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SUMMARY

Hybrid Monte Carlo (HMC) has been successfully applied to molecular simula-
tion problems since its introduction in the late 1980s. Its use in Bayesian com-
putation, however, is relatively recent and rare (Neal 1996). In this article, we
investigate statistical models in which HMC shows an edge over the more stan-
dard Monte Carlo techniques such as the Metropolis algorithm and the Gibbs
sampler. The models under investigation include the indirect observation model,
nonlinear state-space model and non-linear random-effects model. We also pro-
pose two methods, the multi-point method and parallel tempering, for improving
HMC’s efficiency.
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POINT; PARALLEL TEMPERING; INDIRECT OBSERVATION; STOCHASTIC VOLATILITY;
NONLINEAR RANDOM-EFFECTS MODEL; BAYESIAN COMPUTATION.

1. MOTIVATING PROBLEM

Hybrid Monte Carlo (HMC) as first introduced by Duane et al. (1987) is a Markov chain
Monte Carlo (MCMC) technique built upon the basic principle of Hamiltonian mechanics.
Its applications in molecular simulation have attracted much interest from researchers. Its
potential in Bayesian computation, however, has not been fully explored. We show in this
article that HMC can be very effective means for exploring complex posterior distributions.

To motivate our investigation, consider the following indirect observation model. Let�
be a parameter vector and let ��� be a vector of random variables whose distribution is

completely known given
�
. Suppose we observe only � , where

�����
	�����
 ��� 
 	�� �

and the functional form of �
	�� � is known, whereas � � is not directly observable. Of interest
is the Bayesian inference on the parameter vector

�
. Since the analytical computation

of the likelihood function of
�

is generally infeasible (when � is complex), the standard
maximum likelihood estimation method cannot be applied. We overcome this difficulty by
formulating a new model which can be viewed as a “contaminated version" of (1):

�����
	�� � 
 ������� 	�� �

�



where
����� 	�� 
��	��
 � , 
 is the identity matrix and � is a tuning parameter controlled by the

user. Treating the problem as a usual missing-data problem, we write the “pseudo-posterior
distribution” of � and

�
as follows:

��
 	 � 
 ��� � ��� � 
 	�� � � 
 ����� 	�� � ��� ��� 	 ��� 	�� �

where � 
 represents the density function of the model (2) and � � is the prior for
�
. It

can be shown that under mild conditions, the “pseudo-posterior” of
�

converges to its true
posterior almost surely as �	����� .

However, producing satisfactory Monte Carlo samples from (3) is not easy to achieve
either. Although a MCMC procedure such as the Metropolis algorithm (Metropolis et
al. 1953) might be applicable, the random walk nature of the algorithm makes it very
inefficient to explore the posterior distribution defined by (3). For instance, in the following
trivial example �

� ��� 
 ����� 	 � 
 � � 

the samples from the “pseudo-posterior” (3), when � is small, lie in the vicinity of the curve� � �

�
, as displayed in Figure 1. When � ���� �"! , for example, it needs many iterations

for a Metropolis sampler to traverse the entire banana-shaped valley depicted in the figure
and the situation becomes worse as � decreases. In contrast, HMC can follow the dynamics
of this distribution rather well.
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Figure 1. The contour plots of density ��# 	 � 
 ��� with a flat prior ��$ 	 ���&%�' .
The remainder of this paper is organized as follows. Section 2 reviews briefly the

general HMC procedure. Section 3 describes two improvement methods. Section 4 stud-
ies some examples and compares HMC with some other MCMC approaches. Section 5
concludes with a brief discussion.
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2. HYBRID MONTE CARLO

Suppose we wish to draw Monte Carlo samples from � 	�� � �������	��

� 	�� ��� , where ���
	 �	� 
 � � � 
 ��� � . In physics contexts, � can be regarded as a position vector and

� 	�� � the
potential energy function. We introduce a fictitious “momentum vector” � � 	�� � 
 � � � 
�� � �
and the corresponding kinetic energy ��	�� � �

�
�
� �
��� � � ������ � , where � � represents the

“mass” of component  and we write ! � 	 � � 
  � � 
 � � �
. The total energy is then" 	�� 
#� � � � 	�� ��� ��	�� �  	�$ �

Clearly, if we can sample 	�� 
%� � from the distribution � 	�� 
%� �&�&�'�����(
 " 	�� 
%� �)� , then the
marginal distribution of � is exactly the target distribution � 	�� � .

On the other hand, if a physical system under consideration conserves the total en-
ergy (i.e.

"
remains as a constant), then its evolution dynamics can be described by the

Hamiltonian equations which are derived by differentiating (4) with respect to � and � :* "
* � � 
,+� 


* "
* � � +�� 	 ! �

Because the Hamiltonian dynamics are time-reversible, volume-preserving, and energy-
preserving, the resulting moves leave � 	�� 
%� � invariant. That is, if 	��.- �)/ 
%�0- �)/ ��� � , then
after the conserved system evolves for time 1 , the new configuration at time 1 , 	��0-32 / 
#�.-32 / � ,
also follows distribution � .

In practice, the Hamiltonian dynamics is often approximated by a discretized version,
called the the leapfrog algorithm, with a small time step-size 4 :

� 	�1 � 4 � � � 	�1 ��� 4 � 	�1
� 4 � � �
!

� 	�1 � 4 � � � � � 	�1 
 4 � � �5
 4
* �
* �

6666 7
-32 /

where the ratio between two vectors is operated component-wise. Although each leapfrog
move remains time-reversible and volume-preserving, it no longer keeps

"
constant. Du-

ane et al. (1987) suggested to use the Metropolis rule to correct this discrepancy. Suppose
the configuration at the 8 -th iteration of HMC is 	��:9 
%�;9 � . The next state is obtained as
follows:

1. Generate a new momentum vector � from the Gaussian distribution � 	�� � ��'���	�(
 � 	�� �)� ;
2. Run the leapfrog algorithm (or any time-reversible and volume-preserving algo-

rithm) for < steps to reach a new configuration in the phase space, 	��5= 
%�;= � ;
3. Let 	�� 9?> � 
#� 9?> � � � 	��@= 
 
 �;= � with probability

ACB�DFE � 
 �������(
 " 	�� = 
 
 � = � � " 	�� 9 
#� ���'G 	�H �
and let 	��:9?> � 
%�;9?> � � ��	��@9

%� � with the remaining probability.

The success of the method stems from the fact that the exploration of the phase space
is driven by basic physics laws. See Neal (1996) for a detailed review of HMC and its
application to neural network training.
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3. IMPROVEMENTS ON HMC

3.1. Multiple-point Method

The basic HMC considers only the ending state of an < -step leapfrog trajectory as a can-
didate configuration. This makes the acceptance probability very low when the step-size 4
is large. Neal (1994) presented a window method to increase the acceptance rate by con-
sidering windows of states at both ends of a trajectory. We propose a multi-point method
which approaches the problem from a different angle.

Suppose at iteration 8 the configuration is � - �)/ � 	��@9

#�59 � in the phase space. Start-
ing from state �0- � / , we run < leapfrog steps to obtain � - � / 
��0- � / 
 � � � 
��0- � / . For a fixed�

(between 1 and < � � ), a candidate state within the window 	�� - ���	� > � / 
 � � � 
�� - � / � is
chosen according to the probability distribution
 	�� -�� / � � 
 � �'��� 	 
 " 	��0-�� / � �� � ��� � ����� > � 
 � � �'� � 	 
 " 	�� -���� / � � 
 	�� �
where 
 � is a weighting factor given in advance by the user. Reasonable choices of 
 �
include � � and ������� , both giving higher weights to states closer to the end of a trajectory.
Suppose the chosen state is � - ����� / . We then run � backward leapfrog steps from the
current state � - �)/ , producing states � - ��� / 
 � � � 
��0- � � / . Using the “generalized” Metropolis-
Hastings rule by Liu et al. (2000), we accept � - ����� / with probability

� � ACB D
�
� 


� � � � ���	� > � 
 � �'� ����
 " 	��0-�� / �)�� � � � � ���	� > � 
 � � �'���	�(
 " 	�� - ������� � � / ���� 	�! �
and accept � - � / with probability � 
 � . The multi-point method is valid in that the above
dynamical transitions satisfy the detailed balance condition. A graphical illustration of the
method is given in Figure 2.
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Figure 2. A graphical view of the multiple-point HMC method.

3.2. Parallel Tempering

We consider the indirect observation model mentioned in Section 1. When the control pa-
rameter � is sufficiently small, the Markov chain might oscillate within a local region. To
address this problem, we incorporate parallel tempering (Geyer 1991) in HMC. The basic
idea of parallel tempering is to allow the system to “exchange” configurations correspond-
ing to differently “tempered” distributions, enabling the sampler to explore the phase space
in a more flexible way.

$



In the indirect observation model, we run � HMC chains in parallel with � ��� � �
�

� � � � ��� . After a fixed number ( � � , for instance) of HMC transitions within each chain,
we choose two chains,  and � (corresponding to � � and ��� ), say, at random. Suppose � �
and ��� are the current states of these two HMC chains, respectively. We exchange them
with probability

ACB�D
�
� 

�����	�(
 " 	�� �
	 � �� �5
 " 	�� � 	 � �� ��������	�(
 " 	�� �
	 � �� �5
 " 	�� � 	 � �� ���   	�� �

It is easy to show that the joint distribution � 
�
 	�� � ��� � � � � ��
�� 	�� � � is invariant under
this exchange operation. Thus, at the end of the parallel tempering simulation, we obtain
� estimates (may be posterior means or modes), �� 	�� � � 
��� 	 � �

� 
 � � � 
��� 	 � � � . A quadratic
function

�� 	 � � ��� � � � � � � � � � �
can then be fitted and the parameter

�
is estimated by the estimated intercept �� � .

4. NUMERICAL EXAMPLES

4.1 Uncoupled Oscillators

Consider a system of
�

uncoupled oscillators (Neal 1994) with the potential energy func-
tion

� 	�� � � �
�

��
� � ��� ��

� ��  	 � � �

Four HMC methods, i.e. the basic HMC, the window HMC of Neal (1996), the unweighted,
and the weighted multi-point methods, were applied to a ��H � � -dimensional system. The
step-sizes were sampled uniformly from interval 	�� 
 � ' � ������� � . We compared the inte-
grated autocorrelation time (IAT), defined as the sum of all autocorrelations, and the CPU
time (in seconds) per effective sample (where the effective sample size (ESS) is defined as
total sample size/IAT).

Table 1. Comparison of four methods: (A) basic HMC, (B) window HMC, (C)
unweighted multi-point, and (D) weighted multi-point.

c=1 A B C D c=2 A B C D

IAT 7.35 8.32 5.04 1.11 11.19 7.31 7.61 3.25
 "!�#$�%&% 0.82 1.11 0.71 0.15 1.30 0.99 1.11 0.44

From the two realizations of the algorithms reported in Table 1, one can clearly see
that the two multi-point HMC methods are superior to the other two HMC methods.

!



4.2. Competing Risk Model

Suppose � � 	�� � 
 � �
���

follows a bivariate Gaussian distribution with unknown mean� � 	 � � 
 � � � � and unknown covariance matrix � . We observe � � A�� � 	�� � 
 � �
�
. To

draw inference on � , we introduce an artificial Gaussian noise with mean � and variance
� � into the model:

� � A�� � 	�� � 
 � � ����� 
 ����� 	�� 
�� � �  	 � � �

We then sample 	�� 
 � 
�� � from their joint pseudo-posterior distribution by using HMC.
For illustration, we simulated � � � independent observations from

� 	 � 
�� � with

� � � �
� �
	 
�� � � � �

� �
	  
The prior distribution for � was chosen as

� 	 � 
 � � 
 � and that for � , a Wishart distribution.
Our �	� takes four values: � 
  ! 
� � 
 and  � , respectively. We constructed an independent
HMC chain for each � � . The parameters of HMC were tuned according to the specific noise
level. A large step-size is always preferred unless it makes the acceptance rate too low. A
rule of thumb is to maintain an acceptance rate of

�
70%. The number of leapfrog steps

in each dynamic transition is usually chosen to be reasonably large so that the trajectory
is long enough to avoid a random walk; on the other hand, an excessively large number of
leapfrog steps might be wasteful and also requires more evaluations of the derivatives of
the Hamiltonian.

Table 2 displays the numbers of leapfrog steps < and the corresponding step-sizes 4
for different � � . As can be seen from the table, a larger step-size is often followed by a
larger � � . We also observed that for small �	� , the autocorrelations were very high even
when a relatively large number of leapfrog transitions were carried out. This slow-mixing
problem can be alleviated by parallel tempering.

Table 2. Tuning parameters for HMC in 4.2.

� � �  !  �  �
< $ � H � � � ! �
4  �'$  � �  � �  ��!

Figure 3 plots the posterior density estimates and autocorrelations for � � and � � , re-
spectively. It can be seen from the figure that the posterior distribution for � � has a high
mode near 12 and a low and flat mode near 8. This is in fact due to the nature of the prob-
lem: with the information at hand one cannot obtain a consistent estimator of � � even with
infinite number of observations. The middle two plots of Figure 3 show that the autocorre-
lations were still rather high even with the aid of parallel tempering. These autocorrelations
can be further reduced by using the multi-point method, as shown by the bottom two plots
of Figure 3.
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Figure 3. Top plots from left to right: the posterior density estimates for ��� and��� ; middle plots: their respective autocorrelations using HMC; bottom plots:
their respective autocorrelations using the multiple-point method.

4.3. Stochastic Volatility Model

The stochastic volatility model is a nonlinear state-space model and can be considered as a
generalization of the celebrated Black-Scholes formula (Hull and White 1987). A simple
stochastic volatility model has the form:�

2 �
�
2 �

����� 	 � 2 � �
� 
 �

2 >
� � � �

2
���

2 
 1 � ��
 � � � 
�� 	 � � �

where
�
2
� � 	 � 
 � � and

�
2
� � 	�� 
 � � � . One can see that ����� � var 	

�
2
�)�

follows an
AR 	�� � process. Due to its nonlinear nature, the usual Gibbs sampler converges extremely
slowly. Shephard and Pitt (1997) provided an improved MCMC algorithm which employs
a “grouping” technique based on a Gaussian approximation to the log-likelihood.

We now report some promising results by using HMC to impute the state variables�
2 
#1 � ��
 � � � 
	� . Our dataset consists of daily exchange rates of Pound/Dollar from�



10/1/1981 to 6/28/1985 (i.e. 946 observations). Let � 2 denote the daily exchange rate
and let

�
� 2 � ������� 2 > � 
 � � ��� 2 . Define

�
2 � � � � ��	

�
� 2

 � �

� 2 � �
� 	 � � �

for 1 ����
 � � � 
�� . We employed the following strategy in our implementation:

1. Given the states, sample � 
 � and
�

from their conditional distributions.

2. Given � , � and
�

, impute the states
�
2 
%1 � ��
 � � � 
	� by HMC.

Table 3 summarizes the Bayesian estimates of � 
�� and
�

obtained from � � 
�� � � it-
erations in the equilibrium stage. The posterior density estimate and the autocorrelations
for

�
, which measures the persistence of volatility over periods, are displayed in Figure

4. These results indicate that the efficiency of HMC is comparable to that of the multiple-
move simulation in Shephard and Pitt (1997). Since the HMC algorithm is applicable to
all the systems where the derivatives of the log-likelihood functions are available, it should
be useful for the Bayesian analysis of many other nonlinear and non-Gaussian state-space
models.

Table 3. Bayesian estimates of � , � and
�

in the stochastic volatility model.

Parameter Mean Std Err Covariance

� .6647 .1237 1.5306e-02 -5.3229e-04 2.9903e-04

� .1428 .0262 -5.3229e-04 6.8651e-04 -1.5714e-04
�

.9815 .0092 2.9903e-04 -1.5714e-04 8.4321e-05
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Figure 4. The posterior density estimate and the autocorrelations for
�
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4.4. Nonlinear Random-Effects Model

Consider the following model

� � � � ����� � ��� � ��� � ��� ���� � 	���� � 
 ��� � � 	�� � �
	���2���
 
 � � �
����2���
 � 	 ��� � � 	 �'$ �

where
� � � ��� 	 � 
 � � � . Here

� � � stands for the � -th observation of subject  . Let

� � �
�� � � � 	 ��� � �� � � 	���� � �� � � 	���� � � ��

�
�� � �
� ����

��
� � �

and � � � � 	�� 
�� � where � � 	 
 � 
� � 
 
 � � � 
�� � �  � � , � is a diagonal matrix with
diagonal elements  � $ 
� �?$ and  � � . A data set of !�� subjects is simulated from the model
with 1 � � � Unif 	 � 
 � � � . Only one observation (� ��� ) is collected for each subject. Assume
� � is known. We wish to estimate the mean � and the covariance matrix � .

Shih (1999) applied the rejection Gibbs, the independent Metropolis-Hastings and the
random-walk Metropolis algorithms on this model. For comparison, we used the same
settings as those in Shih (1999). As with Section 4.3, we iterate the following two steps:
(a) draw � and � from their posterior distributions conditional on the state variables

� � 
# �
� 
 � � � 
 ! � ; and (b) draw the state variables

� � by HMC conditional on � and � . Table
4 gives the IAT, ESS, and the CPU time (in seconds) per effective sample for the HMC
method. The CPU time per effective sample for the rejection Gibbs, whose performance
was the best among the three MCMC methods in Shih (1999), is also included in Table 4
for comparison.

Table 4. Simulation results for the random-effects model.

Parameter IAT ESS CPU time / ESS CPU time / ESS
(HMC) (HMC) (HMC) (rejection Gibbs)

� � 20 2150 .12 .14

� � 32 1344 .20 .35

��� 31 1387 .19 .24

5. DISCUSSION

This paper presents some experimental results for using HMC in Bayesian computation
and two methods for improving the performance of a standard HMC. Our experimentation
with different HMC methods for a system of uncoupled oscillators shows that the multi-
point method can significantly improve the efficiency of a standard HMC. The numerical
analyses of the indirect observation model, the nonlinear state-space model, and the non-
linear random-effects model demonstrate that HMC can be more efficient than the standard
MCMC methods in these very nonlinear situations.

�



Although HMC has been found useful for Bayesian computations, many important
issues remain open. For example, how to choose tuning parameters in HMC, e.g., the step-
size and the number of the leapfrog iterations, is still a difficult problem. A rule of thumb is
to maintain an acceptance rate of

�
70%. But there seems to be no clear theoretical basis for

this rule. From our numerical studies, we also find that the efficiency of HMC can often be
improved significantly by adjusting the fictitious mass variable � � for  ����
�  � 
 � . This is
equivalent to adopting different leapfrog step-sizes along different directions. It is intuitive
to choose the � � inversely proportional to the marginal standard deviation of � along that
direction. But this may not be desirable when a strong correlation between two components
of � is present. The multi-point method requires even more tuning: the window size

�
and the weighting factor 
 � can both be adjusted freely. How to tune these new parameters
to result in an efficient multi-point HMC warrants further investigation.
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