inflation observations during the COVID-

19 pandemic, we introduce time-varying volatility in the HLW model by applying a scale

factor to the innovation variances of the model’s measurement equations during the period

of increased volatility associated with the pandemic, as described in Section 3. In our

baseline specification, we allow the innovation variances to the output gap and inflation

equations to increase during the years 2020, 2021, and 2022. The corresponding vector of

variance scale parameters κt is given by Equation 13. Our baseline specification is informed

by the observed data, the model one-step-ahead prediction errors, and the model auxiliary

residuals. In this section, we consider two alternative specifications of κt. Because the onset

of the pandemic occurred later within the first quarter of 2020 in the economies we study,

the period of increased volatility begins in 2020:Q2 in our main specification. However, the

auxiliary residuals to the IS equation, shown in Figure 3, indicate the presence of sizable

outliers in 2020:Q1. Our first alternative specification includes 2020:Q1 when estimating

and applying the variance scale parameters, with κt given by

κt =



κ2020 2020:Q1 ≤ t ≤ 2020:Q4

κ2021 2021:Q1 ≤ t ≤ 2021:Q4

κ2022 2022:Q1 ≤ t ≤ 2022:Q4

1 otherwise

(17)

Although the timing of the pandemic onset is known, it is more difficult to determine
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the end date of the COVID-19 pandemic. In fact, many metrics indicate that the pandemic

is ongoing at the time of publication. However, the GDP and inflation realizations as

well as model auxiliary residuals in 2022 are more in line with the pre-pandemic sample.

While our main specification allows for increased innovation variances in the year 2022 (and

subsequently fixes κt = 1 in 2023 and beyond), our second alternative specification assumes

that the innovation variances return to their non-pandemic levels in 2022, with κt given by

κt =


κ2020 2020:Q2 ≤ t ≤ 2020:Q4

κ2021 2021:Q1 ≤ t ≤ 2021:Q4

1 otherwise

(18)

As shown in Table 4, estimates of the variance scale parameter are sizable in 2020 across

all specifications we consider. In all three economies, the estimated value of κt is between

1 and 2 in 2021 in all specifications. The left panels of Figure 10 show the estimated

natural rates of output under alternative specifications of time-varying volatility. In all

three economies, estimates of the latent natural rate of output under the specification with

κ2020 including the first quarter of 2020 are close to the baseline specification. When κ2022 is

constrained to be 1, estimates of the natural rate of output are slightly lower across all three

economies.11 Estimates of y∗t at the end of 2022 lie below the projected level of the natural

rate of output based on 2019:Q4 data, regardless of the κt specification. Our finding that

the pandemic had a persistently negative effect on the estimated natural rates of output

from 2020 through 2022 is robust across specifications.

We find that the estimated coefficient ϕ, which translates the COVID indicator variable

into effects on the output gap, is sensitive to the specification of κt, as reported in Table 4.

As a result, estimates of the COVID-adjusted natural rate of output are more sensitive, as

shown in the right panels of Figure 10, but key results hold across all three specifications.

In all cases, the COVID-adjusted natural rate of output is below the standard natural

rate of output during the pandemic period. In the United States and the Euro Area, the

COVID-adjusted natural rate of output is significantly lower than the estimated natural

rate of output in 2020 and 2021 and remains below y∗t at the end of 2022 across all three

specifications. In Canada, estimates are more sensitive to the inclusion of the first quarter

of 2020.

Accordingly, the COVID-adjusted output gap deviates substantially from the baseline

estimates in some cases. Despite a wider range of output gap estimates across the κt

specifications, estimates of r∗t and gt are relatively close to the baseline estimates. Figure 11

11Note that the equation for the natural rate of output is unchanged from the standard HLW model; the
variance scale parameter κt does not enter the y∗

t equation.
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displays estimates of the natural rate of interest under the baseline specification and the two

alternative specifications of κt considered in this section. In the United States, estimates

of r∗t under alternative specifications are within 50 basis points of the baseline specification

at the sample end, well within the estimated standard error bands. Estimates in Canada

are very close across all three specifications. Estimates of r∗t and gt in the Euro Area are

more sensitive to the specification of κt throughout the sample, consistent with the higher

uncertainty around baseline Euro Area estimates. The first three rows of Table 5 report r∗

estimates for the United States in selected years under the baseline specification and the

two alternatives described in this section.

The next four rows of Table 5 report r∗ estimates from a sensitivity exercise that exam-

ines the effect of the estimated κt values on the natural rate of interest. In this exercise, we

set the three variance scale parameters κ2020, κ2021, and κ2022 equal to a weighted average

of their estimated baseline values and 1, with weight ρ on the estimated value of κt for

each year in our baseline specification; that is, we fix κFix
t = (1 − ρ) + ρ · κEst

t . We then

estimate the remaining model parameters, including the coefficient ϕ that translates the

COVID variable into effects on the output gap, via maximum likelihood. We obtain similar

estimates of the natural rate of interest despite imposing smaller variance scale parameters.

We find that the COVID pandemic had a large effect on our measure of the COVID-

adjusted natural rates of output, though the magnitude of the effect varies across specifica-

tion, while estimates of trend growth and the natural rate of interest are generally close to

their pre-pandemic levels and robust to alternative specifications of time-varying volatility.

5.2 Model without COVID Supply Shock

We now consider a version of the model that includes time-varying volatility but does not

include the COVID supply shock. This is equivalent to imposing ϕ = 0 in the COVID-

adjusted model. In all economies, we find that the output gap is much deeper and rebounds

much more slowly in the specification without the COVID supply shock. However, in all

economies, the level of the (unadjusted) output gap under this alternative specification

reaches that of the baseline COVID-adjusted output gap by the end of 2022. Estimates

of the natural rate of interest are largely similar to, or slightly below, the baseline model

at the end of the sample, as shown in Figure 12. In the United States, estimates of trend

growth and the natural rate of interest from the model without the COVID supply shock

are lower than the baseline model during the pandemic period, with an estimate of r∗t that

is 40 basis points below the baseline estimate in second quarter of 2023. When we impose

ϕ = 0 in the model, we find that estimates of κ2020 are larger in all three economies, as

shown in Table 4.

Table 5 reports r∗ estimates for the United States in selected years under alternative
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specifications of the COVID supply shock. The rows labeled “ϕFix = ρ · ϕEst” report

estimates from a version of the model where the parameter ϕ is fixed at a fraction ρ of

its estimated baseline value; the remaining model parameters, including the variance scale

parameters, are estimated via maximum likelihood. The final row considers an alternative

scenario in which the COVID supply shock recedes more quickly. In this exercise, we set the

COVID variable dt equal to the Stringency Index from the Oxford COVID-19 Government

Response Tracker in 2020 and 2021, as in the baseline specification. We depart from the

baseline by assuming that the COVID variable declines linearly beginning in the first quarter

of 2022 and would reach zero in the final quarter of 2023; this assumes a faster decline than

is present in the Oxford Stringency Index. Resulting estimates of the natural rate of interest

are within a few tenths of a percentage point of those from our baseline model. We do not

find any evidence under these alternative specifications to suggest that the natural rate of

interest has increased following the COVID-19 pandemic.

5.3 Alternative Measures of Real Interest Rates

We next consider alternative measures of the real interest rate used in estimation. A key

challenge when assessing the stance of monetary policy is selecting the measure of nominal

interest rates that best reflects current monetary policy as well as the measure of expected

inflation that is used to determine the ex-ante real interest rate. In the baseline HLW

model, the nominal interest rate is the federal funds rate. To address concerns that the

federal funds rate does not fully capture the broader stance of monetary policy, particularly

the role of expectations of future policy actions, we make use of market-based measures of

expected real interest rates at horizons of one and two years. Additionally, our baseline

specification uses the four-quarter moving average of past inflation as a proxy for expected

inflation. There is evidence that the high inflation observed during the past few years did not

translate to a de-anchoring of inflation expectations, suggesting that past inflation may not

be a useful proxy for expected inflation at present. We consider alternative market-based

and model-based measures of expected inflation.

Figure 13 displays estimates of the output gap, real rate gap, and natural rate of interest

for the United States from a version of the HLW model that uses the 2-year Treasury

yield less 2-year inflation swaps as the measure of the ex-ante real interest rate. The gold

line in the middle panel of the figure displays the real rate gap under this alternative

specification, which is the gap between the 2-year Treasury yield less inflation swaps and

the corresponding estimate of r∗ from this model. This measure of monetary policy remains

close to the baseline HLW real rate gap over much of the sample, but the measure based

on 2-year yields rises earlier and by more than the baseline measure, reflecting the rapid

movement in expectations of interest rates and inflation during this period. Despite this,
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the corresponding estimated natural rate of interest remains very close to the baseline HLW

model at the end of the sample.

Table 6 reports estimates of the natural rate of interest for the United States under

several alternative measures of the ex-ante real interest rate. The resulting r∗ estimates are

remarkably similar across these alternative specifications. The key finding of this paper,

that estimated natural rates of interest remain low following the COVID-19 pandemic, is

highly robust to the measure of real interest rates used in the estimation: we do not find a

positive change between estimated U.S. natural rates of interest in 2019 and those in the

first half of 2023 using any alternative market-based measures of the real interest rate or

any alternative measure of expected inflation.

5.4 Alternative Measures of Output

Finally, we consider two alternative specifications of output for the United States. Figure

14 displays estimates of the natural rate of interest under these alternative specifications.

The first is a version of the model in which potential output is an exogenous variable, using

estimates from the Congressional Budget Office as data. While the HLW model jointly

estimates the natural rates of output and interest and models the trend growth rate as a

determinant of r∗t , there is no explicit role for trend GDP growth in this specification. The

natural rate of interest follows a random walk and is the only latent variable in the model;

since we do not model trend growth as a determinant of r∗t in this extension, there is no

separate specification of other determinants zt, and we estimate r∗t directly via the Kalman

filter. Because we take the CBO’s measure of potential output as given, we do not introduce

the COVID supply shock to the natural rate of output described in Section 3.2 (i.e. ϕ = 0).

Otherwise, we use the COVID-adjusted HLW model, which includes time-varying volatility

during the pandemic period. The output gap based on estimates of potential output from the

CBO lies below the estimated output gap from the HLW model, with substantial differences

between the two measures emerging in 2008 and persisting through the end of the sample.

Estimates of the natural rate of interest under this alternative specification, shown in Figure

14, are substantially negative and significantly lower than the baseline HLW estimates in

the decade preceding the pandemic as well as during the pandemic period, with the gap

widening at the end of the sample.

In the second alternative specification, output is defined as the average of real GDP

and real Gross Domestic Income, the latter of which is an alternative measure of economic

output constructed from income data and production costs by the Bureau of Economic

Analysis. Switching to this alternative output measure has a minor effect on estimates of

the latent variables, with r∗t estimates that are about 50 basis points below the baseline

HLW model (which uses real GDP data alone) from 2020 through the end of the sample. In
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each of the alternative specifications we consider, estimates of the natural rate of interest lie

below r∗t estimates from the baseline HLW model for the entirety of the pandemic period.

Across these alternative specifications, estimates of the natural rates of interest remain at

historically low levels.

6 Conclusion

This paper develops and implements an approach to address the unusual effects of the

pandemic on the economy and allows continued estimation of the natural rates of output and

interest in the post-pandemic era using the Holston, Laubach, and Williams and Laubach

and Williams models. These methods can be applied to a broad set of models that estimate

latent variables over the pandemic period or other periods of large-scale disruptions to

economic activity. According to the model estimates, the main longer-term consequence

from the pandemic period is a reduction in the natural rate of output, but the imprint on

the natural rate of interest appears to be relatively modest. We do not find evidence that

the era of historically low estimated natural rates of interest has come to an end. These

findings are shown to be robust to a range of alternative model specifications.
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Table 1: Parameter Estimates

Parameter United States Canada Euro Area

Sample 1961-2023:Q2 1961-2023:Q2 1972-2023:Q2

λg 0.069 0.059 0.033
λz 0.020 0.012 0.028∑

ay 0.936 0.948 0.943
ar −0.075 −0.078 −0.033

(4.110) (2.996) (1.603)
by 0.074 0.042 0.086

(3.001) (1.668) (2.195)
c 1.138 1.130 0.983

(3.482) (2.665) (0.979)

ϕ −0.103 −0.057 −0.132
(2.624) (3.261) (6.577)

κ2020Q2−Q4 7.873 9.599 18.850
(2.598) (2.110) (2.385)

κ2021 1.707 1.082 1.722
(3.049) (1.900) (1.762)

κ2022 1.864 1.558 1.678
(2.299) (1.186) (1.737)

σỹ 0.449 0.576 0.313
σπ 0.788 1.348 1.029
σy∗ 0.502 0.451 0.383
σg 0.139 0.106 0.051
σz 0.122 0.088 0.265

σr∗ =
√
c2σ2

g + σ2
z 0.200 0.149 0.270

S.E. (sample ave.)
r∗ 1.184 1.710 3.639
g 0.418 0.409 0.241
y∗ 1.603 2.585 1.706

S.E. (final obs.)
r∗ 1.585 1.981 5.219
g 0.626 0.597 0.347
y∗ 2.751 3.686 2.671

Notes: t statistics are in parentheses; σg is expressed at an annual rate.
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Table 2: Trend Growth Estimates

Change

1990- 2007- 2019-
1990 2007 2019 2023H1 2007 2019 2023H1

United States
HLW g estimates 3.3 2.8 2.2 2.0 −0.5 −0.6 −0.2
Consensus Forecasts 2.4 2.8 2.0 1.8 0.4 −0.8 −0.2
IMF World Economic Outlook 2.6 3.0 1.6 1.7 0.4 −1.5 0.1
Blue Chip Financial Forecasts 2.5 2.8 2.0 1.8 0.4 −0.8 −0.2

Canada
HLW g estimates 3.4 2.5 1.8 1.5 −0.9 −0.7 −0.3
Consensus Forecasts 2.8 2.4 1.8 1.9 −0.4 −0.7 0.1
IMF World Economic Outlook 3.2 2.7 1.7 2.1 −0.5 −1.0 0.5

Euro Area
HLW g estimates 2.7 2.1 1.2 1.1 −0.6 −0.8 −0.1
Consensus Forecasts n/a 1.9 1.3 1.2 n/a −0.6 −0.1
IMF World Economic Outlook n/a 2.0 1.3 1.4 n/a −0.7 0.1

Notes: Consensus Forecasts data are the mean of panelists’ trend estimates of expected GDP

growth in the subsequent 6 to 10 years. IMF estimates are the 5-year-ahead forecast for real GDP

growth. Blue Chip estimates are the mean long-run forecasts for real GDP growth. For these

forecasts, reported numbers are averages of the Spring and Fall publications. HLW estimates are

annual averages; 2023H1 is the average of the first two quarters. Numbers may not sum due to rounding.

Sources: Consensus Economics Inc, London; IMFWorld Economic Outlook; Blue Chip Financial

Forecasts.
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Table 3: Natural Rate of Interest Estimates

Change

1990- 2007- 2019-
1990 2007 2019 2023H1 2007 2019 2023H1

United States
HLW r∗ estimates 3.6 2.5 1.0 0.8 −1.1 −1.4 −0.3
TIPS yields (5-10 years ahead) n/a 2.5 0.6 1.3 n/a −1.9 0.8
Blue Chip Financial Forecasts 3.1 2.4 0.5 0.6 −0.7 −1.9 0.1

Canada
HLW r∗ estimates 3.6 2.7 1.7 1.3 −0.9 −1.0 −0.4
Real Return Bond yields n/a 2.0 0.4 1.2 n/a −1.5 0.8

Euro Area
HLW r∗ estimates 2.5 2.2 0.4 0.2 −0.3 −1.8 −0.1
Swap-implied real yields n/a 2.1 −0.7 0.6 n/a −2.8 1.3
(5-10 years ahead)

Notes: Numbers are annual averages; 2023H1 is the average of the first two quarters. Blue Chip estimates

are the difference in the mean long-years-ahead forecasts of the federal funds rate and CPI (average of

Spring and Fall publications). Canadian Real return bond yields are long-term benchmark yields from

the Bank of Canada. Euro Area yields are calculated using French nominal yields and data on zero-coupon

inflation swaps linked to Euro Area HICP inflation. Numbers may not sum due to rounding.
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Table 4: Robustness to Specification of Time-Varying Volatility and COVID Supply Shock

ϕ κ2020 κ2021 κ2022

United States
Baseline −0.10 7.87 1.71 1.86
With 2020:Q1 −0.15 5.34 1.69 2.21
κ2022 = 1 −0.07 9.55 1.73 1.00
ϕ = 0 0.00 11.98 1.86 1.04

Canada
Baseline −0.06 9.60 1.08 1.56
With 2020:Q1 −0.02 9.15 1.13 1.31
κ2022 = 1 −0.04 10.29 1.10 1.00
ϕ = 0 0.00 11.76 1.15 1.23

Euro Area
Baseline −0.13 18.85 1.72 1.68
With 2020:Q1 −0.11 17.74 1.75 1.49
κ2022 = 1 −0.12 18.35 1.71 1.00
ϕ = 0 0.00 25.87 2.38 1.34

Notes: The rows labeled “with 2020:Q1” report parameter estimates from an alternative specification

of the model in which κ2020 includes 2020:Q1. Rows labeled “κ2022 = 1” report parameter estimates

from a specification of the model with variance scale parameters estimated for 2020 and 2021 only.

The rows labeled “ϕ = 0” report parameter estimates from the model without a COVID supply shock.

“Baseline” parameter estimates are from the COVID-adjusted HLW model.
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Table 5: Natural Rate of Interest under Alternative κt and ϕ Specifications

Change

Time-Varying COVID 1990- 2007- 2019-
Volatility Supply Shock 1990 2007 2019 2023H1 2007 2019 2023H1

United States

Baseline Baseline 3.6 2.5 1.0 0.8 −1.1 −1.4 −0.3

With 2020:Q1 Baseline 3.6 2.5 1.0 0.8 −1.1 −1.5 −0.2

κ2022 = 1 Baseline 3.6 2.5 1.1 0.3 −1.1 −1.4 −0.8

0.9 + 0.1κEst Baseline 3.7 2.5 0.7 0.6 −1.3 −1.8 −0.1

0.75 + 0.25κEst Baseline 3.7 2.4 0.7 0.5 −1.2 −1.7 −0.2

0.5 + 0.5κEst Baseline 3.7 2.5 0.9 0.7 −1.2 −1.6 −0.2

0.25 + 0.75κEst Baseline 3.6 2.5 1.0 0.7 −1.1 −1.6 −0.2

Baseline ϕ = 0 3.6 2.5 1.1 0.3 −1.1 −1.4 −0.7

Baseline ϕFix = 0.25ϕEst 3.6 2.5 1.1 0.4 −1.1 −1.4 −0.6

Baseline ϕFix = 0.50ϕEst 3.6 2.5 1.0 0.5 −1.1 −1.5 −0.4

Baseline ϕFix = 0.75ϕEst 3.6 2.5 1.0 0.7 −1.1 −1.5 −0.3

Baseline dt declines faster 3.6 2.5 1.1 0.5 −1.1 −1.4 −0.6

Notes: Numbers are annual averages; 2023H1 is the average of the first two quarters. The rows labeled

“with 2020:Q1” report r∗ estimates from an alternative specification of the HLWmodel in which

κ2020 includes 2020:Q1. Rows labeled “κ2022 = 1” report r∗ estimates from a specification of the HLW

model with variance scale parameters estimated for 2020 and 2021 only. The rows labeled “ϕ = 0” report

estimates from the model without a COVID supply shock. The rows labeled “ϕFix = ρ·ϕEst” report estimates

where the parameter ϕ is fixed at a fraction ρ of its estimated baseline value. For the row labeled “dt declines

faster”, we assume that the COVID indicator variable follows the Oxford Stringency Index until 2021:Q4 and

then linearly declines to reach zero in 2023:Q4. Rows labeled (1−ρ)+ρ·κEst report estimates where the

three variance scale parameters κ2020, κ2021, and κ2022 are fixed at a weighted average of their estimated

baseline values and 1, with weight ρ on the baseline. “Baseline” r∗ estimates are from the COVID-adjusted

model.
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Table 6: Natural Rate of Interest with Alternative Real Interest Rate Measures

Change

Nominal Interest Expected 1990- 2007- 2019-
Rate Measure Inflation 1990 2007 2019 2023H1 2007 2019 2023H1

United States

Fed funds rate 4-quarter MA 3.6 2.5 1.0 0.8 −1.1 −1.4 −0.3

Fed funds rate FRBC 1-year 3.4 2.2 0.8 0.6 −1.2 −1.4 −0.2

Fed funds rate 2%, 2020-2023 3.6 2.5 1.0 0.9 −1.1 −1.5 −0.1

FRBSF proxy 4-quarter MA 3.3 2.3 0.8 0.7 −1.0 −1.5 −0.1

1-year Treasury 4-quarter MA 2.8 2.1 0.7 0.6 −0.7 −1.4 −0.1

2-year Treasury 4-quarter MA 2.9 2.2 0.7 0.6 −0.7 −1.5 −0.1

2-year Treasury FRBC 2-year 2.8 1.9 0.6 0.6 −0.9 −1.3 0.0

2-year Treasury Inflation swaps 3.0 2.2 0.7 0.7 −0.8 −1.4 0.0

2-year OIS Inflation swaps 3.0 2.2 0.8 0.7 −0.7 −1.4 0.0

2-year TIPS n/a 2.8 2.1 0.9 0.9 −0.7 −1.2 0.0

Notes: Numbers are annual averages; 2023H1 is the average of the first two quarters. 4-quarter MA is the

four-quarter moving average of past inflation. FRBC is the Federal Reserve Bank of Cleveland’s model-based

inflation expectataions. The measures with inflation swaps use the 4-quarter MA prior to 2004:Q4.

The 2-year OIS is the market-based expectation of the federal funds rate over the next two years derived from

data on overnight indexed swap (OIS) rates. OIS data begin in 2004:Q4; we use the 2-year Treasury yield prior.

For the TIPS yield, we use the deflated 2-year Treasury yield prior to 1999. FRBSF proxy is the Federal

Reserve Bank of San Francisco’s proxy funds rate following Choi et al (2022), which begins in 1976:Q3;

we use the federal funds rate prior.
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Figure 1: Normalized GDP Growth
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Notes: The chart shows the log-difference of quarterly real GDP less the pre-pandemic mean, divided by the
pre-pandemic standard deviation. The pre-pandemic period refers to 1970-2019 for the United States and
Canada, and 1972-2019 for the Euro Area. The solid horizontal line indicates zero, the dotted lines indicate
the value one, and the dashed lines indicate the value two.
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Figure 2: Comparison of Data Across Economies
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Notes: The upper three panels show the published data used in estimating the model. To ease comparison
across economies, the second panel shows the cycle component of real GDP using an HP filter. The bottom
panel shows the COVID index: the solid lines show the published values and the dashed lines show the
assumed path over 2023-2024 when published numbers are no longer available.
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Figure 3: Standardized Auxiliary Residuals: Output Gap and Inflation
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Notes: The left (right) panels show the standardized auxiliary residuals to the model IS equation (Phillips
curve equation). The auxiliary residuals are smoothed estimators of the disturbances to the measurement
equations, normalized by their standard deviations. The gold lines labeled “Model with parameters fixed
at 2019:Q4 values” show the residuals using data through 2023:Q2, but where the model parameters are
estimated on data through 2019:Q4. The blue lines labeled “COVID-adjusted model” show residuals from
the full-sample estimation of the modified HLW model.
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Figure 4: Standardized Auxiliary Residuals: Natural Rate of Output
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Notes: The panels show the standardized auxiliary residuals to the natural rate of output equation. The
auxiliary residuals are smoothed estimators of the disturbances to the state equations, normalized by their
standard deviations. The gold lines labeled “Model with parameters fixed at 2019:Q4 values” show the
residuals using data through 2023:Q2, but where the model parameters are estimated on data through
2019:Q4. The blue lines labeled “COVID-adjusted model” show residuals from the full-sample estimation of
the modified HLW model.
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Figure 5: HLW Estimates of Key Latent Variables
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Notes: The gold lines labeled “Model with parameters fixed at 2019:Q4 values” show the estimates of the
indicated variables using data through 2023:Q2, but where the model parameters are estimated on data
through 2019:Q4. The blue lines labeled “COVID-adjusted model” show the full-sample estimates of the
modified HLW model.
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Figure 6: HLW Full-sample Estimation Results
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Notes: The lines show the full-sample estimates from the modified HLW model. The vertical shaded regions
indicate periods when the economy was in a recession.
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Figure 7: HLW Estimates of the Natural Rate of Output
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Notes: The black lines show the projected path of the natural rate of output based on model estimates using
data through 2019:Q4. The blue lines show the estimates of the natural rate of output from the modified
HLW model using data through 2023:Q2. The gold lines show the estimates of the COVID-adjusted natural
rate of output from the modified HLW model using data through 2023:Q2.
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Figure 8: Shock Decompositions, Output Gap Equation, United States
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Notes: The solid black line shows the cumulative effect of the shocks affecting the output gap equation from
2020:Q1 through 2023:Q2, from the model estimated through 2023:Q2. The dark blue bars show the effects
of innovations to the output gap equation, all else equal, on the output gap. The light blue bars show the
effects of a deviation in the ex-ante real interest rate from the estimated 2019:Q4 value of r∗. The gray bars
show the effects of a change in r∗ on the output gap.
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Figure 9: Shock Decompositions, Inflation Equation, United States
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Notes: The solid black line shows the cumulative effect of the shocks affecting the inflation equation from
2020:Q1 through 2023:Q2, from the model estimated through 2023:Q2. The gold bars show the contribution
of innovations to the inflation equation, all else equal, on inflation. The dark blue bars show the contribution
of innovations to the output gap equation. The light blue bars show the effects of a deviation in the ex-ante
real interest rate from the estimated 2019:Q4 value of r∗. The gray bars show the effects of a change in r∗

on the output gap.
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Figure 10: Estimated Natural Rate of Output under Alternative Specifications of κt
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Notes: The left panels show estimates of the natural rate of output from the modified HLW model using data
through 2023:Q2, while the right panels show estimates of the COVID-adjusted natural rate of output. The
black lines labeled “κ2020 includes Q1” show estimates from a version of the model in which the variance scale
parameter κ2020 includes 2020:Q1. The gold lines labeled “κ2022 = 1” show estimates from a specification of
the model with variance scale parameters estimated for 2020 and 2021 only.
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Figure 11: Natural Rate of Interest under Alternative Specifications of κt
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Notes: The panels show estimates of the natural rate of interest from the modified HLW model using data
through 2023:Q2. The black lines labeled “κ2020 includes Q1” show estimates from a version of the model
in which the variance scale parameter κ2020 includes 2020:Q1. The gold lines labeled “κ2022 = 1” show
estimates from a specification of the model with variance scale parameters estimated for 2020 and 2021 only.
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Figure 12: Model without COVID Supply Shock (ϕ = 0)

-4

0

4

1960 1980 2000 2020

U
ni

te
d

S
ta

te
s

COVID-adjusted
Output Gap

2

3

4

5

1960 1980 2000 2020

Trend Growth

1

2

3

4

5

6

1960 1980 2000 2020

r*

-10

-5

0

5

1960 1980 2000 2020

C
an

ad
a

2

3

4

5

1960 1980 2000 2020
1

2

3

4

5

6

1960 1980 2000 2020

-10

-5

0

5

1960 1980 2000 2020

E
ur

o
A

re
a

1.0

1.5

2.0

2.5

3.0

3.5

1960 1980 2000 2020

0

1

2

3

1960 1980 2000 2020

ϕ = 0 Baseline model with ϕ estimated

Notes: The gold lines labeled “ϕ = 0” show the estimates of the indicated variables from the COVID-
adjusted model using data through 2023:Q2, but without the COVID supply shock in the model. The blue
lines labeled “Baseline model with ϕ estimated” show the full-sample estimates of the modified HLW model,
including the COVID supply shock.
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Figure 13: Alternative Measure of Real Interest Rates, United States
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real rate gap, and natural rate of interest from a version of the HLW model with the 2-year United States
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labeled “Baseline HLW model” show the estimates from the HLW model for the United States. The real
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Figure 14: Alternative Measures of Output, United States
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Notes: The gold line labeled “CBO potential output” shows the estimated natural rate of interest for the
United States from an alternative specification of the model in which potential output is an exogenous
variable, using data from the Congressional Budget Office. The black line labeled “GDP-GDI average”
shows the estimated natural rate of interest from a version of the model in which output is specified as the
average of GDP and Gross Domestic Income, using data from the Bureau of Economic Analysis. The blue
line shows the estimates from the modified HLW model.
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Appendix A1: State-Space Models

This section presents the COVID-adjusted and original HLW models in state-space form.12

See HLW (2017) for a full description of our estimation procedure, which includes three

stages. The first and second stage models represent versions of the final stage model, and

each of the models can be cast in state-space form:

yt = A′ · xt +H′ · ξt + ϵt (19)

ξt = F · ξt−1 + ηt (20)

Here, yt is a vector of contemporaneous endogenous variables, while xt is a vector of ex-

ogenous and lagged endogenous variables. ξt the vector of unobserved state variables. In

the HLW (2017) and Laubach and Williams (2003) models, the vectors of stochastic dis-

turbances ϵt and ηt are assumed to be Gaussian and mutually uncorrelated, with mean

zero and covariance matrices R and Q, respectively. The covariance matrix R is assumed

to be diagonal. In the COVID-adjusted model, we modify the covariance matrix Rt to be

time-varying.

Each model has a corresponding vector of parameters to be estimated by maximum

likelihood. Because maximum likelihood estimates of σg and σz, which are the standard

deviations of the innovations to the gt and zt equations, are likely to be biased towards zero

due to the pile-up problem (see Section 2.2 of HLW), we use Stock and Watson’s (1998)

median unbiased estimator to obtain estimates of two ratios, λg ≡ σg

σy∗
and λz ≡ arσz

σỹ
. We

estimate λg following the first stage model and λz following the second stage model, and

impose these ratios in subsequent stages of the estimation, including when estimating the

remaining model parameters by maximum likelihood. The COVID-adjusted model includes

five additional parameters: the coefficient ϕ that translates the COVID indicator variable

dt into effects on output; the three variance scale parameters κ2020, κ2021, and κ2022; and

the coefficient c on trend growth gt in the r∗t equation, which appears only in the stage 3

model and is estimated in LW (2003) but fixed at unity in HLW (2017).

In addition to estimating the relationship between trend growth in the natural rate of

output and r∗t , we make two minor technical changes to the model that are not related to

the COVID-19 pandemic.13 First, we include a second lag of trend growth, gt−2, in the stage

2 IS equation, consistent with the IS equation specification in the stage 3 model. Second,

we correct the stage 2 state-space model so that the y∗t equation is y∗t = y∗t−1 + gt−1 + ϵy∗,t

as expressed in the paper; previously, the second stage y∗t equation included the second

12Notation follows Hamilton (1994) and is consistent with the corresponding R programs.
13We also explicitly include gt and zt in the vector of unobserved state variables in addition to two lags

of each variable as in HLW. This is purely an accounting change and has no effect on the estimates.
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lag of trend growth, gt−2, rather than the first lag in error (Buncic, 2021, 2022). These

modifications to the model are highlighted in blue text in the following sections, while

changes in response to the COVID-19 pandemic are highlighted in red. These technical

changes have minor effects on our estimates of the unobserved state variables, including r∗t .

7.1 The COVID-Adjusted State-Space Models

7.1.1 The COVID-adjusted Stage 1 Model

The first-stage model, which corresponds to the rstar.stage1.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (21)

xt = [yt−1, yt−2, πt−1, πt−2,4, dt, dt−1, dt−2]
′ (22)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2

]′
(23)

H′ =

[
1 −ay,1 −ay,2

0 −by 0

]
, A′ =

[
ay,1 ay,2 0 0 ϕ −ϕay,1 −ϕay,2

by 0 bπ 1− bπ 0 −ϕby 0

]

F =

1 0 0

1 0 0

0 1 0

 , Q =

σ
2
y∗ 0 0

0 0 0

0 0 0

 , Rt =

[
(κtσỹ)

2 0

0 (κtσπ)
2

]

The vector of parameters to be estimated by maximum likelihood is as follows:

θ1 =
[
ay,1, ay,2, bπ, by, g, σỹ, σπ, σy∗, ϕ, κ2020Q2−Q4, κ2021, κ2022

]
7.1.2 The COVID-adjusted Stage 2 Model

The second-stage model, which corresponds to the rstar.stage2.R program, can be repre-

sented by the following matrices:

yt = [yt, πt]
′ (24)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, 1, dt, dt−1, dt−2]
′ (25)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt, gt−1, gt−2

]′
(26)
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H′ =

[
1 −ay,1 −ay,2 0

ag
2

ag
2

0 −by 0 0 0 0

]

A′ =

[
ay,1 ay,2

ar
2

ar
2 0 0 a0 ϕ −ϕay,1 −ϕay,2

by 0 0 0 bπ 1− bπ 0 0 −ϕby 0

]

F =



1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0


, Q =



σ2
y∗ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 (λgσy∗)
2 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Rt =

[
(κtσỹ)

2 0

0 (κtσπ)
2

]

The vector of parameters to be estimated by maximum likelihood is as follows:

θ2 =
[
ay,1, ay,2, ar, a0, ag, bπ, by, σỹ, σπ, σy∗, ϕ, κ2020Q2−Q4, κ2021, κ2022

]
7.1.3 The COVID-adjusted Stage 3 Model

The third-stage model, which corresponds to the rstar.stage3.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (27)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, dt, dt−1, dt−2]
′ (28)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt, gt−1, gt−2, zt, zt−1, zt−2

]′
(29)
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H′ =

[
1 −ay,1 −ay,2 0 −4c · ar

2 −4c · ar
2 0 −ar

2
−ar
2

0 −by 0 0 0 0 0 0 0

]

A′ =

[
ay,1 ay,2

ar
2

ar
2 0 0 ϕ −ϕay,1 −ϕay,2

by 0 0 0 bπ 1− bπ 0 −ϕby 0

]

F =



1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0


, Q =



σ2
y∗ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 (λgσy∗)
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
(
λzσỹ

ar

)2
0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

Rt =

[
(κtσỹ)

2 0

0 (κtσπ)
2

]

The vector of parameters to be estimated by maximum likelihood is as follows:

θ3 =
[
ay,1, ay,2, ar, bπ, by, σỹ, σπ, σy∗, ϕ, c, κ2020Q2−Q4, κ2021, κ2022

]
The law of motion for the natural rate of interest is r∗t = c · gt + zt.

7.2 The HLW (2017) State-Space Models

7.2.1 The Stage 1 Model

The first-stage model, which corresponds to the rstar.stage1.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (30)

xt = [yt−1, yt−2, πt−1, πt−2,4]
′ (31)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2

]′
(32)

49



H′ =

[
1 −ay,1 −ay,2

0 −by 0

]
, A′ =

[
ay,1 ay,2 0 0

by 0 bπ 1− bπ

]

F =

1 0 0

1 0 0

0 1 0

 , Q =

σ
2
y∗ 0 0

0 0 0

0 0 0

 , R =

[
σ2
ỹ 0

0 σ2
π

]

The vector of parameters to be estimated by maximum likelihood is as follows:

θ1 =
[
ay,1, ay,2, bπ, by, g, σỹ, σπ, σy∗

]
7.2.2 The Stage 2 Model

The second-stage model, which corresponds to the rstar.stage2.R program, can be repre-

sented by the following matrices:

yt = [yt, πt]
′ (33)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, 1]
′ (34)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt−1

]′
(35)

H′ =

[
1 −ay,1 −ay,2 ag

0 −by 0 0

]
, A′ =

[
ay,1 ay,2

ar
2

ar
2 0 0 a0

by 0 0 0 bπ 1− bπ 0

]

F =


1 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

 , Q =


σ2
y∗ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 (λgσy∗)
2

 , R =

[
σ2
ỹ 0

0 σ2
π

]

The vector of parameters to be estimated by maximum likelihood is as follows:

θ2 =
[
ay,1, ay,2, ar, a0, ag, bπ, by, σỹ, σπ, σy∗

]
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7.2.3 The Stage 3 Model

The third-stage model, which corresponds to the rstar.stage3.R program, can be represented

by the following matrices:

yt = [yt, πt]
′ (36)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4]
′ (37)

ξt =
[
y∗t , y

∗
t−1, y

∗
t−2, gt−1, gt−2, zt−1, zt−2

]′
(38)

H′ =

[
1 −ay,1 −ay,2

−ar
2

−ar
2

−ar
2

−ar
2

0 −by 0 0 0 0 0

]
, A′ =

[
ay,1 ay,2

ar
2

ar
2 0 0

by 0 0 0 bπ 1− bπ

]

F =



1 0 0 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0


, Q =



(
1 + λ2

g

)
σ2
y∗ 0 0 (λgσy∗)

2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(λgσy∗)
2 0 0 (λgσy∗)

2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
(
λzσỹ

ar

)2
0

0 0 0 0 0 0 0


,

R =

[
σ2
ỹ 0

0 σ2
π

]

The vector of parameters to be estimated by maximum likelihood is as follows:

θ3 =
[
ay,1, ay,2, ar, bπ, by, σỹ, σπ, σy∗

]
The law of motion for the natural rate of interest is r∗t = gt + zt.
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Appendix A2: Data

For each economy, we require data for real GDP, inflation, and the short-term nominal

interest rate, as well as a procedure to compute inflation expectations to calculate the ex

ante real short-term interest rate rt.
14 The variable yt refers to the logarithm of real GDP.

The inflation measure is the annualized quarterly growth rate of the specified consumer

price series. With the exception of the United States, for which core personal consumption

expenditure (PCE) price data are available over the entire sample, the inflation series is

constructed by splicing the core price index with an all-items price index. We use a four-

quarter moving average of past inflation as a proxy for inflation expectations in constructing

the ex ante real interest rate. Short-term interest rates are expressed on a 365-day annualized

basis.

For the United States, we use real GDP and core PCE data published by the Bureau of

Economic Analysis. Inflation is constructed using the price index for PCE excluding food

and energy, referred to as core PCE inflation. The short-term interest rate is the annualized

nominal federal funds rate, available from the Board of Governors. Because the federal funds

rate frequently fell below the discount rate prior to 1965, we use the Federal Reserve Bank

of New York’s discount rate, part of the IMF’s International Financial Statistics Yearbooks

(IFS), prior to 1965. All U.S. data can be downloaded from the St. Louis Fed’s Federal

Reserve Economic Data (FRED) website.15

Canadian real GDP data is taken from the IMF’s IFS. The short-term nominal interest

rate is the Bank of Canada’s target for the overnight rate, taken as the end-of-period value

for each month and aggregated to quarterly frequency. Since the Bank of Canada began

treating the target rate as its key interest rate in May 2001, we use the bank rate as the

short-term interest rate prior to that date. We use the Bank of Canada’s core Consumer

Price Index to construct our inflation series. Prior to 1984, we use CPI containing all items.

With the exception of real GDP, all data is from Statistics Canada.16

Euro Area data is from the Area Wide Model (AWM), available from the Euro Area

Business Cycle Network (Fagan et al., 2001). The inflation measure is based on the core

price index, HICP excluding energy (series HEX) beginning in 1988; prior to 1988 we use

the overall price index HICP. The nominal short-term interest rate is the three-month rate

(series STN) and the real GDP mnemonic is YER. At the time of publication, the final

14A detailed description of our data and programs, as well as replication materials for the standard HLW
model, is available on the Federal Reserve Bank of New York’s website.

15Mnemonics are as follows. Real GDP: GDPC1; Core PCE: PCEPILFE; Federal Funds Rate: FED-
FUNDS; FRBNY Discount Rate: INTDSRUSM193N.

16Mnemonics from Statistics Canada are as follows. Core CPI: v41690926 (Table 326-0022); CPI:
v41690914 (Table 326-0022); v41690973 (Table 326-0020); Bank Rate: v122530 (Table 176-0043); Target
Rate: v39079 (Table 176-0048). Real GDP is IFS series “Gross Domestic Product, Real, Seasonally ad-
justed, Index”.
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update to the Area Wide Model was in 2017; we update the three series from the ECB’s

Statistical Data Warehouse.17

17Mnemonics for the SDW are as follows.
Real GDP: MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.EUR.LR.N;
Core HICP: ICP.M.U2.N.XE0000.4.INX;
Nominal Short-term Rate: FM.Q.U2.EUR.RT.MM.EURIBOR3MD .HSTA.
Because data availability is longer for the non-seasonally adjusted price series, we use those and seasonally
adjust them.
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Appendix A3: Sensitivity of Pre-Pandemic Estimates

Table A1 reports parameter estimates from the model estimated through 2019:Q4. Fig-

ure A1 compares estimates from the original HLW (2017) model and the modified model

through 2019:Q4. Both use the current data vintage at the time of publication.

Table A1: Parameter Estimates, Sample Ending 2019:Q4

Parameter United States Canada Euro Area

Sample 1961-2019 1961-2019 1972-2019

λg 0.066 0.052 0.034
λz 0.031 0.016 0.033∑

ay 0.941 0.951 0.949
ar −0.071 −0.065 −0.037

(3.966) (2.969) (1.778)
by 0.074 0.047 0.068

(3.010) (1.697) (1.900)
c 1.175 1.130 0.848

(3.453) (2.716) (0.912)

σỹ 0.347 0.395 0.290
σπ 0.794 1.359 1.009
σy∗ 0.565 0.581 0.396
σg 0.149 0.121 0.055
σz 0.153 0.096 0.264

σr∗ =
√
c2σ2

g + σ2
z 0.233 0.167 0.268

S.E. (sample ave.)
r∗ 1.232 1.625 3.597
g 0.437 0.422 0.253
y∗ 1.577 2.470 1.852

S.E. (final obs.)
r∗ 1.655 1.844 5.015
g 0.609 0.574 0.347
y∗ 2.002 2.761 2.419

Notes: t statistics are in parentheses; σg is expressed at an annual rate. Sample through 2019:Q4,

using current data vintage at time of publication.
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Figure A1: Estimates through 2019:Q4, HLW (2023) vs. HLW (2017) Models
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Notes: The gold lines labeled “HLW (2017) Model” show the estimates of the indicated variables using
data through 2019:Q4 in the standard HLW model. The blue lines labeled “HLW (2023) Model” show the
estimates of the modified HLW model on data through 2019:Q4. Both sets of estimates use the current data
vintage at the time of publication.
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Appendix A4: Laubach and Williams (2003) Model

We apply the same model adjustments described in the paper to estimate the LW model

for the United States. In addition to the pandemic-related modifications, we make the two

technical adjustments described in Appendix A1. We make two additional changes that are

already implemented in the HLW model: we initialize the state vector and its covariance

matrix as described in HLW (2017), footnote 6, and impose the constraints that the slope

of the IS equation (ar) is negative and the slope of the Phillips curve (by) is positive in all

three stages of the estimation. Table A2 reports parameter estimates from the LW model

estimated through 2023:Q2. Figure A2 displays estimates from the COVID-adjusted LW

model and from a version of the model with parameters fixed at 2019:Q4 values, analogous

to Section 2.2.
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Table A2: Parameter Estimates from LW Model

Parameter LW HLW

Sample 1961-2023:Q2 1961-2023:Q2

λg 0.066 0.069
λz 0.026 0.020∑

ay 0.946 0.936
ar −0.085 −0.075

(4.589) (4.110)
by 0.047 0.074

(2.292) (3.001)
c 1.114 1.138

(3.163) (3.482)

ϕ −0.080 −0.103
(2.615) (2.624)

κ2020Q2−Q4 8.418 7.873
(2.426) (2.598)

κ2021 1.715 1.707
(2.716) (3.049)

κ2022 1.099 1.864
(2.248) (2.299)

σỹ 0.460 0.449
σπ 0.753 0.788
σy∗ 0.502 0.502
σg 0.132 0.139
σz 0.142 0.122

σr∗ =
√

c2σ2
g + σ2

z 0.205 0.200

S.E. (sample ave.)
r∗ 1.235 1.184
g 0.417 0.418
y∗ 1.914 1.603

S.E. (final obs.)
r∗ 1.710 1.585
g 0.602 0.626
y∗ 3.109 2.751

Notes: t statistics are in parentheses; σg is expressed at an annual rate.
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Figure A2: Estimates from LW Model
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Notes: The gold lines labeled “LW model with parameters fixed at 2019:Q4 values” show the estimates of
the indicated variables using data through 2023:Q2, but where the model parameters are estimated on data
through 2019:Q4. The blue lines labeled “COVID-adjusted LW model” show the full-sample estimates of
the modified LW model.
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