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1 Introduction

The Gibbs sampler and other MCMC methods
(Gelfand and Smith 1990, Smith and Roberts 1993,
Tanner and Wong 1987), which become popular re-
cently in statistical analysis with complicated mod-
els, are no more than some devices for generat-
ing random samples from an analytically intractable
target distribution. The basic idea underlying all
these methods is to construct a Markov chain with
the target distribution as its equilibrium distribu-
tion. The methods differ only in the use of Markov
transition functions. For example, the transition
function for the Gibbs sampler with systematic scan
can be expressed as a product of a sequence of con-
ditional distributions (Smith and Roberts 1993, Liu,
Wong and Kong 1994b); while the transition func-
tion for a Metropolis-Hastings algorithm consists of
a “proposed” transition and a “thinning down” de-
vice (Metropolis et al. 1953, Hastings 1970, Smith
and Roberts 1993). Many theoretical work has
emerged in understanding convergence properties of
the MCMC methods. See, for example, Geman and
Geman (1984), Gelman and Rubin (1992), Geyer
(1992), Liu, et al. (1994a,b), Liu (1992, 1994),
Mykland, Tierney and Yu (1993), Roberts (1992),
Roberts and Polson (1994), Rosenthal (1993a,b),
Schervish and Carlin (1993), Tierney (1991), just to
start a list. Here, by taking a slightly different angle
to look at the convergence problem, we investigate
relationships among various concepts in describing
a Gibbs sampler and the associated Bayesian miss-
ing data problem: the rate of convergence, sample
autocorrelations, and the fraction of missing infor-
mation.
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We distinguish two different situations for the
Gibbs sampler: Data Augmentation which refers to
a Gibbs sampler with only two iterative components
(see Tanner and Wong 1987 for its original version,
and Liu et al. 1994a for structural study), and the
general Gibbs sampler (Gelfand and Smith 1990).
A reason for doing this is that the two component
case provides us some extra structure that a general
Gibbs sampler does not possess, and the analysis of
this simple case can suggest some useful methods for
dealing with more general ones.

By making use of covariance structures of Data
Augmentation established in Liu et al. (1994a,b),
we find that the convergence rate of the induced
Markov chain can be characterized by the mazimal
fraction of missing information, which is closely re-
lated to the work of Meng and Rubin (1992) for the
EM algorithms. Conversely, because of this charac-
terization, we can use autocorrelations of a station-
ary Gibbs sampling sequence to estimate the frac-
tion of missing information of any quantity of inter-
est, which is useful for deciding how many multiple
imputations will be provided.

This article is arranged as follows. We review the
concept of fraction of missing information in Section
2. In Section 3, we present structures and several
connections for Data Augmentation. A generaliza-
tion to the general Gibbs sampler is contained in
Section 4. A graphical method for comparing dif-
ferent schemes, using the relationships found in Sec-
tions 3 and 4, is described in Section 5. In Section 6,
we analyze an example for match-making in “broken
regression” (DeGroot, Feder, and Goel 1971).

2 The Fraction of Missing
Information

The concept of fraction of missing information was
first introduced together with the so-called missing



information principle by Orchard and Woodbury
(1972). Tt is later proved to be an important concept
for studying the EM algorithms (Dempster, Laird
and Rubin 1977). Specifically, Louis (1982) pre-
sented a method for finding the observed informa-
tion, and Meng (1991) and Meng and Rubin (1993)
systematically explored the concept and used it to
characterize the rate of convergence for the EM and
the ECM algorithms.

To introduce the fraction of missing information
conveniently, we let © denote the parameter vector
in our model, let Y denote the observed part of an
imaginary complete data set, and let Z denote the
missing part. A simple identity underlying the miss-
ing information principle and the EM algorithms is

log[p(© | V)] = log[p(® | Y, Z)]
— log[p(Z | ©,Y)] +log[p(Z | Y],

which implies

*logp(®|Y) 9?logp(© | Y, 2)
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Integrating out the missing data Z with respect to
p(7]©,Y), we arrive at the following missing infor-
mation principle

Observed Information = Complete Information

Missing Information.

Denoting each term by Ips, Ieom, and Iy, respec-
tively, we can define the fraction of missing infor-
mation as

_ Imis(©)
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T T Toom(©)
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where the I functions are evaluated at the true pa-
rameter value. When O is a 1-dim parameter, the
above quantity is well defined. Otherwise, the above
definition takes a matrix form. Meng (1991) used
the largest eigenvalue of the missing fraction matrix
In_“-ls(@)lcom (©) to characterize the convergence rate
of the EM algorithm.

Now let us take a Bayesian viewpoint. Suppose
a prior distribution po(©) is given, and we are in-
terested in A = h(©) (one can view this as a way of
eliminating nuisance parameters). If one can impute
the missing data, i.e., draw samples AR ACY)
from the predictive distribution p(Z|Y’), then the

posterior distribution of h, p(h|Y), can be approxi-
mated by

1

For example, Z(1), ... Z(™) can be draws from an
iterative sampling scheme. When using the above
multiple imputation type of approximations, the
fraction of missing information is usually important
for one to understand the impact of the missing data
on the estimation of h. Also, it is important for
one to decide how many imputations should be pro-
vided. As Rubin (1987) advocated, m can be chosen
as small as 3 to 5 for estimating posterior mean of
h. Of course, in this case, the fraction of missing
information with respect to A can not be too high.

The fraction of missing information in the
Bayesian framework can be easily defined as (Ru-
bin 1987)

M- var{F(h |Y,Z) | Y}
B var(h | Y)
_ E{var(h |Y,2) |V}
var(h | Y)

= 1

which can be explained as the extra variation caused
by missing Z.

Note that in large sample and when h=#, since
var(h|Y) = 1/1ss and E{var(h|Y,Z)} = 1/I.om,
the two definitions of the fraction of missing infor-
mation, v, and 7, , are equivalent.

3 Structures for Data
Augmentation

We call a special situation of the Gibbs sampler
Data Augmentation if there are only two compo-
nents for iterative sampling (Liu et al. 1994). We
use © and Z to denote the respective components
in Data Augmentation to emphasize its connection
with Bayesian missing data problems.

Let ©1) 7z @ 72 = he
draws from a stationary Data Augmentation. In
other words, we assume that ©(1) is drawn from
the target distribution p(©]Y, 7). In the following,
since everything is conditioned on Y, we will omit
it in all expressions. For example, when we write
E{h(©)|Z}, it actually means E{h(0©)|Y, 7}.

Consider two consecutive draws from Data Aug-
mentation, we find that

consecutive

E(h(’“)h(’““)) - E{E(h(’“)h(’““) | Z(’“))} (1)



E{E(h(k) | Z(k))E(h(k"'l) | Z(k))}
= E{E*(h|Z)},

where the first equality follows from an elementary
fact that E(A) = E[E(A|B)]; the second and third
equalities follow from the fact that ©(%) and ©(k+1)
are conditionally independent and identically dis-
tributed given Z(*). These facts can be illustrated
by the following diagram:

o o2) o) . e
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From the diagram, we observe that ©(1) connects
with ©2) through Z(), and, from the definition of
the scheme, (01, Z(1)) and (6%, Z(1)) have the
same joint distribution when the chain is stationary.
These two properties only hold for Data Augmenta-
tion, not for the general Gibbs sampler. However,
this type of dependence graph can be applied to a
general Gibbs sampler and provide useful intuition.
In Section 5 we will illustrate how to use these dia-
grams to compare different schemes.

As a consequence of (2), we have the following
identity

cov{h(©@FN) h(@F+)Y = var[E{h(©) | Z}]

The formula implies that the correlation coefficient
between the two consecutive h’s are

p(hF) R+ = o

An intuition of this is that the higher the frac-
tion of missing information, the more “sticky” the
sample outputs from Data Augmentation, and vice

versa. The extra variance caused by the missing
data, var{ F(h|Z)}, can then be estimated as

m—1
i’mis = ; h(k)h(k+1) _ (Bm)z
m—1
k=1
If, on the other hand, g(Z) = E(h|Z) is easy to
compute, one may also approximate var{ £(h|Z)} by

m

mis = 3 (9 = gm)*/(m = 1),
i=1
where ¢ = E(h|Z®) and §n = (¢ + - +
g(m))/m. This is a variation of Rao-Blackwellization
(Gelfand and Smith 1990, Liu et al. 1994a).

Intuitively, it seems that the latter estimation is
better. For example,

var(hOR®)} = B{(h(DA™)?) — [B{E*(h|2)})*

E{E*(h* | 2)} - [E{F*(h| 7)),
while
var(g?) = E{E*(h| 7)) — [E{E*(h | )},
Hence, by the Cauchy-Schwarz inequality, we have
var(g?) < var{h(Vh(2)}.
Furthermore, by Theorem 3.1 of Liu et al. (1994)

COV{(Q(l))2, (g(k+1))2}
= var{E(---E[E{s*(2)|0}|Z] - )}

where the right hand side has k expectation signs.
Also, we notice that

E{g*(Z)|0} = E{E[g9(Z)h(©)|Z]|©}.

For Oy, we let f(©) = E[E{h(©)|Z}|©], which
is just E(h(?]©(1)). Then we have

COV(h(l)h(2), h(k+1)h(k+2))
= cov(h(2)f(2), h(k+1)h(k+2))

which, for the same reason as above, has the follow-
ing expression

var{E(- - - E[E{h(©)f(©)|7}|0] -- )}

where there are £ — 1 expectation signs on the right
hand side. However

E{n(©)f(©)|2} = E{E[h(©)g(Z) | ©] | Z}

If we compare the expression of lag-k autocovariance
for the (¢()? sequence with that for the h(DAG+D)
sequence, we find that the former always has one
more conditional expectation sign than the latter.
However since the orders of the conditionings are
different, there is no clear comparison between the
two except for the case when lag=1, in which case,
the autocovariance for the latter expression is always
greater than or equal to the former.

The following analogy is helpful for understand-
ing the above discussion. Consider two scenarios:
(i) a vector a is projected to vector b and then to
vector ¢; (ii) a is directly projected to ¢. How do we
compare the length of the projections? Apparently,
if the three vectors are in the same plane and b



lies between a and c, the latter projection is smaller
than the former one. But in most other cases, the
former is smaller than the latter. This corresponds
to comparing var[E{E(X|Y)|Z}] and var{ E(X|Z)}.
For any two random variables U and V', we define
the mazimal correlation between them as
R(U, V)= sup corr{t(U),s(V)}.
var{t(U)}=var{s(v)}=1

It is well understood that for a reversible sta-
tionary Markov chain XMW x@
mal correlations between two consecutive states,
R(X®) X*+1)y 'is equal to A, where 1 — \ is the
“spectral gap.” See Liu et al. (1994a,b)
for more references. For discrete case, A is just the
magnitude of the second largest eigenvalue (in ab-
solute value). For nonreversible chain, the scaled
long-range maximal correlation is equal to A (Liu et
a. 1994b). That is,

the maxi-

so-called

. 1 E4+1)\11/k _
klin;o{R(X( ) x (LY E = )
Tt is shown in Liu et al. (1994a) that the maxi-
mal correlation between two consecutive draws of
Data Augmentation, R(@(k), ®(k+1)) is the intrinsic
rate of convergence of the scheme, and is equal to
R%(©, 7).

On the other hand, under mild conditions (see
Csaki and Fischer 1960), there exists a pair of func-
tions ho(©) and go(Z) with unit variance such that
cort(hg, 90)=R(©, Z) (denoted as R later), and

E{g0(2) | ©}
E{ho(©) | 72} =

R ho(©) (2)
R go(7) (3)

Therefore, hqg suffers the maxzimal fraction of missing
information

¥ (ho) = var{E(hg|Z)}/var(hg) = R?,

and the maximal fraction of missing information is
equal to the rate of convergence of Data Augmen-
tation. If a function h is correlated with hqy (with
respect to «), then

{corr(h(1) B+ I/ )

as k goes to infinity. This follows from spectral de-
composition of h (Liu 1991, Garen and Smith 1994,
Roberts 1992). Tt suggests that the mazimal frac-
tion of missing information can be estimated by the
output sequence of the Gibbs sampler.

4 Missing Information in the
General Gibbs Sampler

We now turn our attention to the general Gibbs sam-
pler with systematic scan. There are two situations
commonly encountered in practice. We shall discuss
them in the order of increasing complexity.

Case 1. © = (61,05), Z = Z. That is, given
O, Z can be drawn directly; but ; must be drawn
conditional on both #; and 7, and #5 must be drawn
conditional on #; and Z. Note that this can be gen-
eralized obviously. The following diagram illustrates
the sampler:

(1) (2) (1) .
6(3) 6(2) 9%
Z(1) 7(2) 7(3) .

Hence,
cov{h(63"), h(67*)}

E{h(08)R(67))) — E{h(6:)*)
var[E{h(61) | 02, Z}]

which implies that lag-1 autocorrelation of the A se-
quence is in general not its fraction of missing in-
formation with respect to Z, but is a quantity that
reflects dependency between 6, and (#2, 7). Note
that

var[E{h(61) | 02, Z}] > var[E{h(01)|Z}].

Another way around is to design a function g(7)
and to estimate the maximal correlation between ©
and 7 from it. For example, if it happens that we
know gg in (2) and (3), then by Lemma 4 of Liu
(1994),

cov{go(Z™)), go(Z"+1)}

var[E{go(%) | ©}]
R? var{ho(©)}.

Here R? is the maximal fraction of missing informa-
tion and is an upper bound for v, (k). This duality
provides us the following scheme for obtaining an
estimate of the maximal fraction of missing infor-
mation.

Step 1. Design a function g(Z). Usually this can
just be a linear function (e.g., see Liu 1991).



Step 2. Estimate lag-k autocorrelation rp for the g
sequence for £ = 1,2, ..., after the chain converges,
and fit the exponential model

rp = cpt.

Garren and Smith (1994) provided refined methods.
The fitted value g is an estimate of R(©, 7).

Case 2. © = (#1,05) and 7 = (z1,29). This is
the case where the fraction of missing information
can not be estimated from the sample autocorrela-
tions. The maximal fraction of missing information
can be extracted from long range autocorrelations
by the same reason as explained in Case 1.

5 Compare Schemes via
Diagrams

In running a Gibbs sampler or a more general
MCMC algorithm, one usually has flexibilities in de-
signing sampling schemes. As with many iterative
methods , we are usually faced with a dilemma: we
either have to sacrifice computational ease for iter-
ative simulation in exchange for fast convergence,
or have to suffer slow convergence in exchange for
computational simplicity. Only in some rare situ-
ations as explored in Liu (1994) be we satisfied in
both ways. Specifically, when the Bayesian predic-
tive distribution is simple, one can use the predictive
updated version to improve convergence without sac-
rificing computational simplicity. Liu et al. (1994a)
and Liu (1994) provided some theoretical arguments
based on operator theory. Here we use diagrams to
illustrate autocorrelation structures. We hope that
the analysis in this section can shed light on more
complicated general situations.

For the sake of simple argument, suppose the
sampler involves three components (61,602, 7) and
each component is visited in turn: 6; — 6, — Z.
The following diagram shows dependency between
two consecutive iterations. For example, 652) is gen-
erated by a draw from 71'(61|Hgl),Z), which is illus-
trated in the diagram by two arrows connecting 9&1)

and Z with 6’(12). Other arrows have similar impli-
cations. This diagram shows that the two consecu-
tive states depend on each other via the connection
between (651), Z(l)) and (652),922)) as illustrated by

three arrows in the middle or the diagram.

Z(1) 7(2)

Next diagram illustrates a grouping scheme,
where it is assumed that given 7, (#1,63) can be
drawn together. The diagram illustrates that de-
pendency between two consecutive states is via the
connection between Z(1) and (9§2), 9%2)), where only
two arrows are used for this connection. Compared
with the above diagram for the original sampler,
dependency between the two consecutive states for
grouping is weaker.

o0 62
<< 9§1>> < 9g2>>
Z(1) 7(2)

Our final diagram represents the collapsing
scheme, in which we assume that 65 can be theoret-
ically integrated out so that the sampler is applied
only to the two remaining components. In this dia-
gram, the only connection between two consecutive
states is that between Z(1) and 652). Only one ar-
row is used, which indicates the weakest correlation
among the three schemes.

651) 652)

VAS. 7(2)

We expect that this type of analysis can be gener-
alized to other situations to help one design efficient
sampling schemes.



6 An Example: Broken

Regression
Suppose z;, ¢ = 1,...,100, are i1.i.d. normal with
variance 72; and y; = o + Bx; + ¢;, where the ¢
are i.i.d. from N(0,0?). It is a standard regres-
sion problem if we observe (z;,y;) fori = 1,---,100.
Suppose, however, the pairing information is some-
how lost and we can only observe u;, 2 = 1, ..., 100,

a random shuffle of the y;. The problem is no longer
trivial. This can also be viewed as a special case of
file matching problem. DeGroot et al. (1971) stud-
ied this problem with an objective to maximize the
number of correct matches. We are interested in es-
timating 3 and the corresponding fraction of missing
information (for not knowing the matching).

Let @ be the permutation that produces the u;
from the y;. The main difficulty is that ¢ is miss-
ing. Let © = (o, 3) and U = (uy,...,u100). With a
prior distribution on ©, Data Augmentation can be
applied if we can (a) draw @ from p(Q|©, U) and (b)
draw © from p(©|Q,U). Step (b) is simple since it
only involves multivariate ¢-distribution. Step (a) is
nontrivial. As was implemented in a preliminary re-
port of Y. Wu (Dept. of Statist., Harvard U.), step
(a) can be accommodated by a “Metropolized shuf-
fling” scheme. Roughly speaking, a random shuf-
fling scheme is employed that provides us a Markov
chain on the space of all permutations. Based on this
chain, we can apply Metropolis-Hastings rejection
rule to achieve our target distribution p(Q|©,U).
In our simulation, we used switch shuffling (ran-
domly draw two cards and switch them). Within
each iteration (i.e., a cycle of Steps (a) and (b)),
500 Metropolized shuffles were conducted, since, as
theory suggested, O(nlog(n)) steps are needed to
shuffle n cards uniformly.

We simulated a data set with 72 = 1, ¢? = 1,
and @ = 0. Assuming that &« = 0 is known, we
used a flat prior for 3. Figure 1 illustrates our re-
sults. Panel(1,1) shows the posterior distribution of
B3, where the z’s were simulated from N(0,1) and
the true § was zero. As indicated, its variance 1s
0.12, considerably larger than 0.01, the complete-
data posterior variance of 3. Panel(1,2) shows the
autocorrelations among the @’s. The fraction of
missing information can be estimated as ¥, = 0.924
from the autocorrelation plot. As theory in Sections
2 and 3 indicated,

(1 —vy)var(B | U) = E{var(3 | U, Q)}

where the RHS is average complete-data variance.

This identity was experimentally confirmed since
(1 =0.923) x 0.12 = 0.009 which is close to the
theoretical value 0.01. Panel(2,1) is the same pos-
terior distribution, but the z’s were simulated from
N(0,1) and the true f=0. With the z’s far from
origin, both the posterior variance, 0.021, and the
fraction of missing information, 0.619, were consid-
erably smaller. In Panel(3,1), the # were simulated
from N(1,1) and the true g = 1. Tt seems to sug-
gest that the fraction of missing information is not
related to the true value of 3, but is very sensitive
to > x2.

An intuitive solution of the problem is to sort
both the z and the u first and then do a regression on
the sorted data. But this procedure overestimates 3
and does not provide proper inference. The above
Bayesian method we employed, however, is unbiased
(with flat prior) and supplies proper variance esti-
mation. When 3~ z7 is extremely large, the sorting
method (essentially any method) works well, imply-
ing that the matching information is unimportant
for the inference of #. This, together with the fore-
going simulation study, suggests a conjecture that
the fraction of missing information for # monotonely
decreases as Y 27 increases.
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