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ABSTRACT We assume that the energy of contact between residues of a peptide chain is governed by an 
interaction matrix and derive a number of relationships between this interaction matrix and the energy 
spectrum over the compact states of the peptide chain. If the random energy model (REM) with a fixed 
number of contacts is assumed, the energy spectrum for the compact states of a peptide is known to be 
Gaussian. This leads to clear relations between the Hamiltonian, the energy spectrum, and the probability 
of a random peptide folding to a native state. While these developments are of great theoretical interest, 
it is evident that structural predictions for real proteins require a more detailed Hamiltonian which distinguishes 
the different types of residue-residue contacts. Here we consider a Hamiltonian which takes the form of an 
energy matrix and which explicitly defies the energy of the different types of residue-residue contacts. 
Statistical conditions are discussed for the contact sets of the compact states which again lead to a Gaussian 
energy distribution as a limiting form for large numbers of contacts. As for the REM, a simple relation exists 
between the energy matrix and the resulting energy spectrum. This in turn leads to predictions relating the 
energy matrix and the probability of a native state, and we show how such predictions may be extended to 
the case where the number of contacts is variable over the set of compact states. We further give the form 
of the energy matrix that will maximize the probability of a native state when the individual interaction 
energies obey certain plausible constraints. While these results may be regarded as exact for the limiting 
Gaussian distributions, we discuss the approximate nature of the results in realistic cases. 

I. Introduction 
One of the keys to understanding the protein-folding 

process and predicting tertiary structure from the primary 
sequence of a peptide is the Hamiltonian describing the 
energy of interaction between individual amino acid 
residues. In one of its simplest forms known as the REM, 
the interaction energy between two contacting residues is 
assumed to be obtained by randomly sampling from a 
Gaussian distribution. Such sampling is repeated for each 
contact in each potential structure to determine the energy 
spectrum for the set of compact structures. This approach 
was introduced by Derridal for the study of spin glasses, 
first applied to proteins by Bryngelson and Wolynes2 and 
adapted by Shakhnovich and G ~ t i n . ~ ? ~  If the number of 
contacts for the compact structures is assumed to be a 
constant, the REM leads to a Gaussian distribution for 
the energy spectrum and to predictions of the probability 
that a random sequence of residues will have a unique 
native state.6 Both the energy distribution and the 
probability of folding bear a simple relation to the variance 
of the distribution from which random contact energies 
are sampled. This allows one to manipulate the system 
in a predictable manner by changing the Hamiltonian. 
The energy spectrum may be altered and the conditions 
for the existence of a native structure may be made more 
or less stringent by altering the variance of the distribution 
of contact energies. 

While the REM allows one to answer some important 
theoretical questions, as Chan and Dill6 have pointed out, 
the investigation of how a particular sequence produces 
a particular native structure requires in some sense a more 
refined analysis. One approach to accomplish this is the 
introduction of a Hamiltonian for contact interactions 
which takes the form of an energy interaction matrix. In 
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the HP lattice model, introduced by Lau and Dill: a very 
simple 0-1 matrix is used. On the other hand, several 
 investigator^^^^ have used a statistical analysis of contact 
frequencies in known crystal structures to assign "statisti- 
cal" contact free energies, providing an interaction matrix. 
Because there is still much to be learned about the true 
Hamiltonian describing contact energies, it is an important 
question how the properties of an interaction matrix may 
affect the energy spectrum and in turn the probability of 
folding for a peptide sequence. It is the aim of this work 
to investigate this question and to see in what manner the 
simple relations found in the REM may also hold for this 
more complex model. 

The paper is organized as follows. In section I1 we note 
that when all compact states are assumed to have the same 
number of contacts and these contacts are assumed to be 
randomly and independently selected, the central limit 
theorem applies with a resultant Gaussian energy distri- 
bution in close analogy to the REM. However, in real 
proteins the pairs of contacts involving a common residue 
are not independent. Because such dependencies have a 
simple form, the variance of the energy distribution may 
be explicitly calculated. Further, because the depend- 
encies are limited, we are able to prove a central limit 
theorem showing the limiting energy distribution is still 
Gaussian when the number of contacts becomes large 
provided the number of contacts and the number of 
dependencies between contacts are fixed over all compact 
structures. When the energy distribution is Gaussian, the 
probability of a unique native fold is an increasing function 
of its variance. This implies certain simple relations 
between the probability of a unique native fold and the 
energy matrix. In section I11 we establish conditions under 
which these relations continue to hold even when the 
number of contacta is not a constant over the set of compact 
structures. Finally, in section IV we show how under 
constraints the energy matrix may be chosen to maximize 
certain variances of random contact energies. We deem 
this important because, on the one hand, these variances 
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relate to the nature of the energy distribution and the 
probability of folding to a unique native state, while, on 
the other hand, information may exist or become available 
which constrains the energy matrix. 

11. A Gaussian Distribution 
To carry out energy calculations it is necessary to have 

definite models of sequences and structures. The set of 
sequences is just the set of all linear strings of letters of 
some fixed length from the alphabet of amino acids. The 
set of structures is somewhat less obvious. There seems 
to be general agreement among researchers in the area,6JO 
however, that the energy of conformation of a sequence 
in a particular compact structure may be characterized by 
the contacts which occur between residues which are not 
adjacent along the linear string of residues. A model for 
the compact structures should be as realistic as possible, 
but not so complicated that calculations become intrac- 
table. A key element in our discussion is the observation 
that the contact sets for different compact structures of 
a peptide chain have only a random relation to each 
other.3JOJ1 Thus in some sense the different compact folds 
of a peptide chain may be considered to be statistically 
independent structures. One manner in which this might 
be expressed is what we shall call the independence model 
of contacts: 

Independence Model: The contact sets for different 
compact structures behave as random independent 
samples from the set of all possible Contacts for a 
sequence. (1) 

This assumption for three-dimensional structures finds 
support from several different sources. First, for three 
dimensions the number of nonlocal contacts exceeds the 
number of local contacts in a structure.l0 Second, theo- 
retical calculations based on random heteropolymers 
suggest that different low-energy states for such a het- 
eropolymer will have very few contacts in ~ o m m o n . ~ ? ~  
Finally, actually enumeration of all the compact confor- 
mations of a 27-mer on a 3 X 3 X 3 lattice confirms the 
theoretical calculations.ll 

While these observations have been used to support the 
application of the random energy model (REM) of Derridal 
to proteins,1° we point out that (1) is essentially equivalent 
to the REM in the case when the number of contacts in 
a compact structure is sufficiently large. Let the interac- 
tion energies of different pairs of residues be governed by 
a symmetric energy matrix R = (eij) and let 
represent the probabilities of the n different letters of the 
alphabet along some sequence, seq. Then a random 
contact along the sequence will have energy eij with 
probability pipi. Let p and u denote the mean and standard 
deviation of this energy distribution. Then if str, repre- 
sents a randomly chosen structure with c contacts from 
the set of all structures and if E(seq,str,) represents the 
energy of the sequence seq when in the configuration str,, 
we may conclude that 

E(seq,str,) - c p  
(2) 

tends to the unit normal distribution as c becomes large. 
This is a consequence of (1) and the central limit theorem 
for a sequence of independent identically distributed 
random variables.12 

While (1) may in many circumstances be an adequate 
model on which to base energy calculations, there are 
systematic effects due to the dependence of contacts which 
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involve a common residue. Note that for a single contact 
between randomly determined residues we have 

and 

n 

u2 = (eij - p12pipj 
IJ’1 

Now for any residue type j we may write 

We next define 

(3) 

(4) 

(5 )  

(7) 
j=l 

It is then not difficult to show that 

u2 = $ “;pi + a; (8) 
r = l  

Now let us suppose the residues i and k both contact the 
residue j .  It is then a relatively simple calculation to show 
that 

n 

This reveals what the covariance is between dependent 
contacts. 

To discuss the energy of a compact structure it will be 
convenient to use the terminology of graph theory. Let 
a compact structure be represented as a graph G = (V,L) 
where the set of vertices, V, of the graph is the set of 
residues in the structure and the set of edges, L, is the set 
of contacts between nonadjacent residues. Then for a 
particular contacfl E L we will write the energy associated 
with l as el. The mean and the variance of el are, of course, 
given by (3) and (4). The total energy of the structure G 
may then be written as 

If we consider each vertex to be occupied by a residue 
sampled according to the distribution (pi]:- , we obtain a 
distribution of total energies with mean (LIZ. Note that 
L1 is the number of contacts denoted by c in (2) .  The 
variance of this distribution may also be computed. For 
each vertex u E V let d, denote the degree of u, i.e., the 
number of residues that contact u. Then we have the 
following theorem. 

Theorem A. For a fixed graph G and residues assigned 
randomly to vertices according to the probability distri- 
bution @i)rm,, var(E) = L1u2 + (EuEv dU2 - 2L1>Ub2. 

Proof: 
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Local Dependence Model: The contact seta for 
different compact structures behave as random 
independent samples from the set of all 
possible contacts for a sequence, except for 
the dependency that exists between those 
pairs of contacts involving a common residue. (19) 

Both the independence and the local dependence models 
as here formulated are based on the assumption that the 
contacts in different compact conformations in a three- 
dimensional molecule behave as random and independent 
samples of the set of all possible contacts. While there is 
evidence in support of this approach,314J0J1 there is also 
evidence that excluded volume and chain constraints 
induce a dependency between the different contacts in a 
compact conformation. Direct simulations on a cubic 
lattice have revealed the existence of significant geometric 
constraints, e.g., the blocking of one contact by 
Two questions seem appropriate in regard to the existence 
of such steric correlations. First, are they of sufficient 
prevalence to have a significant impact on the overall 
energy distribution of a peptide? Second, does a central 
limit theorem still hold when they are accounted for in a 
model? To the first of these questions we do not know the 
answer. To the second, we believe that a central l i i i t  
theorem will still hold because steric constraints are 
generally limited to the local volume surrounding the 
contacts producing them. However, the larger the volume 
in which contact energies have dependencies, the less useful 
a central limit theorem becomes because the size of the 
molecule becomes insufficient to observe the limiting 
effects. Thus it is important to realize that the models we 
have defined in (1) and (19) are only an approximation to 
the constraints that operate in the folding of real peptide 
chains. 

While we can only conclude that the energy distribution 
of the compact states of a peptide is Gaussian in the limit 
of large numbers of contacta, the large numbers of contacts 
in actual proteins suggest the approximation may be quite 
good. Of course, even a seemingly good approximation 
may not give useful data in the extreme tails of the 
distribution. However, for the bulk of the energyspectrum 
the Gaussian approximation would seem to be an adequate 
description. In this regard we note that the distribution 
of energies for the contact graph of a real protein appears 
Gaussian when astatistically derived energy model is used, 
and random sequences are assigned.9 This corresponds 
to the local dependence model with fixed graph, G, as 
discussed here. Our primary interest in the remainder of 
the paper is with the folding question and how folding 
may be affected by the energy distribution. Thus tail 
approximations are of key importance, and we consider 
them further in the next section. 

111. Mixtures 
If we make the assumption that the tail approximations 

that arise from the central limit theorem as applied to 
peptide molecules are adequate to study the folding 
question, then we have a model which in many ways is 
equivalent to the REM. Thus we shall begin this section 
assuming the REM. This will enable us to establish several 
results with rigorous proofs. We will then consider in some 
detail the validity of the results obtained for the case of 
a discrete interaction matrix. 

Let STR denote the set of compact structures possible 
for a sequence seq and let A = (El, EQ, ..., EN] denote the 
associated set of energies. Let us assume that Ej is the 
lowest energy in the set. Then following Shakhnovich 
and Gutin? we say that seq folds if and only if 

4-12 

where 11 - 12 implies that the two edges have one vertex 
in common. The covariance for such a pair of edges is ab2 
as noted in (9). For a given vertex, u, with degree d,, the 
number of pairs of edges with u in common is d,(d, - 
1)/2. Thus the total number of dependent edge pairs is 

I _  

C, 
folfows. QED. 

d,(d, - lY2. Now since LEV d, = 2jLI, the result 

Because- the dependencies are a local phenomenon in a 
structure, as the number of contacts becomes large, the 
distribution of the total energy approaches the Gaussian. 
This is a consequence of a result of Stein.13 

Theorem B. Let d = maxuEv d, be bounded by do. 
Then the central limit theorem holds for E as jL1 - a. 

Proof: Let W = (E - jLI~)/(var(E))'/~. Then by 
Corollary X.2 of Stein (1986, p 110), 

Ip( w I wo) - ~ w , ) l  I 2~ , l / ' / va r (~ )  + 
( 1.252SQ'/2)/var(E)3'4 (12) 

where 

and 

and CP is the cumulative distribution function of the 
standard normal distribution. 

Here we want to compute explicit limits for SI and SQ. 
Since the maximal degree for the vertices is bounded by 
do, the maximum number of edges correlated with a given 
edge el is at most 2 4 .  Hence there are at most 2d&( 
terms in the sum SI. Now for a term el,elz with 11 - 12, 
the maximum number of correlated terms of the form 
e13el, with 13 - 14 is 2 X (3d0) X (2do) = 12d02. Since 

cov(elle12,elsel,) 5 d w d m  I P4a4 (15) 
a 

where P4 = max(var{el,el,))/d, it follows that 

As for S2, we have 

where 0 3  = rnBx(E(eile~,e&d. Since var(E) 2 klu2, we 
conclude that 

It follows that the normal approximation is valid as L1- 
a, QED. 

This result suggests a modification of (1). 
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Because of condition (21), we see that Cjl'2tj(W) I 
~ ) / ~ f j ( w )  for all i and any w E Ad. Hence for any other 
d' > d and the same w E Ad, 

where the partition function, 2, is defined in the usual 
manner. The value of pcut is not well defined. Shakh- 
novich and Gutin5 suggest the value of 0.99 as a reasonable 
cutoff to define a sequence with a native structure. Clearly 
the value must be larger than 0.5 so that to a folder 
corresponds a unique structure, yet sufficiently less than 
1.0 so that it is satisfied by a reasonable number of 
sequences at reasonable temperatures. Beyond these 
considerations the exact value is somewhat arbitrary. 

Now if the energy distribution of the compact states of 
a peptide chain is Gaussian, then a simple consequence 
is that the probability of folding to a unique structure 
increases as the variance of this distribution increases. 
Let us assume that the REM with a fixed number of 
contacts c is applicable to all structures in STR and a 
given sequence seq. Then we note that the difference in 
energy between different structures or states is directly 
proportional to u, the standard deviation of the contact 
energy. From (20) it then follows that the probability of 
folding is an increasing function of u (in this regard see 
also the results of Shakhnovich and Gutin5). This 
statement is also true under somewhat more general 
conditions in which the number of contacts is not required 
to be a constant. On the basis of the folding criterion (20), 
we have the following result. 

Theorem C. Assume the REM is applicable and let Ac 
represent the maximum difference in number of contacts 
between any two structures in STR. Then if 

E f ( w )  - E y ( w )  1 Eid(w) - E t ( w )  1 0 (25) 

That is, E j d ' ( W )  is still the smallest energy and the 
differences between it and any other Ei increase as the 
variance increases. We have proved that for any w E Ad,  
it is also true that w E Ad! whenever d' > d. Thus the 
conclusion of the theorem is established. QED. 

Theorem C has a corollary that is of interest. 
Corollary 1. If the REM is applicable, then without 

restriction on the numbers of contacts in structures, the 
probability of folding converges to one as the variance u2 
goes to infinity. 

Proof: Let us assume the same sample space 0 and 
representation of Ei'(w) in terms of ci, a,,and [j(w). 

Then for almost all w there must be some J such that 
C ? / ~ & ( W )  < C ; / ~ & ( W )  for any i f j .  It follows that for 
dmost all w there is some j such that for any i # j ,  Ej'(0) 
- Ei"(w) goes to negative infinity as u2 goes to infinity. 
Because there are only a finite number of structures, the 
result follows. 

Example. Here we give an example showing that the 
condition (21) of Theorem C cannot be eliminated. Let 
N = 2. Then 

where B = kT log[pcuJ(l -pcut)l. With simple algebraic 
manipulations we find that 

is satisfied, the probability of folding is a nondecreasing 
function of u. 

Proof: For a given Q, let the energies corresponding to 
seq in the conformations of STR be written as A' = (Ef, 
E f ,  ..., EpfJ, where each Ej' is assumed to be the sum of 
ci pair interaction energies. Because the independence 
model is assumed, each Ei' may be regarded as a normal 
random variable with mean Cip and variance Ciu2. If Ej' 
is the lowest energy in A", then the probability of folding 
is defined as 

We introduce a sample space 52 consisting of all possible 
peptide chain energy assignments. Then each Ei' may be 
regarded as a function from 52 to the real line, Ei' (w) .  We 
may write Ej' ( w )  = cip + ~ ~ ' / ~ a [ i ( w ) ,  where the [j's are i.i.d. 
normal random variables with mean zero and variance 
one. We want to prove that the set 

A,  = ~~le-Ej '(~)/(kn/Z~ ( w )  2 p cut 1 (23) 

increases as u increases where again we assume that 
E j g  ( w )  is the lowest energy in the set corresponding to w 
and u. 

Let us consider a particular d and any realization w E 
Ad, Since Z L e-Ej/(kn + e-Ei/(kn for any i # j ,  we have 

(27) 

Evidently if condition (21) fails the two arguments for CP 
are both nonzero and of the same sign and as a consequence 
as u - 0 the probability of folding must go to one. Since 
by Corollary 1 the probability of folding must also go to 
one as u - 03, it is evident that the probability of folding 
cannot be a nondecreasing function of u. On the other 
hand, if (21) is satisfied, the arguments must both be 
nonzero and of the same sign or one argument may be 
zero. In any of these cases the probability of folding is a 
strictly increasing function of u. 

Case of a Discrete Interaction Matrix. We turn now 
to the question whether Theorem C might also hold when 
energies arise from a discrete interaction matrix. To begin 
we analyze the proof of Theorem C. Let the average 
contact energy, 1.1, and the number of contacts, c ,  be fixed 
and let d and d' denote particular variances of contact 
energies satisfying 

d < d' (28) 

Denote the cumulative energy distributions corresponding 
to d and d' by F,+ and Fd., respectively. To each 
cumulative distribution there is a centered distribution 
with mean zero defined by the relationship 

FCd(E) = Fd(E + cp) (29) 

The two centered distributions corresponding to d and 
d' are related by 
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FCJE) = FC,(f,,(E)) (30) 

where under the conditions of Theorem C the transfor- 
mation fdd’ takes the particularly simple form 

(31) 

The two important properties of fddl that we need in the 
proof of Theorem C are that fddt is an expanding mapping 
and is independent of the number of contacts, c. By an 
expanding mapping we mean that its derivative is every- 
where greater than or equal to one so that energy 
differences always increase under the mapping. 

We apply the two properties of fddl just described to see 
how they yield a proof of Theorem C. First we note that 
just BB in the proof of Theorem C we may derive the relation 

U 
f d d m  = T E  
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Figure I, Relative energy densities in the extreme tails of several 
different binomial distributions, all with an N of 1600. T h e  top 
curve ia for a p of 0.76 followed successively below by the d i d  
curves corresponding to 0.7,0.65, and 0.6. Thia progresaion of 
decreasing density correaponda to increasing u. The dottad m e  
is for a p of 0.5 and shows that the progression ia not perfect. 

which is a part of (24). This coupled with (21) then yields 
the relation 

(Ei d (0) - tip) - ( E t ( @ )  - ~ j p )  = d’ L 0 (33) 

We proceed to apply the transformation f , + ~  to (33) to 
obtain the relation 

(34) 

which follows from the expanding nature of the mapping 
and the fact that it applies independent of contact number. 
But (33) and (34) together easily imply (25) and the 
theorem follows. 

Examination of the argument just given reveals that 
the only place the Gawian  nature of the energy distri- 
butions is used is in (31) to obtain the fact that f expands 
the energy scale uniformly. Now an f satisfying (30) is 
guaranteed for any two continuous distributions. The fact 
that it must apply to a range of values for c we believe 
need not be too restrictive provided thevariation in contact 
number is small relative to the number of contacts. 
Theorem C or an approximation to Theorem C will follow 
if f simply expands the energy scale whether uniformly or 
not. 

Let us now assume the independence model of contacts 
as in (1). From the discussion of the previous section it 
is evident that in the ideal limit the energy distribution 
would be Gaussian and Theorem C would apply. Pre- 
sumably at  some point in the process of taking the limit 
dictated by the central limit theorem the approximation 
wil l  become adequate to ensure that f is expanding and 
an approximate version of Theorem C will follow. 

To illustrate the kind of behavior we envision, we 
examined the binomial distribution. This is a discrete 
distribution similar in construction to the discrete energy 
distributions that we are concerned with yet simple enough 
that exact calculations can reveal the behavior in the 
extreme tails of the distribution. A central limit theorem 
applies but extreme tail approximations can be poor. To 
compare the energy scaling for different distribution 
functions, we define a quantity we term the density for 
a discrete distribution. The relationship to the continuous 
case we have been discussing is that an expanding 
transformation corresponds to a transformation that 
decreases the density of a distribution. Let denote 
successive values in a tail of the distribution. Then for 
any positive integer, 12, we set 

(E, d’ ( w )  - tip) - ( E ~ ( w )  - cjp) = d” 1 d’ 
To picture the density of energies of a distribution we 
graph densityk againSt-lOg(tailk), and two such graphs for 
different distributions allow the relative scaling of energy 
densities to be compared. Figure 1 is such a comparison 
of the extreme lower tails of the binomial distribution 
with an N of 1600 and several different choices for p 
corresponding to different variances. It is evident from 
the figure that, while not perfect, there is yet a strong 
tendency for higher variance to produce a lower energy 
density. This is true even though the value t a i l l ~  of the 
curve for a p  of 0.75 (corresponding to an abscissa of about 
17 on the graph) has a normal approximation with 
continuity correction that is too small by an ordersof 
magnitude. 

Another way in which the variance of a binomial 
distribution may be increased is to simply scale up the 
energy difference between success and failure. This, 
however, wil l  give perfect density scaling and requires no 
analysis. We may conclude that at least for the binomial 
distribution there is a strong tendency to see the kind of 
energy density scaling required by Theorem C. While 
Theorem C and ita corollary are stated for the REM, the 
statistical success of threading energies in matching 
sequences with their native structures suggest a discrete- 
ness and specificity in the contact energies. Thus we 
believe the question of Theorem C’s applicability to the 
discrete energy distributions arising from an interaction 
matrix is important. Further elucidation of this question 
is needed. We suggest it will depend on finding methods 
of e- the extreme tails (20 or 30 standard deviations 
from the mean) of discrete energy distributions arising 
from a complex interaction matrix. 

If Theorem C is assumed applicable to a molecule with 
a discrete interaction matrix, the question naturally arises 
as to the limit placed on Ac in realistic cases. Let us use 
the value of 0.99 for pat suggested by Shakhnovich and 
Gutin.5 Then the right side of (21) is 4.6kT. We have 
estimated to be less than 0.OlkTusing contact energies 
based on protein threading9 and a typical chain compo- 
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Table 1. Number of Residues and Contacts for Two Groups 
of Monomers. 
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chain length contact number 
lALC 122 
3RN3 124 
2LZT 129 
2APR 325 
4APE 330 
2LIV 344 

1698 
1805 
2026 
6176 
6366 
6300 

a Date from Stephen Bryant (personal communication) and contact 
numbers computed by him using a threading m0del.e Within each 
group of three molecules, the chain length is comparable and the 
contact numbers have a variation less than 400. 

sition. This yields a limit of about 500 on Ac. Using the 
same threading model used to estimate contact energies? 
Bryant (personal communication) has supplied the num- 
bers of contacts for several peptide monomers from the 
PDB. These are contained in Table 1. The variation in 
contact number within groups of similar chain length is 
less than 400. This suggests that folding may take place 
under conditions making Theorem C relevant. 

IV. Maximal Variance under Energy Constraints 
We have seen that under appropriate conditions the 

problem of maximizing the probability of folding is 
equivalent to the conceptually simpler problem of max- 
imizing the variance of the energy distribution. If the 
independence model is assumed, one is in turn concerned 
with the maximization of u2 for a random contact. While 
the maximization of u2 is not meaningful in general, it 
does become a meaningful problem if the possible inter- 
action energies are bounded. As a convenient way to bound 
interaction energies, we shall assume that p is fixed in 
value. With this assumption we may bound the interaction 
energy distribution in two different ways which allow a 
statement in regard to the maximum value of u2. 

Theorem D. If p is constant and eij I O  for each contact 
type ij, then u2 achieves its maximum when all but one 
of the eij are zero. 

Proof: Suppose that in order to achieve the maximum 
only m of the eij may be nonzero and let us rename these 
contact energies as {ri)gp If r k  stands for eij, let q k  equal 
pipj if i = j or 2pipj if 1 C j .  Then we may set 

and note that 

(37) 

Let us suppose m > 1. We seek an extremal value of 

with the constraint specified by (37). This constraint may 
be removed by solving (37) for rm 

(39) 

and substituting the result into (38). When this is done 
an interior extremal value must satisfy the relations 

But this is only possible if for each i C m, ri is equal to rm. 
This does indeed correspond to an extremal value of u2, 
namely, its unique minimum of zero. The maximum could 
only occur on the boundary of the set. From the hypothesis 
of the theorem and the relation (39) it is evident that the 
boundary of the set of possible points is just the set of 
points for which some one of the ri is zero. It follows that 
we may remove some one of the ri from our set and reduce 
m by one without impeding our search for the maximum. 
The argument may then be repeated. This may be 
continued until m = 1. QED. 

Corollary 1. Under the hypothesis of Theorem D, if 
for some fixed i, pi I pj for all j # i, then u2 achieves a 
maximum of p2(l/pi2 - 1) when eii = p/pi2 and all other eij 
are zero. 

Proof: This result is obtained by direct comparison of 
the different possible candidates for the maximum of u2 
as described in Theorem D. 

A similar proof to that for Theorem D may be used to 
establish the following theorem. 

Theorem E. If p is constant and aij I eij I &j for each 
contact type ij, then u2 achieves its maximum when for 
all but one of the eij, eij = aij or eij = @ij. 

To deal with the case of the local dependence model we 
have the following result. 

Theorem F. Suppose 1.1 is constant and eij I 0 for each 
contact type ij and further suppose that for some fixed 
i, pi I pj for all j # i. Then Ub2 achieves a maximum of 
p2(l/pi - 1) when eii = p/pi2 and all other eij are zero. 

Proof: We first recall the definition of Ub2 from (7) and 
note the constraint 

on the pj .  We then treat the pj as though they were 
independent except for the relation (41). This allows us 
to mimic the proof of Theorem D to conclude that ub2 
achieves its maximum when all but one of the p j  are zero. 
As in Corollary 1 to Theorem D, a direct calculation shows 
that this maximum is p2(l/pi - 1) and that it is achieved 
when pi = p/pi and all other pj are zero. But this latter 
condition is fulfilled exactly when eii = p/p? and all other 
eij are zero. QED. 

Example. To illustrate some of our results we shall 
consider the case of a 27-mer where the compact states 
have been taken to be all conformations possible on a cubic 
lattice three residues on an edge. Contacts are counted 
between each pair of nodes which are adjacent to each 
other in the x ,  y, or z direction but not adjacent on the 
chain. Simple enumeration shows that c is 28. Further 
there must be at  least 38 pairs of dependent contacts. 
This latter observation comes from the fact that Hamil- 
tonian paths on the 3 X 3 X 3 cube must begin and end 
at either vertices (corners) or the centers of faces." The 
smallest number of dependent pairs, namely, 38, occur 
when such a path both begins and ends at  vertices. Thus 
we can write 

u2(E) = 28u2 + 76u: (42) 

where we understand that the number 76 is a slight 
underestimate in some of the cases. Let us consider the 
HP lattice model and assume that the H-H interaction 
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For an analysis of the statistical properties of chain foldhgs 
on a cubic lattice we refer the reader to Chan and Dill.14 
Likewise a detailed analysis of the thermodynamics of the 
folding transition applicable to two-letter models such as 
HP may be found in Sfatos, Gutin, and Shakhnovich.16 
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energy is -1 while the H-P and P-P interactions are zero. 
Denote the probability of an H by p1 and assume that p1 
I 1/2 is satisfied. Then by Theorems D and F the model 
is so formulated as to maximize both u2 and Ub2 among 
models with the same mean interaction energy and with 
positive interaction energies excluded. Under these cir- 
cumstances it is not difficult to show that 

76u2/(28u2 + 76ub2) = 76p1/(28 + 1 0 4 ~ ~ )  (43) 

If p1 is 1/3 it is evident from (43) that at  least 40% of the 
variance of the energy spectrum is due to Ub2, Le., to the 
dependence between contacts with a common residue. If 
p1 is increased to 1/2 this fraction rises to 47.5% or almost 
half of the variance. Because variances are maximized, 
the HP model thus formulated is a candidate to maximize 
the probability of folding to a unique native structure. 
Note that here all structures considered have exactly 28 
contacts; thus we might conclude that the probability of 
folding is maximized provided the tail approximations 
obtained from Theorem B are sufficiently accurate. While 
this seems unlikely, the argument given in section 111, which 
suggests that the density of energy states in the tail of the 
distribution scales inversely with the variance of a contact 
energy, we believe is applicable. From this we conclude 
that maximum variance is likely to confer at  least a near- 
maximum folding probability. Such a conclusion may 
relate to real peptides. When one notes that a statistically 
derived energy matrix has a dominant "hydrophobic" 
component: our results seem to support the view that 
hydrophobicity not only is responsible for the collapse of 
a peptide chain to a compact state but also plays a 
significant role in its assumption of a unique native state.6 


