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ABSTRACT

This thesis begins with a detailed study of the correlation structure and convergence

rate of a Markov chain generated using the Gibbs sampler� a popular technique for Monte

Carlo simulations from a complicated multidimensional distribution� by focusing on the

special case of data augmentation which� proposed by Tanner and Wong ����� is specially

used in Bayesian calculation to deal with missing data problems� It is shown in such case

that the autocorrelations are non�negative and monotone decreasing as a function of lag�

When applied to Bayesian missing data problem� the Gibbs sampler produces two natural

estimators for the posterior distribution of the parameter vector� one is the histogram of

the sampled values of the parameter vector� the other is a mixture of complete data pos�

teriors� It is demonstrated that the mixture representation is preferable to the histogram

approximation in the sense that it has a smaller variance� Some results on the geometric

rate of convergence are established in such case� Several other interesting theoretical prob�

lems related to the comparisons of di�erent estimators and di�erent sampling schemes are

addressed� It is shown that grouping variables in the process of iteration for implementing

the Gibbs sampler is usually a good strategy� These results provide practical guidance for

the use of the Gibbs sampler in applications�

In the latter part� the convergence rate results for the general Gibbs sampler used

with various scans are derived� It is shown that under conditions which guarantee that the

Markov forward operator is compact� the Gibbs sampler used with either the systematic

scan or the random scan converges with a geometric rate� Here the term �scan� refers to

the order the variables are visited and updated� In particular� for the random scan� the

vi



autocorrelations of the samples can be expressed as the variances of some iterative condi�

tional expectations� As a consequence� the autocorrelations are all positive and decrease

monotonically as a function of lag�

A review of the stochastic relaxation techniques is presented at the end of the thesis�

vii



CHAPTER �

INTRODUCTION AND

PRELIMINARIES

��� Introduction

The Gibbs sampler is an iterative scheme for approximate generations of samples from

a multivariate distribution� It is related to the Metropolis algorithm �Metropolis et al�

���� in statistical physics� and was introduced by Geman and Geman ��	� in the context of

statistical image restoration� where they iteratively sampled each pixel value conditional on

the values of neighboring pixels� The basic scheme of the Gibbs sampler can be described

as follows�

Suppose X � �x�	�� � � � � x�d�� is a d�dimensional random variable with density func�

tion ��X� which is di�cult to compute directly� However� the d conditional distributions

��x�i�jX�i�� where X�i denotes fx�j�gj ��i� are assumed to be simple and easy to draw from�

The Gibbs sampler is a stochastic relaxation technique which allows us to obtain samples

from the joint density ��X� by running a Markov chain which has ��X� as its equilibrium

	



�

distribution� In the later context� ��A� may also be used to denote the equilibrium prob�

ability measure of a set A� The chain is initiated by a draw from some starting density

p��X�� According to a visiting scheme� each variate x�i� is visited and updated by a sample

drawn from the conditional distribution ��x�i�jX�i�� where X�i denotes the current state

of the other d� 	 variables� The visiting sequence can be either deterministic �systematic

scan� or random �random scan�� As long as each variable is visited in�nitely often� under

some mild conditions� the joint distribution of the x�s will converge to ��X� as the number

of visits increases�

The systematic use of such iterative sampling schemes in parametric statistical prob�

lems began with Tanner and Wong ���� where they introduced a similar method� called data

augmentation� for approximate computations of posterior densities in parametric models to

which the EM algorithm �Dempster� Laird� Rubin �	��� for maximum likelihood calculation

is applicable� i�e�� models that can be fruitfully formulated as a complete�incomplete data

problem� Because of the large number of important statistical models which can be so

formulated� the possibility is opened up for the application of data augmentation�Gibbs

sampling type iterative schemes to these models� such as latent class models� variance com�

ponent and hierarchical linear models� missing data in multivariate normal models� censored

and truncated data problems� to name just a few �Tanner and Wong ����� Gelfand and Smith

�	��� Simultaneously and independently� Li ���� has applied similar schemes to impute mul�

tivariate missing data� The structure and formal connection between data augmentation

and Gibbs sampling algorithms was clari�ed by Gelfand and Smith �	�� where further inter�

esting theoretical questions� such as whether the mixture representation is superior to the

histogram representation� are raised� In this paper� we use the term �data augmentation�
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to refer to the two variable Gibbs sampler� There is by now a long list of papers dealing

with the application of the Gibbs sampler to various problems�

We observe here that the setting for the application of the Gibbs sampler in Bayesian

parametric computations ������ �	�� is typically di�erent from that in more traditional

applications in statistical physics and image analysis �Metropolis et al ���� Geman and

Geman ��	��� For example� in image analysis� there is usually a large number of variables

�pixel grey levels� edge elements� etc��� all of which is simple and the conditional distribution

of each variable� say grey level of a pixel� given the states of its neighbors� typically has

the same structure irrespective of the position of the pixel� On the other hand� in most

statistical applications� we typically iterate among a few variables� each of which may be

a vector with many components and the conditional distributions may have drastically

di�erent structure� Furthermore� the statistician often has some freedom in choosing the set

of variables to iterate �i�e�� choosing an augmentation scheme�� This raises some interesting

new questions which will be discussed in chapter ��

Despite its popularity� some fundamental questions concerning the Gibbs sampler have

not been satisfactorily resolved� One of the interesting questions� which is also closely tied

to the convergence rate� and is perhaps more relevant in most applications� has to do with

the correlation structure of the samples generated� Consider the simple case where d � �

and X � �x� y�� Suppose a systematic scan is used so that the visiting sequence alternates

between x and y� We label the successive draws of x and y by xk and yk� k � �� 	� � � � � n�

For simplicity� suppose �x�� y�� are drawn from ��X�� In that case � the distribution of

Xk � �xk� yk� is ��X� for all k� Suppose we are interested in E��t�X�� for some square

integrable function t�X� �integrable with respect to the equilibrium measure ��� a natural



�

and unbiased estimate of E��t�X�� is

�t� �
	

n

nX
k��

t�Xk��

The variance of this estimate depends entirely on the correlations among the t�Xk��s� In

particular� the e�ciency of the estimate depends on how fast the autocorrelation goes to

zero as the lag goes to in�nity� For this reason alone� the study of the correlations among

successive samples in the Gibbs sampler is of extreme importance�

The understanding of the correlation structure also allows us to answer some other

interesting questions concerning the comparisons of di�erent estimators� In the above ex�

ample where X � �x� y�� it is often the case that t�X�� the function of interest� is a function

of a single component of X � i�e� without loss of generality� t�X� � t�x� �This is the case in

data augmentation setting in Tanner and Wong ������ In this case� there are two natural

estimates of E��t�x���

�t� �
	

n

nX
k��

t�xk�� �	�	�

�t� �
	

n

nX
k��

E�t�x�jyk�� �	���

We call �	��� the histogram approximation since it is based entirely on the sampled x

values� The estimate �	���� which is usually easy to compute assuming that ��xjy� is

simple� is called the mixture approximation� These two names stem from the Bayesian

missing data problem setting� where x represents the parameter vector� �t� is an estimate

based on dependent samples drawn from the true posterior density� and �t� is a mixture

of complete data posterior means� Starting with Tanner and Wong ����� it has long been

conjectured that the mixture approximation is always better� i�e� having a smaller variance�

than the histogram approximation� As demonstrated by Gelfand and Smith �	�� the proof



�

is trivial if �xk� yk� and �xl� yl� are independent for all k �� l� which is equivalent to the fact

that

var�E�t�x�jy��� var�t�x���

However the theoretical justi�cation is not so straightforward when f�xk� yk�� k � 	� � � � � ng

are dependently drawn from the equilibrium using the Gibbs sampler� A related question is

whether it is better to use a weighted combination of the two estimates since both contain

information about E��t�x��� In this paper� we will demonstrate that for several scans� the

mixture approximate is always superior and nothing can be gained by using a weighted sum

of both�

The results concerning the correlation structure also provide insights into another im�

portant question� namely� the comparisons between various augmentation schemes� For

example� suppose we are given the following three schemes�

�i� xjy� yjx�

�ii� xjfy� zg� fy� zgjx�

�iii� xjfy� zg� yjfx� zg � zjfx� yg�

Here �i� indicates the ordinary data augmentation applied to x and y by sampling x condi�

tioned on y� y conditioned on x� and iterating between the two steps� �ii� suggests doing data

augmentation on x and fy� zg by grouping y and z together� �iii� is just the ordinary three

dimensional systematic scan Gibbs sampler on fx� y� zg� in which we draw x conditioned on

y� z� draw y conditioned on x� z� draw z conditioned on x� y� and then iterate� Compared

with �i�� an auxiliary random variable z is introduced in both schemes �ii� and �iii�� This

may be done because it is easier to draw from ��xjy� z� than ��xjy�� However� since more
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variables are imputed� we expect this will lead to a slower convergence rate and higher

autocorrelations� For some scans� this is shown to be indeed the case� In practice� there

needs to be a compromise between the rate of convergence and the ease of imputations�

Some of the results in this paper will help users in determining the optimal compromise�

In this paper� a systematic study on the correlation structure of the Gibbs sampler

with various scans is conducted� It is shown that for a certain class of scans satisfying

�reversibility� and the �interleaving Markov� property� the autocorrelations can be expressed

as the variance of some iterative conditional expectations� This class includes data aug�

mentation� the random scan and the symmetric systematic scan� With this expression we

can easily prove the monotonicity and positivity of correlations between t�Xk� and t�Xl�

for any square integrable function t��� of the chain� Some results about comparing schemes

are presented in which we transform the comparison of schemes into a comparison of the

norms of certain operators�

Through a simple inequality� we connect the correlation problem with the convergence

rate problem� and naturally derive a series of relatively thorough results on geometric con�

vergence rate of the general Gibbs sampler with various scans under three basic conditions�

The conditions will be discussed in detail from the practitioner�s point of view� In Ge�

man and Geman ��	�� geometric convergence rate is obtained for �nite discrete state space

under certain positivity condition on the equilibrium distribution� Their proof depends cru�

cially on the assumptions of discrete �nite state space and positivity� and cannot be easily

generalized� Tanner and Wong ���� studied the data augmentation case where only two

random vectors are iteratively sampled� They proved the convergence of the scheme and

also claimed the geometric rate for their method under mild conditions� However the proof






for the geometric rate contained an error� Schervish and Carlin ����� by extending the line

of arguments in Tanner and Wong ����� provided a nice proof of geometric convergence rate

for the Gibbs sampler with systematic scan so that the loose point in Tanner and Wong

���� was �xed� Compared with Schervish and Carlin ����� our conditions are weaker and the

results are more general� Particularly� the geometric convergence rate for the random scan

Gibbs sampler with general state space� which has not been addressed in the above papers�

is also obtained� The relations among the convergence rate� the maximal correlation� the

��mixing condition and the spectral radii of certain operators are explored�

By using spectral analysis on the forward operator of the Markov chain� we elaborate

an idea of how to estimate the convergence rate for certain cases and describe a possible

rule for stopping the iteration� From this point of view� we can see clearly how the choice of

starting density can make a di�erence� This last issue was also discussed by Schervish and

Carlin ����� Examples are also presented to show the limitations of each special property we

derived and that some properties are not universally true for all the scans� The applications

of our theory to Gaussian distributions and the posterior calculation of covariance matrix

are demonstrated too�

Before discussing the correlation and convergence problems in detail� a few useful pre�

liminary lemmas are presented in the latter part of this chapter� Chapter two focuses on

a detailed analysis of data augmentation which contains all the basic ideas and methods

for dealing with the general Gibbs sampler� In chapter three� results on the comparisons of

di�erent estimators and of di�erent schemes are obtained� Chapter four is concerned with

the results on the general Gibbs sampler with di�erent kind of scans� including the ordi�

nary systematic scan �OSS�� the random scan �RS�� the random permutation scan �RPS�
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and the symmetric systematic scan �SSS�� Chapter �ve contains some re�ned results ob�

tained from the spectral analysis of the self�adjoint compact operators� and two examples

supplied to illustrate our theory� In the last chapter� a relatively thorough review of the

stochastic relaxation techniques including the Metropolis algorithm� the Gibbs sampler and

data augmentation are given� Some theoretical aspects of these methods� as well as their

applications� are discussed�

��� Preliminary lemmas

To be more general in our discussion� we begin with some results on general Markov

chains� We furnish all the proofs needed because they are simple and the notations are useful

later in the thesis� though one may �nd similar results in di�erent settings� e�g�� Rosenblatt

��
�� Suppose X�� X�� X�� � � � � Xn are consecutive samples from a stationary Markov chain

with the equilibrium distribution denoted by ��X�� and the transition function K�X�jX��

governing the probability of transition from X� to X��

De�nition � The n�step transition function is denoted by

Kn�yjx� � P �Xn � yjX� � x� � K �K � � � � �K�yjx�

in which there are n convolutions� We will use Kn�Y jX� as well�

De�nition � Two operators F and B� where F stands for � forward� while B stands for

�backward�� are de	ned as


F t�X��
def
�

Z
t�Y �K�Y jX��dY � E�t�X��jX��� �	���

B t�X��
def
�

Z
t�X�

K�X�jX���X�

��X��
dX � E�t�X��jX��� �	���





The Hilbert space of the centered square integrable functions of X is denoted by


L�
��X� � ft�X� �

Z
t��X���X�dX �� and

Z
t�X���X�dX � �g

with the inner product

ht�X�� s�X�i� E��t�X� � s�X���

The operators F and B map L�
��X� to itself� From a property of Markov chain� it is

seen that the two operators F and B are adjoint to each other� and

Fnt�X�� � E�t�Xn�jX���

Bnt�Xn� � E�t�X��jXn��

Using an elementary probability inequality� it can also be proved that the norms of the two

operators are all bounded above by one� With the above notations� we state and prove a

fundamental lemma�

Lemma ����� For any functions s��� and t��� of the random variable X� which are square

integrable with respect to the stationary measure �� the covariance of t�Xn� and s�X��

satis	es

cov�t�Xn�� s�X��� � cov�F k t�X�� Bn�ks�X��

for any � � k � n�

Proof� Without loss of generality� we may assume E�t�X� � E�s�X� � �� Since

E�t�Xn�s�X��� � E�E�t�Xn�s�X��jXn����

� E�E�t�Xn�jXn��� �E�s�X��jXn����

� E�F t�Xn��� �Bn��s�Xn�����

an induction argument leads to the conclusion� �



	�

The chain is said to be reversible if for any two measurable sets H and K�

P �X� � H � X� � K� � P �X� � K � X� � H��

This condition is equivalent to the detailed balance condition introduced by Metropolis et

al ����

K�Y jX���X� � K�X jY ���Y ��

The following lemma proves this equivalency�

Lemma ����� The reversibility condition is equivalent to the detailed balance condition�

and is also equivalent to the condition that F � B�

Proof� The equivalence between the detailed balance condition and the condition that

F � B is straightforward from the de�nition of the two operators�

hFt�X��� s�X��i �
Z Z

t�X��K�X�jX��dX�s�X����X��dX�

�

Z
t�X����X��

Z
s�X��K�X�jX��dX�dX�

� ht�X��� Fs�X��i � ht�X��� Bs�X��i�

Hence the operators F and B are equal and self�adjoint� But the reversibility condition can

be rephrased as Z
H
F IK�X����X��dX� �

Z
H
B IK�X����X��dX��

where IK��� is the indicator function� Therefore all three conditions are equivalent� �

An intuitive exposition of the detailed balance condition is that the probability of the

system being at X and then moving to Y is the same as the system being at Y and then

moving to X � With this property� an interesting corollary follows�



		

Corollary ����� If the chain is reversible� then for any t � L�
��X�

cov�t�X��� t�X�m�� � E��Fmt�X���� � E��Bmt�X����

� E�E��� � �E�E�t�X��jX��jX��j � � � jXm��

Hence it is a nonnegative monotone decreasing function of m� Furthermore�

jcov�t�X��� t�X�m����j � cov�t�X��� t�X�m���

Proof� Since the chain is reversible� the two operators F and B are the same� Therefore

the �rst conclusion follows from lemma 	���	 with k � m� The monotonicity of even�lag

autocorrelations follows from the inequality that

var�E�xjy��� var�x��

The inequality follows from H�older�s�

jcov��t�X��� t�X�m����j � jcov�Fmt�X�� Fm��t�X��j

�
q
var�Fmt�X�� � var�Fm��t�X��

� var�Fmt�X�� � cov�t�X��� t�X�m���

�

The reversible chain has been used as early as 	�� by Metropolis et al ��� which we

now refer to as the Metropolis algorithm� Later it will be demonstrated that many scans

being used with the Gibbs sampler actually lead to reversible Markov chains� The �ner

structure of special cases will be discussed later� We now turn to some lemmas on the

convergence rate�



	�

De�nition � The chain with starting distribution P��dX� is said to be functional geometric

convergent in L� if there exists an � � 	 such that for any t � L�
��X��

j
Z Z

t�Y �Kn�dY jX�P��dX��E��t�X��j � c��
n k t k �

If we use En�t�X�� to denote the expectation taken under the measure Pn�dX� of the nth�

step evolution from P��dX�� the above de�nition has a simple implication that for any

t � L�
��X�

jEn�t�X��� E��t�X��j � c��
n k t k �

Taking t � IA���A�� the indicator function of a measurable set A� we can get the geometric

convergence of the total variation from the above de�nition� i�e��

jPn�A�� ��A�j � 	

�
c��

n�

Hence the Hellinger distance between Pn and � �and also L��distance of pn and �� goes to

zero geometrically fast� An easy argument shows that the functional geometric convergence

also implies the L� geometric convergence of the ratio pn�X����X� where pn�X� is the nth

evolved density starting from p��X�� for the reason that En�t�X��� E��t�X�� can also be

written as
R
t�X��pn�X����X��	���X�dX and can be viewed as a functional of t�X�� The

uniform boundedness of this functional gives us the L� integrability of pn�� with respect

to equilibrium measure �� Hence we have an statement equivalent to functional geometric

convergence�

k pn�X�

��X�
� 	 k� c��

n�

The following condition is needed for all the main convergence results of this paper� It says

that the starting density must have �nite Fisher information with respect to the stationary

density�



	�

Condition �A�� The starting density P��dX� satis	es the condition

c�� �
Z

P �
� �dX�

��dX�
� 	 ���

Lemma ����� The spectral radius of the operators F and B are equal� If it is less than

one� given condition �A�� the chain will be functional geometric convergent�

Proof� Though it is well known that the adjoint operators in a Hilbert space have the

same norms and spectral radii� we may want to see it go through a probabilistic argument�

for any t� s � L�
��X� with norm 	�

sup
t�s

E�t�Xn�� s�X��� � sup
t

q
E�E��t�Xn�jX��� � sup

s

q
E�E��s�X��jXn�� �	���

directly leads to the equality of the two norms�

Assuming that the spectral radius of F is r � 	� the following is standard�

r � lim
n�� k Fn k �

n� lim
n�� k Bn k �

n � �	���

Hence the two operators have the same spectral radii� Furthermore� there exists a n� such

that k Fn� k� 	� By using lemma 	���	 and writing g�X� � P��dX����dX�� we can convert

the convergence rate problem into a covariance problem�

jEn�t�X���E��t�X��j � j
Z
t�Y �Kn�Y jX��p��X�� ��X��dYdX

� jcov��t�Xn�� g�X���j

� jcov��Fn t�X�� g�X��j

� c� k Fn k � k t k �

Combining this with �	��� gives the needed result� �



	�

With lemma 	����� we set up a duality between convergence rate and correlation struc�

ture� Our later analysis makes use of the special structure of the Gibbs sampler to bound

k F k� The material here is also closely related to the ��mixing condition in the Markov

chain literature� which says that

�n � sup
t�s�L��X�

corr�t�Xn�� s�X���

converges to zero as n goes to in�nity� We observe that this �n is just the norm of Fn� and

also that of Bn � Relevant results about ��mixing can be found in Bradley �
��

From the canonical correlation point of view� one may also think of �n as the maximal

correlation between X� and Xn� For any two random variables� the general notion is de�ned

as

De�nition 	 If x and y are two random variables which may be multidimensional� L��x� �

ff�x� � var�f�x�� � �g� L��y� � fg�y� � var�g�x�� � �g� the maximal correlation �

between x and y is de	ned as

� � sup
f�L��x��g�L��y�

corr�f�x�� g�y��� �	�
�

This concept has been developed since the 	���s� For �x� y� to be bivariate normal� several

pioneer researchers Gebelein �	��� Maung ��
�� Lancaster ���� proved� using several methods

which involve applying Charlier�s identity� that the maximal correlation is exactly the same

as the absolute value of its ordinary correlation� Some works on general bivariate random

variables were done by Lancaster ����� Cs aki and Fischer ��� Renyi ����� Sarmanov ����

More recently� Breiman and Friedman ��� proved that under certain conditions the maximal

correlation between x and y is strictly less than one by using compact operator theory which



	�

is relevant to our results� We write down the following lemma as a summary� It follows

from �	��� in the proof of lemma 	�����

Lemma ����	

k Fn k�k Bn k� �n�



CHAPTER �

DATA AUGMENTATION

The study of data augmentation is important� One reason is that it is the Bayesian

analogue of the EM algorithm� and can be applied to many missing data problems� One

of the variables� say x� usually corresponds to the parameter 	 in the EM formulation so

that only the marginal distribution of x� instead of the joint distribution of x and y� is of

interest� Therefore the marginal chain consists of the xk �s is of special importance�

It is well�known that the data augmentation procedure is equivalent to the Gibbs sam�

pler applied to two variables� The scan used in data augmentation is usually the systematic

scan where x and y are sampled alternately� It is usually proposed as follows�

Let ! be the sample space� x or xk are random variables from ! to some space �parameter

space� say�� X � y or yk are random variables from ! to Y � Jointly

�x� y� � ! �	 X 
 Y �

The scheme consists of sampling x from the conditional distribution ��xjy�� sampling y from

��yjx�� and iterating between the two steps� By thinking of �x�� y��� �x�� y��� � � � � �xn� yn� as

	�



	


consecutive states of the chain� we can write down the transition function�

K��x�� y��j�x�� y��� � ��x�jy����y�jx���

A remarkable fact about it is that the marginal chains fxkg and fykg are all reversible

Markov chains although jointly f�xk� yk�g is not reversible� This is not true for any random

scans� The corresponding marginal forward operators are therefore self�adjoint �Fx � Bx��

The corresponding marginal transition function can be written as

Kx�x�jx�� �

Z
��x�jy����y�jx��dy��

Ky�y�jy�� �

Z
��y�jx����x�jy��dx��

We would like to point out that although data augmentation is mathematically a sub�

case of the general Gibbs sampler� the emphasis of the two are usually di�erent� In the

application of data augmentation to Bayesian computation� one of the variables� x or y� is

used as the parameter of the model� the other as missing data so that they often have di�er�

ent and complex structures� In traditional applications of the Gibbs sampler� the variables

are simpler and more homogeneous�

��� Correlation structure

Let t��� be a measurable function on the space X such that E�t��x�� � �� s��� a

measurable function on the space Y and also square integrable�

Lemma ����� The marginal chains fxkg and fykg constructed by data augmentation are

reversible Markov chains�



	�

Proof� We can check the detailed balance condition directly�

Kx�x�jx����x�� �
Z
��x�jy����y�jx��dy� ��x��

�

Z
��x�jy����y�jx��dy� ��x�� � Kx�x�jx����x���

The same is true for fykg� The Markov property is obvious� �

Lemma ����� The one and two lag autocorrelations of t�x� are nonnegative� The same is

true for s�y�� The one lag correlations can be expressed as

cov�t�x��� t�x��� � var�E�t�x�jy���

cov�s�y��� s�y��� � var�E�s�y�jx���

Proof� Without loss of generality� we assume t has mean zero� Therefore

cov�t�x��� t�x��� � E�t�x��t�x��� � E�E�t�x��t�x��jy���

� E�E�t�x��jy�� �E�t�x��jy��� � E�E��t�x�jy���

The positivity of the two lag autocorrelation follows from the reversibility of the marginal

chains and corollary 	���	� �

Though it is simple� the above lemma used two important properties of the marginal chains�

�i� Reversibility of the marginal chains fxk� k � 	� �� � � � � g and fyk � k � 	� �� � � � � g�

�ii� Interleaving Markov property of the marginal chains de�ned as follows�

De�nition 
 A stationary Markov chain fxk� k � 	� �� � � � � g is said to have the interleaving

Markov property if there exists a conjugate Markov chain fyk � k � 	� �� � � � � g such that

�a� xk and xk�� are conditionally independent given yk� �k�

�b� yk and yk�� are conditionally independent given xk��� �k�

�c� �yk��� xk�� �xk� yk� and �yk� xk��� are identically distributed�



	

Lemma ����� The marginal chains fxkg and fykg constructed in data augmentation are

reversible and have the interleaving Markov property�

A fact that needs to be noted here is that we can actually derive the reversibility of the

chain from the interleaving property� In other words� the interleaving property de�ned here

implies reversibility� The reason we list them as two separate properties is to emphasize the

concept of �interleaving��

Lemma ����	 Let x� and xn be n lags apart from each other in the stationary marginal

Markov chain described above� and t�x� � L�
��X �� Then

E�t�x��t�xn�� � E�E�t�x�jyn� �E�t�x�jy��� ���	�

and the same is true for E�s�y��s�yn�� with s��� a square integrable centered function of y�

Proof� A direct consequence of the interleaving Markov property� �

Theorem ����� The n�lag covariances between t�x�� and t�xn�� s�y�� and s�yn� are non�

negative monotone decreasing with n� and have the following expressions 


cov�t�x��� t�xn�� � var�E�E�� � �E�t�x�jy�jx�j � � ���� �����

cov�s�y��� s�yn�� � var�E�E�� � �E�s�y�jx�jy�j � � ���� �����

in which each has n expectation signs condition alternately on x and y�

Proof� We use induction on both E�t�x��t�xn�� and E�s�y��s�yn�� simultaneously� When

n � 	� the result is true from lemma ��	��� Assume the result is true for n � m � 	� For

n � m� by applying lemma ��	�� and noting the Markov property� we get

E�t�x��t�xm�� � E�E�t�x�jy�� �E�t�x�jym��

� E�E�t�x�jy�� �E�t�x�jym�����



��

If we write s�y� � E�t�x�jy� and use the induction assumptions for n � m�	� it is immediate

that

E�t�x��t�xm�� � E�s�y��s�ym���� �����

� E�E��E�� � �E�s�y�jx�jy�j � � ��� �����

� E�E��E�� � �E�E�t�x�jy�jx�j � � ���� �����

Expression ����� has m � 	 expectation signs while expression ����� has m� Proceeding

exactly the same as above� we can get the formula for E�s�y��s�ym��� The monotone

decreasing property of the covariances as lag increases follows easily from the inequality�

var�w�x�� � var�E�w�x�jy��

for any w���� �

A more general way to obtain the positivity and monotonicity of the correlations be�

tween t�x�� and t�xn� is from operator theory� An operator F is called nonnegative if for

any t in the space where F is de�ned on�

hFt� ti � � � �t�

Theorem ����� Suppose F is the forward operator of a general Markov chain fXig� A

necessary and su�cient condition for cov�t�X��� t�Xn�� to be nonnegative and monotone

decreasing with n for all t�X� � L�
��X� is that F is nonnegative �if and only if all the one

lag autocorrelations are nonnegative�� and self�adjoint �if and only if the chain is reversible��

Proof� Necessity is straightforward� For su�ciency� from the spectral theory of self�adjoint

nonnegative operators �see� for example� Rudin ������ there exists a self�adjoint operator A



�	

such that F � A�� Therefore� for any n

cov�t�Xn�t�X��� � hFnt� ti � hAnt� Anti �kAntk�

Since A is also a contracting operator� it follows that kAntk is monotone decreasing� �

In the special case of data augmentation� the interleaving Markov property of the

marginal chains leads to nonnegative marginal forward operators� Whether the interleaving

Markov property is a necessary condition for the forward operator to be nonnegative is not

clear�

��� Upper and lower bounds

Using the simple forms we derived in theorem ��	�	 for the correlation structure of

samples generated through data augmentation� it is possible for us to bound the autocor�

relations

rn�t� � corr�t�x��� t�xn��

by some geometric sequences� From the geometric point of view� the iterative conditional

expectation behaves like an iterative projection between two spaces� For a square integrable

function t�x�� it is true that

r��t� � sup
s�y�

corr�t�x�� s�y�� �

s
var�E�t�x�jy�
var�t�x��

�

Therefore this one�lag autocorrelation equals the length of the projection of t�x� onto the

space L�
��y� of square integrable functions of y�

De�nition � A sequence of functions of x and y is de	ned recursively as

G� � t�x�� G� � E�t�x�jy�� � � �



��

G�k � E�G�k��jx�� G�k�� � E�G�kjy�� � � � �

We call this series of functions the conditional expectation sequence �CES��

Lemma ����� The sequence of functions de	ned above have the relationship

E�G�k�j �Gj� � E�G�
k��

for any nonnegative integer k and j � �k�

Proof� It is similar to the proof of lemma 	���	 and theorem ��	�	� From the de�nition�

G�k is a function of y while G�k�� is a function of x for any k� Without loss of generality�

we may assume j � k� When j is even� Gj and G�k�j are functions of x� thus

E�G�k�j �Gj� � E�E�G�k�j��jx� �Gj� � E�E�G�k�j�� �Gj jx��

� E�G�k�j�� �Gj� � E�E�G�k�j�� �Gj�jy�

� E�G�k�j�� �E�Gjjy�� � E�G�k�j�� �Gj���

When j is odd� we can proceed exactly the same as above after interchanging the position

of x and y� Therefore it is always true that

E�G�k�j �Gj� � E�G�k�j�� �Gj���

for any integer j between � and k� The conclusion follows if we proceed the above operation

until the two terms are equal� �

Lemma ����� The autocorrelations are log�convex in lags
 rn�t�
� � rj � r�n�j �

Proof� A simple application of the above lemma and H�older�s inequality� �



��

Since the marginal chain fxkg is reversible� the forward operator Fx and the backward

operator Bx corresponding to it are identical and self�adjoint� The self�adjoint operator

satis�es

kFn
x k�kFx kn �

Therefore the spectral radius of the operator R � lim k Fn
x k

�

n is the same as the norm

k Fx k� By lemma 	����� k Fx k� � where � is the maximal correlation between x� and

x�� However� in the special setting of data augmentation where the interleaving Markov

property is present� � can be further related to the maximal correlation �� between x and

y whose joint distribution is ��x� y��

Lemma ����� Let � be the maximal correlation between x� and x� in the marginal chain�

�� be the maximal correlation between x and y whose joint distribution is ��x� y�� Then

� � ����

Proof� Without loss of generality� we assume all functions used here have mean zero and

variance one� Since ��� � supktk��E�E��t�x�jy���

� � sup
t�s

E�t�x��s�x��� � sup
t�s

E�E�t�x��jy�� �E�s�x��jy��� � ����

The last inequality follows from Cauchy�Schwartz� On the other hand

� � sup
t
E�t�x��t�x��� � sup

t
E�E��t�x�jy�� � ����

and thus we obtain the equality� �

Theorem ����� For any t�x� � L�
��X �� we have the bounds for the autocorrelations


rn� �t� � corr�t�x��� t�xn�� �kFn
x k� ��n� �

which are sharp in the sense that they can be attained�



��

Proof� By lemma ����� and an inductive argument� we can easily set up the �rst inequality�

The second inequality follows from the de�nition of forward operator F � lemma 	����� and

the above lemma�

rn�t� � corr�t�x��� t�xn�� � hFn
x t� ti �kFn

x k� ��n�

The sharpness of the bounds is given in the following example� �

Example �� The sharpness of the upper and lower bounds�

Assume that �x� y� is jointly distributed as bivariate normal with mean vector ��� ��

and covariance matrix

" �

�
BB� 	 �

� 	

�
CCA �

The conditional distributions are

xjy  N��y� 	� ��� and yjx  N��x� 	� ����

We proceed with the iteration between x and y using data augmentation� It follows that

E�xjy� � �y� and E�yjx� � �x� Suppose the function of interest is t�x� � x� r��t� de�ned

in this section is just the square of the correlation coe�cient � between x and y� Direct

calculation shows

rn�t� � E�x�xn� � E�E��� � �E�xjy�jx� � � ��� � ��n � rn� �

Thus the lower bound is attained in this bivariate normal example�

On the other hand� Lancaster ���� demonstrated that for bivariate normal variables x

and y� the maximal correlation between x and y is just the absolute value of their usual



��

correlation coe�cient �� Therefore �� � j�j in this example� Hence the upper bound is also

attained� �

Example �� Maximal correlation for multivariate normal variables�

Suppose x and y jointly has a nondegenerate multivariate normal distribution� but x

and y are vectors instead of scalars� �nding their maximal correlation is not so straightfor�

ward� We cite a result of Cs aki and Fischer �� and Sarmanov ���� the pair of functions

correspond to the maximal correlations are linear functions in x and y respectively� Hence

�nding the maximal correlation is equivalent to �nding the maximum of the quadratic form

a"xy"
��
yy "yxa

�

with the constraint that a"xxa
�

� 	� where "�s are the corresponding covariance matrices�

a is the coe�cient vector for linear function of x� The value of this maximum is ��� � Using

Lagrange multipliers� the above maximization problem is equivalent to �nding the maximal

eigenvalue of

"��xx"xy"
��
yy "yx�

and the corresponding eigenvector� If we write

" �

�
BB� "xx "yx

"xy "yy

�
CCA �

a result of Eaton �	�� shows that the maximal correlation � is bounded by

��� �

� � 
n

� # 
n

� 	�

where 
� � 
� � � � � � 
n are eigenvalues of "� �



��

��� Convergence rate problem

In light of lemma 	����� to obtain geometric convergence for the marginal chain� we

only require that the spectral radius of the marginal forward operator is strictly less than

one� This is also equivalent to �nding conditions so that the maximal correlation between

x and y is strictly less than one� The earliest result of this kind was given by Gebelein �	���

Breiman and Friedman ��� also proved similar results in developing the ACE algorithm�

Two more conditions are needed in addition to condition �A�� We will generalize these

conditions to higher dimensional cases to obtain convergence results for the general Gibbs

sampler with various scans� The two conditions are termed as �B�� and �C�� temporarily�

Condition �B�� Z Z
���x� y�

�x�x��y�y�
dxdy ���

where � is the equilibrium density of the joint chain� �x and �y are the corresponding

marginals�

Condition �C�� There exists no non�trivial functions t�x� and s�y� such that they are

equal almost everywhere�

The proofs of the following lemma and theorem on convergence rate are postponed to

section ��	 where we will present a more general approach� Some relevant results are also

found in Breiman and Friedman ���� Lancaster ���� and Renyi �����

Lemma ����� Under condition �B��� the marginal forward operator Fx is compact� There

exists a pair of functions t�x� and s�y� such that corr�t�x�� s�y�� attains its maximum ���

Theorem ����� The chain with starting density p��x� y� is functional geometric convergent

provided that the conditions �A�� �B�� and �C�� are satis	ed� The maximal correlation ��



�


between x and y can serves as the constant � in the de	nition �

In the case that the chain is started from a �x point �x�� y�� instead of a starting distri�

bution� the result will also be the same if we think of the one�step evolved distribution

���x� y�j�x�� y��� as the starting density� In that case� condition �A� is changed to

Z
���X jX��

��X�
dX ��

for the starting point X� � �x�� y��� Conditions �B�� and �C�� are similar to those used in

Breiman and Friedman ���� �B�� implies the compactness of the forward operator� while �C��

guarantees that the spectral radius of the operator is strictly less than one if �B�� holds�

If we investigate further� we �nd an additional interesting phenomenon� In the above

discussions� we were dealing with the marginal forward operator of the marginal chain fxkg�

Hence our convergence result applies to this chain� What about the joint chain$

Corollary ����� Under condition �B��� the spectral radius of the forward operator F cor�

responding to the joint chain fXk � �xk� yk�g equals ��� where �� is the maximal correlation

between x and y� However� the norm of F equals �� instead�

Proof� We can write down the transition function for the joint chain�

K�X�jX�� � ��x�jy����y�jx���

For any t�x� y� � L�
��X 
 Y�� we have

Ft�x�� y�� �
Z
t�x�� y����x�jy����y�jx��dx�dy� � E�E�t�x� y�jy�jx���

Under condition �B��� both F and Fx are compact �from lemma ����	�� The spectral radii of

them are the magnitude of their largest eigenvalues� For t�x� y� to be an eigenfunction of F �



��

it has to be a function of x alone� Therefore the eigenfunction of F is also an eigenfunction

of Fx� and vise versa� This shows that the spectral radii of F and Fx are the same and

equal to ����

However� the norms of F and Fx are not the same� Suppose t��x� and s��y� is the pair

of functions with norm one which attains the maximal correlation� then they must satisfy

the following equations�

�� � t��x� � E�s��y�jx��

�� � s��y� � E�t��x�jy��

If we choose t�x� y� � s��y��

kFs� k � kE�so�y�jx�k � k��t� k � ���

Thus kF k� ��� On the other hand� since for general t�x� y�� E�t�x� y�jy� is a function of y

alone� by property of maximal correlation�

kFtk�� ��� � var�E�t�x�jy��� ��� k tk��

which implies kF k� ��� Therefore we obtain the equality� �

We already know that the norm of Fx is the same as its spectral radius ��� � The above

corollary implies that the joint chain is one step behind the marginal chains� although they

have the same �speed� �spectral radii� of convergence�



CHAPTER �

COMPARISONS OF ESTIMATORS

AND SCHEMES

��� Mixture representation and histogram

As discussed in the introduction� we have to make a choice among the di�erent estima�

tors� histogram� mixture representation or a combination of both� The mixture representa�

tion described in section 	�	 utilizes the conditional expectation of the original histogram�

type approximation� If the samples are drawn independently� the superiority of the mixture

representation is obvious� However� in dependent drawings� the comparison of the two is not

yet clear� In this section� our theorems demonstrate that in certain situations� the mixture

representation is always better than the histogram� and a combination of both cannot bring

us any bene�t� The two properties we need for deriving such results have been mentioned

in section ��	 where we obtain the nice form of the autocorrelations�

�i� Reversibility of the chain�

�ii� Interleaving Markov property �de�nition ���

�



��

These two properties bring us monotonicity and nonnegativity for the autocorrelations of

both the x�marginal chain and the y�marginal chain� as functions of lag� The results in

this section depend only on these two properties� Hence they can be applied not only

to the marginal chains in data augmentation� but also to other interesting cases where

the reversibility and interleaving property are satis�ed� The following lemma was implied�

though not explicitly stated� in section ��	 where we obtained the structural theorem for

autocorrelations in data augmentation�

Lemma ����� If the chain fxk� k � 	� �� � � �g is reversible and has the interleaving Markov

property with conjugate chain fyk � k � 	� �� � � �g� then for any function t��� of x and s��� of

y� we have the expressions

cov�t�x��� t�xn�� � var�E�E�� � �E�t�x�jy�jx�j � � ���� ���	�

cov�s�y��� s�yn�� � var�E�E�� � �E�s�y�jx�jy�j � � ���� �����

in which each has n expectation signs condition alternately on x and y�

The proof of this lemma follows from the same argument given in section ��	� In

the following general discussion� the chain fxkg is assumed to be reversible and have the

interleaving Markov property with the conjugate chain fykg�

Theorem ����� If the chain fxk� k � 	� �� � � �g is reversible and has the interleaving Markov

property with the conjugate chain fyk� k � 	� �� � � �g� then for any function t��� of x we have

varft�x�� # � � �# t�xn�g � varfE�t�x�jy�� # � � �# E�t�x�jyn�g� �����

Therefore the estimator ����� derived from the mixture representation is always better than

the estimator ����� derived from the histogram approximation�



�	

Proof� Using the above lemma and the Markov properties of both fxkg and fykg� we have

cov�t�xm�� t�xm�k�� � cov�t�x��� t�xk����

� var�E��E�� � �E�t�x�jy�jx�jy � � ����

where there are k expectation signs� Correspondingly� if we write E�t�x�jy� as s�y�� then

cov�s�ym�� s�ym�k��� � cov�s�y��� s�yk����

� var�E��E�� � �E�t�x�jy�jx�jy � � ���

� cov�t�x��� t�xk�����

Since cov�t�x��� t�xk���� is a monotone decreasing function of k� it is obvious that

cov�t�x��� t�xk���� � cov�t�x��� t�xk�����

This implies that any term in the quadratic expansion of varfE�t�x�jy��# � � �#E�t�x�jyn�g

is uniformly smaller than or equal to the corresponding term in the expansion of varft�x��#

t�x�� # � � �# t�xn�g� Thus the conclusion follows� �

To be more convenient� we write

��m�t� � cov�t�x��� t�xm���

From the above theorem� f�kg is a monotone decreasing sequence�

n�var��t�� � n��� # ��n� 	���� # � � �# ���n���

n�var��t�� � n��� # ��n� 	���� # � � �# ���n�

The di�erence between the variances of the two estimates are

var��t��� var��t�� �
	

n�
�n���� � ���� # ��n� 	����� � ���� # � � �# ����n�� � ��n���



��

Often we can reduce the variance substantially by using the mixture estimate� A more

striking result is that any linear combination with the histogram approximation will in%ate

the variance of the estimate� To see the result� we need the following lemma�

Lemma ����� For any n � 	 we have

cov�t�x��� E�t�x�jyn�� � cov�E�t�x�jy��� E�t�x�jyn�� � ��n���

cov�t�xn�� E�t�x�jy��� � cov�E�t�x�jy��� E�t�x�jyn���� � ��n�

Proof� If we denote g�y� by E�t�x�jy��

E�t�x��E�t�x�jyn�� � E�E�t�x��jy�� �E�E�t�x�jyn�jy���

� E�g�y��E�g�yn�jy��� � E�g�y��g�yn���

For cov�t�xn�� E�t�x�jy��� the conclusion is true because of the equation

E�t�xn�E�t�x�jy��� � E��E�t�xn�jyn��� �E�E�t�x�jy��jyn�����

�

Theorem ����� The notations are the same as above� Suppose w� and w� are nonnegative

and w� # w� � 	� then

var�w��t� # w��t�� � var��t���

Proof� We only need to look at the sign and the magnitude of cov��t�� �t��� This can be

done by using the above lemma�

E�t�xk� � �t�� �
	

n

nX
m��

cov�t�xk�� E�t�x�jym��

� ��k�� # ��k�� # � � �# ��� # ��� # � � �# ��n�k�� �
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Using the above equation for all k� we can explicitly write out the covariance between the

two estimates�

cov��t�� �t�� �
	

n�
�n��� # �n� 	����� # ���� # �n� ������ # ���� # � � �# ���n�� # ��n��

� 	

n�
�n��� # ��n� 	���� # � � �# ���n� � var��t���

Therefore

var�w��t� # w��t�� � w�
�var��t�� # �w�w�cov��t�� �t�� # w�

�var��t�� � var��t���

�

From the above� we see that any involvement of t�xk� will increase the variance of the

estimates� In practice� we suggest using the mixture representation alone when the two

conditions� reversibility and the interleaving property� are satis�ed�

However� it is interesting that� when t is not restricted to functions of a single variable�

there exists counter�intuitive examples where the mixture representation has larger variance�

It is thus incorrect to take it for granted that the histogram approximation is always inferior

to the mixture representation�

Example �� Here we consider the bivariate normal example which has been introduced

previously� The procedure is ordinary data augmentation�

x� 	 y� 	 x� 	 y� 	 � � �

xjy  N��y� 	� ��� and yjx  N��x� 	� ���

Suppose we are interested in a function of both variables� t�x� y� � x� by� where b is some

constant� Then

E�t�x� y�jy� � ��� b�y�
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Let X� � �x�� y�� and X� � �x�� y�� be consecutive samples from the chain� s�y� �

E�t�X�jy�� Then

var�t�X�� # t�X��� � � # �b� � ��b# ��	 # b���� � �b���

var�s�y�� # s�y��� � ��� b���� # �����

From the two equations� we can calculate the di�erence between the two terms�

var�t�X�� # t�X���� var�E�t�X��jy�� #E�t�X��jy��� � ��	� ����	 # �� � b���

If we choose b � ���� this di�erence is less than zero� which implies that the variance of the

histogram�type approximation to E�t�X�� using two samples is less than the mixture�type

approximation in this special case� �

Later on� other chains generated by the general Gibbs sampler with various scans will be

introduced� Many of these satisfy both reversibility and the interleaving Markov property�

For them� similar conclusions concerning variances of di�erent estimators hold�

��� Comparison of schemes corresponding to partitioning

The problem of comparing schemes has been introduced in section 	�	� Here we intend

to detail our comparisons by making use of the forward operators de�ned in section 	���

The three schemes for comparison are

�i� xjy � yjx�

�ii� xjfy� zg � fy� zgjx�

�iii� xjfy� zg � yjfx� zg � zjfx� yg�

The implications have been given in section 	�	� A general discussion of the ordinary
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systematic scan like scheme �iii� will be given in the next section� Relative to �iii�� we will

refer to scheme �i� as �collapsing�� and scheme �ii� as �grouping��

We note that� relative to scheme �i�� an additional variable is imputed in scheme �ii��

Iterating with an extra variable is often done to simplify the mathematics and computations

involved� However� this may also severely impair the rate of convergence� increase the

autocorrelations between samples and� as a consequence� in%ate the variance of the resulting

estimator� A better understanding of the trade�o�s is desirable�

Having to make a choice between schemes �ii� and �iii� also occurs in applications�

Intuitively� we expect scheme �ii� will converge faster and has smaller autocorrelations since

y and z are drawn jointly conditional on x� On the other hand� grouping may complicate the

computations and is not always feasible� Again there needs to be a compromise between the

ease of implementation and the convergence rate� Our results in this section may help one

to gain some insight into such comparisons and to decide what kind of compromise should

be made� Our �rst theorem shows that the three schemes do have certain ordering in terms

of the norm of respective forward operators� The transition functions corresponding to

�collapsing�� �grouping�� and the ordinary systematic scan are�

K���x�� y��j�x�� y��� � ��x�jy����y�jx���

K���x�� y�� z��j�x�� y�� z��� � ��x�jy�� z����y�� z�jx���

K���x�� y�� z��j�x�� y�� z��� � ��x�jy�� z����y�jx�� z����z�jx�� y���

The corresponding forward operators are denoted by F�� F� and F� respectively�

Theorem ����� The norms of the above three forward operators have the ordering


kF� k�kF� k�kF� k �
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Furthermore� the spectral radius of scheme �i� is less than or equal to that of scheme �ii��

Proof� For any function t�x� of a single variable� we notice that

E�t�x�jy� � E�E�t�x�j�y� z��jy��

Therefore

var�E�t�x�jy��� var�E�t�x�j�y� z����

which implies that the maximal correlation between x and y is always smaller than that

between x and �y� z�� Making use of corollary ����	� we conclude that the claims on schemes

�i� and �ii� are true�

For the second inequality� we need to prove� for any s � L�
��x� y� z��

var�F�s�x� y� z��� var�F�s�x� y� z���

This follows from

K���x�� y�� z��j�x�� y�� z��� � ��x�jy�� z����y�jx�� z����z�jx��

�
Z
��x�jy�� z����y�jx�� z����z�jx�� y����y�jx��dy�

� E�E�K���x�� y�� z��j�x�� y�� z���jx���

Using Rao�Blackwell type inequality� we obtain

k F�s k� � E�E�
��s�x�� y�� z��jx�� y�� z���

� E�E��E��s�x�� y�� z��jx�� y�� z���jx���

� E�E�
��s�x�� y�� z��jx�� y�� z��� �k F�s k��

where E� indicates the conditional expectation under the transition function K�� and E�

indicates the conditional expectation under transition K�� �
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An intuitive idea behind this theorem and the proof is the concept of maximal cor�

relation between random variables� By lemma 	���� and corollary ����	� the norm of the

operator corresponding to scheme �i� equals the maximal correlation between x and y� Simi�

larly for scheme �ii�� the norm of F� is exactly the maximal correlation between x and �y� z��

From the regression point of view that adding one more regressor will de�nitely increase

R�� we can intuitively see that with one more variable in second scheme� the corresponding

maximal correlation is de�nitely larger� Therefore� if z is not very dependent on x� it will

be �ne to introduce it if that simpli�es computations� If� on the other hand� z is highly

dependent on x� we should probably avoid such a procedure and try some other ways� The

comparison of �ii� and �iii� can also be explained in terms of maximal correlations� Further

analysis can actually show that the norm of F� is equal to the maximal correlation between

fy�� z�g and fx�� y�g where they have a joint distribution

��y�jz�� x����x�� y�� z�� or ��x�� y�� z����y�jx�� z���

For the same reason� it should be greater than or equal to the maximal correlation between

fy�� z�g and x� which is just the norm of F�� Accordingly� we can also give some suggestion

for practitioners in this situation� if any pair of the three variables is highly dependent�

grouping these two together can substantially increase the convergence rate and reduce the

autocorrelations� Later on� we will show that even when scheme �iii� is not ergodic� scheme

�ii� can still be �ne�

The second inequality in the theorem can be generalized to higher dimensions where

we may group more than two variables together� One may refer to next section for the

de�nition of the ordinary systematic scan for the general Gibbs sampler� We will omit the

proof since it is similar to the two variable case�
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Corollary ����� Let A � f	� � � � � lg with l � d� Suppose fx�i� � i � Ag can be grouped

together� Then the forward operator F� of the scheme

fx�	�� � � � � x�l�g 	 x�l# 	�	 � � � 	 x�d�

has a smaller norm than that of the forward operator F� correspond to the ordinary system�

atic scan

x�	�	 x���	 � � � 	 x�d��

Comparison of norms of operators can suggest the superiority of certain schemes and

give us some insight into the structure of the Gibbs sampler� However� this comparison is

far from �exact�� The convergence rate will depend on more detailed interaction between

variables� the function of interest� and also the starting density� The �rst inequality in

the theorem only suggests that for �almost all� function t���� t�xk� converges faster to the

equilibrium in scheme �i� than in scheme �ii�� Using some spectral analysis as in section ��	�

we may write

t�x� � t��x� #
�X
i��

niX
j��

�ij�ij

where ���� ���� � � � � ��n� are basis for &�� the eigenspace corresponding to the largest eigen�

value of the marginal forward operator Fx� If we use &�
� and &�

� to denote such spaces for

the marginal forward operators F�x� F�x corresponding to schemes �i� and �ii� respectively� it

is of measure zero that all the ���j �s� which correspond to the largest eigenvalue of scheme

�ii�� are zero� Asymptotically� the largest eigenvalue term will dominate as k goes to in�nity�

Therefore� for large k we will almost surely have

k F k
�xt k�k F k

�xt k�

though it is still possible to �nd some function orthogonal to &�
�� but not orthogonal to &�

��
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Example 	� Let x � �x�	�� x���� be bivariate normal with mean zero and identity co�

variance matrix� and y and z are independent standard one dimensional normal variates�

Jointly� �x�	�� x���� y� z� has covariance matrix ��  ���
BBBB�

	 � � �

� 	 � �

� � 	 �

� � � 	

�
CCCCA �

The maximal correlation between x and y is
p
�� which can be attained by the pair of

functions �x�	� # x�����
p
� and y� However� the maximal correlation of x and �y� z� is the

square root of the largest eigenvalue of

�
	 �

� 	

��
� �

� �

��
	 �

� 	

��
� �

� �

�
� ��

�
	 	

	 �

�
�

The two eigenvalues are� �� � ��
p
	

� �� and �� � ��p	
� ��� with two orthogonal eigen�

vectors �	�
p
	��
� �� �	��

p
	��
� � respectively� If we take

t�x� �

p
� # 	

�
x���� x�	��

we can get the following from direct algebraic calculations�

Fn
�xt�x� �

p
�� 	

�
�������n���x�	� # x�����

Fn
�xt�x� � �

�� p
�

�
���nt�x��

Therefore� for this special t�x�� scheme �i� is worse than scheme �ii� in the sense that the

convergence rate of t�xk� is slower and the long term correlations is larger in scheme �i�� As

a consequence� the usual estimator �t of t�x� where

�t �
t�x�� # t�x�� # � � �# t�xn�

n

has larger variance by using scheme �i� for this special t� �
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The above example elaborates the point that in some extreme cases� scheme �ii� can be

better than scheme �i�� although the probability of the set of such cases is zero in asymptotic

sense� The comparison between schemes �ii� and �iii� is even more unclear� It may be the

case that F� has smaller spectral radius than F� even though the norm of F� is larger� The

following example demonstrates this possibility�

Example 
� Let �x� y� z�  N���"� with

" �

�
B�

	 ��� ���

��� 	 �

��� � 	

�
CA �

Then spectral radius of F� is therefore the square of the maximal correlation between x and

y� z� Its value can be derived analytically�

spec�F�� �
	

��	 # ��
�

However� if we denote Q by "��� where Q � �qij�� the spectral radius of F� is the length of

the eigenvalue with largest norm of

�I �D�Q��I �D�Q��I �D�Q�

where Di is the matrix with all entries zero except that the ith entry of the diagonal is q��ii �

Especially when � � �� the spectral radius of F� is �
� � while the spectral radius of F� is ����

However the relationship for the norms� kF� k� ��
�
 � ��
� �kF� k� still holds� Moreover�

spec�F��  spec�F�� when � � �����

This example can be generalized a little bit� Consider the situation where the covariance

matrix is

" �

�
B�

	 a a

a 	 b

a b 	

�
CA �
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Let a be �xed and b change� the behaviors of the largest eigenvalues corresponding to the

two operators F� and F� are displayed in Figure 	� which shows that when b is small�

the ordinary systematic Gibbs sampler corresponding to the operator F� will dominate the

grouping scheme corresponding to F�� in the sense that F� has a smaller spectral radius�

The four plots correspond to four di�erent values of a� while b is continuously changed from

���� to ���� �

However� even with above two �unpleasant� examples� we can still prove a �pleasant�

result that the ergodicity of scheme �iii� always implies the ergodicity of the previous two�

and �ii� implies �i��

Corollary ����� If the forward operators corresponding to the three schemes are all com�

pact� the ergodicity of �iii� implies the ergodicity of �ii�� and �ii� implies �i��

Proof� The ergodicity of �ii� means that the maximal correlation between x and fy� zg is

strictly less than one� So it is obvious that the maximal correlation between x and y is less

than one� Therefore scheme �i� is ergodic too� However� if scheme �ii� is not ergodic� there

exists a non�trivial t�x� such that

E�E�t�x�jy� z�jx� � t�x��

Let s�y� z� � E�t�x�jy� z�� Without loss of generality we can assume that var�t�x�� � 	� It

follows that var�s�y� z�� � 	� Now we can proceed to prove that t�x� is also an eigenfunction

of F� so that the spectral radius of F� is one� We only need

E�s�y� z�jx� z� � t�x� a�e� �����

so that

E�E�E�t�x�jy� z�jx� z�jx� y� � E�E�s�y� z�jx� z�jx� y� � t�x��



��

But ����� follows from

t�x� � E�s�y� z�jx� � E�E�s�y� z�jx� z�jx��

So

var�t�x�� � var�E�s�y� z�jx� z��� var�s�y� z�� � var�t�x��

leads to the conclusion� �

The example that �ii� is ergodic when �iii� is not can occur in genetic pedigree analysis

where the classical positivity condition is generally not satis�ed with the naive application of

the Gibbs sampler without grouping� For some numerical results in this area of applications�

see Kong et al ��	��

In the following chapters� we will apply our method to the general Gibbs sampler for

many variables by going through various scans in detail� The correlation structures of

these scans are in general di�erent� The convergence rate results� however� share the same

conditions for all the scans we discuss� Some convergence rate results for the systematic scan

may have been obtained partially by others in one way or another� for example Schervish

and Carlin ����� Our main contribution on this subject is to use a simple and uni�ed

approach to obtain more general results�
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Figure 	� Figure 	� The comparison of the largest eigenvalues of F� and F�� the forward

operators corresponding to the grouping and the ordinary schemes respectively� F� ' dash�

F� ' solid�



CHAPTER �

RESULTS FOR DIFFERENT SCANS

��� Systematic scan Gibbs sampler

The �rst signi�cant modern development of the Gibbs sampler is due to Geman and

Geman ��	� when they applied the method to image restoration� where X � fx�	�� � � � � x�d�g

is a collection of d random variables representing grey levels at the d sites �or pixels� of an

image� In a binary image �Ising Model�� x�i� can either be �	 or 	� But� in general� X

can be continuous� In this section we will focus on the convergence rate of the ordinary

systematic scan �OSS�� This scan can be described by the updating scheme

x�i��	 x�i��	 � � � 	 x�id��

where �i�� � � � � id� is a permutation of the sites �	� � � � � d� which has been determined in

advance� We are interested in getting samples from the joint density of �x�	�� x���� � � �x�d���

i�e�� X� or more generally any square integrable function t�X� of the joint space� The Gibbs

sampler prescribes a way to reach this goal by evolving a Markov chain� The corresponding

��
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transition function is

K�Y jX� � ��y�i��jX�i����y�i��jX�fi��i�g� y�i��� � � ���y�id�jY �id��

where X�A denotes components ofX excluding those sites in A� i�e�� X�A � fx�i� � i � Acg�

for A a subset of I � f	� �� � � � � dg� � is the equilibrium measure� The intuitive implication of

this scan is that we �rst draw x�i�� conditioned on the current states of the rest components�

then draw x�i�� the same way� then x�i��� etc� until x�id�� After such d updatings� we

say that our Markov chain moves one step� We keep moving our Markov chain until the

equilibrium is attained� In practice� people may use more sophisticated scans� for example�

updating by alternating coding sets� When the sites is assumed to have a nearest neighbor

Markov structure� the coding method turns a many component Gibbs sampler into a two

component Gibbs simpler� in which we can still apply all the results obtained in this section�

To obtain geometric convergence� we need to bound the norm of the operators F and

B� Such bounds can be derived under the following two conditions which are just the

generalizations of conditions �B�� and �C���

Condition �B�� There exists at least one permutation i�� � � � � id of 	� � � � � d such that

Z
�
��y�i��jX�i����y�i��jX�i��i� � y�i��� � � ���y�id�jY �id�

��Y �
����X���Y �dXdY ��� ���	�

The above condition can also be written in a simpler form

Z
p��X� Y �

��X���Y �
dXdY ���

where p�X� Y � is the joint distribution of the two consecutive samples X and Y from the

Markov chain� Hence the maximal correlation argument can be naturally applied here�
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Condition �C�� There is no non�constant function t�X� to satisfy

E�t�X�jX�i� � t�X� a�e� �i� �����

In almost all existing results on the convergence rate of Gibbs sampling� it is assumed

that the support space for the stationary distribution ��X� is the entire joint state space�

which is also called the positivity condition �see Besag ����� It follows from the following

lemma that the positivity condition is stronger than condition �C� which is used in this

paper�

Lemma 	���� �i�x� represents the marginal density of x�i�� Then the traditional condition

that on the support of
Q
�i�x�i��

���x�	�����x���� � � ��d�x�d��
��X�

��

implies condition �C��

Proof� �Discrete case�

Suppose the equilibrium distribution ��X� satis�es the positivity condition� In other words�

the support of ��X� can be expressed as

I� 
 I� 
 � � � 
 Id�

where Ii � fx�i� � �i�x�i��  �g�

We argue by contradiction� Assume such non�trivial function t�X� exists to violate

condition �C�� so that �X�� X� such that t�X�� � t�X�� and ��X��  �� ��X��  �� Then

we can �nd a �path� from X� to X� in which we construct

Y� � �x��	�� x����� � � � � x��d���
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Y� � �x��	�� x����� x����� � � � � x��d���

� � �

Yd�� � �x��	�� � � �x��d� 	�� x��d���

Yd � X� � �x��	�� � � � � x��d���

so that

X� 	 Y� 	 � � � 	 Yd � X�

by changing one coordinate each step� Since ��X��  ��

�i�x��i��  �� for all i�

For the same reason�

�i�x��i��  �� for all i�

Then by the positivity condition it is straightforward that ��Yi�  � for all i� However our

condition �C� says that

E�t�X�jX��
� � � t�x�X��

� ��where x is arbitrary�

which implies that t�X�� � t�Y��� By similar arguments we can conclude also that

t�Y�� � t�Y�� � � � � � t�Yd�

which contradicts our previous assumption that t�X�� � t�X���

Since the continuous case can be dealt with in the same spirit� but needs much more

lengthy technical work� it is omitted� �

Since all the three conditions will be fully used in the later context� illustration of their

implications in detail is needed�
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Condition �A� can be visualized in the discrete case where it implies that p��X� can

not assign probability to those points having � zero probability� This condition is quite

natural since otherwise we may have some nonzero probability of getting out of the system�

Condition �B� is a regularity condition which has been used by many authors� for ex�

ample Breiman and Friedman ���� Schervish and Carlin ����� It is a standard condition�

but is also very hard to check and understand� Intuitively this condition re%ects certain

dependency between the two consecutive states X and Y � and also provides some restric�

tions on the shape of the support region of the probability distribution� For example� a

�thorn� shape region has to be eliminated� Some kinds of degeneracy of the distribution

are prohibited�

Condition �C� is quite awkward from the practitioner�s point of view� Some illustration

will be helpful� Roughly speaking� it prevents the random variables to be totally dependent�

Let us look at the ��dimensional case �rst� condition �C� means that there are no non�

constant functions f�x� and g�y� so that they are equal almost everywhere� In the discrete

case� the equilibrium distribution can be written in the matrix form�

( �

�
BBBBBBBBBBB�

p�� p�� p�� � � �

p�� p�� p�� � � �

p�� p�� p�� � � �
���

���
���

�
CCCCCCCCCCCA
�



�

and the function de�ned on X 
 Y can also be expressed in the matrix form�

t �

�
BBBBBBBBBBB�

t�� t�� t�� � � �

t�� t�� t�� � � �

t�� t�� t�� � � �
���

���
���

�
CCCCCCCCCCCA
�

We can see that condition �C� implies that the matrix ( is �connected� in the sense that

there is no nontrivial decomposition X� of X and Y� of Y such that

pkl � � � �xk� yl� � X� 
 Yc
� or X c

� 
 Y��

which means that the matrix ( cannot be rearranged to have the diagonal form��
BB� A �

� B

�
CCA �

where A �� �� B �� �� This argument can be extended from discrete distributions to the

general bivariate case which is that the support for the density ��x� y� cannot be decomposed

into two nontrivial measurable subsets A and B so that there exist subsets Sx � X and

Sy � Y such that ��A � Sx 
 Sy� � ��A� and ��B � Sc
x 
 Sc

y� � ��B�� ����� is also

used to denote the equilibrium probability measure of a set�� We call a measure with

this property a decomposable probability measure� Therefore condition �C� prohibits the

equilibrium to be a decomposable probability measure� The implications of condition �C� in

the multidimensional case can be similarly generalized using the above arguments� It implies

that any ��dimensional marginal probability measure �ij�x�i�� x�j�� of the joint equilibrium

measure ��x�	�� � � � � x�d�� cannot be decomposable�

Lemma 	���� Condition �B� implies that the forward operator F with the updating order

i�� � � � � id is �sequentially� compact�



��

Proof� For simplicity� we may assume i�� � � � � id to be 	� � � � � d� Hence for any t � L�
��X�

Ft�X� �

Z
t�Y �K�Y jX�dY

�
Z

��y�i��jX�i����y�i��jX�i��i� � y�i��� � � ���y�id�jY �id�
��Y �

��Y �dY�

It is an integral operator� According to Example �� page �

 of Yosida ���� we have

sequential compactness under condition �B�� �

Lemma 	���� Conditions �B� and �C� imply that the spectral radius of the forward operator

F corresponding to OSS with updating order i�� � � � � id is strictly less than one�

Proof� Because the norm of F is less than or equal to one� it is automatic that all the

eigenvalues are in the interval ��	� 	�� By compactness of the operator derived from lemma

� ��	���� we know that the spectrum of it is countable with zero as the only possible ac�

cumulating point� Hence there is an eigenfunction corresponding to the largest absolute

eigenvalue ��� If j��j � 	�

Ft�X� � ��t�X� a�e�

Therefore

var�Ft�X�� � var�t�X��� �����

Since Ft�X� � E�t�Y �jX�� by the Rao�Blackwell theorem� the equality ����� holds only if

t�X� � E�t�Y �jX� � Ft�X� a�e�

Hence �� � 	� the above equation automatically implies that

t�X� � E�t�X�jX�i� a�e� for all i

because

Ft�X� � E�E�� � �E�E�t�X�jX�i��jX�i�� � � ��jX�id�



�	

leads to the identities

t�X� � E�tjX�i�� � E�E�tjX�i�jX�i��� � � � � � Ft�X� a�e�

and then we can use induction to get the equality for all E�tjX�i�� This contradicts condi�

tion �C�� thus the maximum eigenvalue must be smaller than one� �

Theorem 	���� The chain with starting density p��X� is functional geometric convergent

provided that the conditions �A�� �B� and �C� are satis	ed� The order of updating is assumed

to be the same as the one in condition �B��

Proof� From lemma ��	�� and ��	�� we know that the spectral radius of the forward

operator F is strictly less than one� Using lemma 	���� we easily get the result� �

Theorem 	���� Under the setting of this OSS and the three conditions� the absolute value

of the autocorrelations between t�X�� and t�Xn� converges to zero in a geometric rate�

Proof� Easy� �

Theorem ��	�	 is quite similar to the one in a recent paper by Schervish and Carlin

�	�� independently� But their methods are quite di�erent from ours since� as Tanner and

Wong ���� did� they concentrated on the operator that transforms densities� The results

they obtained is almost the same except that we use condition �C� to replace the traditional

positivity assumption of the stationary distribution on the entire state space� Theorem ��	��

can actually guarantee the asymptotic normality of the estimators

�t� �
t�X�� # � � �# t�Xn�

n
�

With ordinary systematic scans� if one considers the function t�X� � L�
��X�� it will be

noted that the autocorrelations are no longer all�nonnegative� Actually� it is possible to
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have all�negative autocorrelations in the absence of reversibility and the interleaving Markov

property�

Example �� The distribution is still taken to be the bivariate normal which appeared in

section ���� i�e� �x� y� is jointly normal with mean vector ��� �� and variances 	� covariance

�also correlation coe�cient ��� The scanning scheme is the same as in section ����

y� 	 x� �	 y� 	 x� �	 � � �

We consider a function of the joint variable �x�y�

t�x� y� � x� y�

Then

E�t�x�� y��t�x�� y��� � E�x�x� � x�y� � y�x� # y�y��

� �� � �� �� # �� � ���	� ����

If we take �  �� then the above value is negative� By induction� it can be found that

E�t�x�� y��t�xn��� yn���� � ���n���	� ����

Therefore all the autocorrelations can be negative for this kind of systematic scan�

The example illustrates that the autocorrelations for such non�reversible chain are more

complicated� The special functional form we deal with will play a more important role in this

case� However� in the following section� it can be shown that the random scan Gibbs sampler

possesses exactly the same property as data augmentation� so that the autocorrelations in

that case is nonnegative and monotone decreasing�

If one is interested in the function s�x�i�� of only one variable� a preliminary result on

the one lag correlation can be derived�
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Proposition � Suppose X and Y are two consecutive samples from the stationary Markov

chain constructed by OSS� then for any square integrable centered function s of the i�th

covariate� we have the expression

E�s�x�i��s�y�i��� � E�E��s�x�i��jX�i��� �����

It is greater than or equal to the ��lag autocorrelation�

Proof� Without loss of generality� we assume the updating order being �	� � � � � d�� The

joint density function of X and Y can therefore be written down�

p�X� Y � � K�Y jX���X� � ��y�	�jY �����y���jY����� x�	�� � � ���y�d�jX�d���X��

From the transition we can easily see that x�i� and y�i� are conditionally independent given

x�i#	�� � � � � x�d�� y�	�� � � � � y�i� 	� which will be denoted by U � Furthermore� �x�i�� U� has

the same distribution as �U� y�i�� which is the equilibrium �� Therefore

E�s�x�i��s�y�i��� � E�E�s�x�i��jU� �E�s�y�i��jU��

� E�E��s�x�i��jX�i���

For the ��lag autocorrelation� we assume X and Z are two lags apart with Y in between�

then it is clear that

E�s�x��s�z��� � E�E�s�x��jX��� �E�s�z��jY ���� � E�E��s�x�i��jX�i���

It is the same for general i� �

If the autocorrelations for higher lags go to zero fast� this one lag autocorrelation will

play the major role in determining the variance of the unbiased estimator �s � �s�x��i�� #

s�x��i�� # � � �# s�xn�i����n�
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��� Random scan

The random scan �RS� was used in Geman and Geman ��	� when they applied the Gibbs

sampler to image restoration� The convergence property of the Gibbs sampler when the

state space is �nite discrete was also derived under RS in that paper� However� the results

for general state space is not available in Geman and Geman ��	�� RS can be described as

follows�

With probability �i where
Pd

i�� �i � 	� we randomly choose a site i from I � then

replace the value of the random variable x�i� corresponding to that site by a new sample

drawn from the conditional distribution ��x�i�jX�i�� proceed until the equilibrium� Here

X�i � X�fx�i�g has the same meaning as before� In Geman and Geman ��	� they assume

that all �i are equal� We will consider the more general case of random scan with selection

probability distribution V � f�ig� The distribution need not be uniform� but we do require

that �i  � for all i�

����� Correlation structure

The �rst interesting property is the reversibility of the chain constructed by RS�

Lemma 	���� The Gibbs sampler with random scanning satis	es the detailed balance re�

lation� and therefore generates a reversible Markov chain�

Proof� Suppose X� and X� are two consecutive realizations of a Markov chain constructed

by the Gibbs sampler� According to the description of the random scan� X� and X� di�er

in at most one variable� say i� Then X�i
� � X�i

� � and

K�X�jX����X�� � �i��X�jX�i
� ���X��



��

� �i��X�jX�i
� ���X�jX�i

� ���X�i
� �

� �i��X����X�jX�i
� � � K�X�jX����X���

Hence the detailed balance relation is satis�ed and the chain is reversible� �

Besides the nonnegative even�lag correlations guaranteed by reversibility and corollary

	���	� we also have the nonnegative odd�lag correlations in this special scan� The autocorre�

lations can also be expressed as the variances of certain iterative conditional expectations�

To establish these properties� we �rst look at the 	�lag correlation�

Lemma 	���� Suppose X�� X�� � � � � Xn are n consecutive realizations of the Gibbs sampler

using random scan� For any t�X� � L�
��X� and E�t��X�� � 	�

E�t�X�� � t�X��� � Ef
dX
i��

�iE
��t�X�jX�i�g � ��

Proof� First we note that the following is always true for random scan Gibbs sampler�

E�t�X��jX�� �
dX

i��

�iE�t�X�jX�i
� �� �����

This expression together with a conditional expectation argument gives us

E�t�X�� � t�X��� � E�t�X��E�t�X��jX���

� Ef
dX
i��

�iE�t�X�jX�i
� �t�X��g

� Ef
dX
i��

�iE
��t�X�jX�i

� ��g � ��

The lemma is therefore established� �

By theorem ��	�� and above lemma� it is clear that the correlations corr�t�X��� t�Xn��

are nonnegative and monotone decreasing� We can further establish an analog of theo�

rem ��	�	 by proving that the chain fXng constructed by random scanning has the inter�

leaving Markov property�
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Lemma 	���� The chain X�� X�� � � � generated by the random scan Gibbs sampler has the

interleaving Markov property�

Proof� If we think of X�i as a joint function of X and i� say X�i � f�X� i�� with i

independently identically distributed according to V � f�ig� for the chain fXkg we will

have a conjugate chain ff�Xk� ik�g in which fikg are i�i�d� This conjugate chain plays the

role of fykg in case of data augmentation� Using this notation�

Ft�X�� � E�t�X��jX�� � E�E�t�X��jf�X�� i��jX���

It is clear that given f�X�� i� � X�i
� � X� and X� are independent� and given X�� f�X�� i��

and f�X�� i�� are independent because i� and i� are independent� All other conditions for

the interleaving Markov property can also be easily checked� �

With reversibility and the interleaving Markov property� we can establish similar results

as in data augmentation by using exactly the same arguments� Therefore we have the

following results�

Theorem 	���� Let X�� X�� � � � � be consecutive samples taken from the Markov chain gen�

erated by random scanning� For t�X� � L�
��X�� the correlation of t�Xk� and t�Xk�n� is a

nonnegative monotone decreasing function of n� It has the expression that

E�t�Xk�t�Xk�n�� � E�E��E�� � �E�t�X�jf�X� i��jX�j � � ���� �����

where there are n # 	 expectation signs� the conditional expectations are taken alternately

on f�X� i� � X�i and X�

Bounds similar to those given in section ��� can be established for the autocorrelations�
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Theorem 	���� If t�X� � L�
��X�� then rn� �t� � rn�t� �kF kn �

Here kFk� supksk��E�
Pd

i�� �iE
��s�X�jX�i�� is the norm of the forward operator� r��t� �

E�
Pd

i�� �iE
��t�X�jX�i�� is the one�lag correlation for t�X��

Furthermore� the results in section ��	 for comparing di�erent estimators can also be

applied here� We only need to substitute xk there by Xk� and yk by X�ik
k in theorem ��	�	�

����� Geometric convergence

Recall the forward operator for the random scan Gibbs sampler�

F � t�X� �	
dX
i��

�iE�t�X�jX�i��

We consider a general state space for X � The forward operator F corresponding to RS is

generally not a compact one �except the �nite discrete state space case�� There will be

di�culties trying to apply the method in section ��	 directly� However� by making use of

the results there� we can still prove that under the same conditions �B� and �C�� the norm

of F is strictly less than one�

Theorem 	���� If conditions �B� and �C� hold� we have kF k� 	�

Proof� We may write the operators

Ai � E��jX�i��

then F � ���A� # ��A� # � � �# �dAd�� Thus

F d �
X

j������jd

�
dY

k��

�jk�Aj� � � �Ajd �
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The term corresponding to the permutation �i�� � � � � id� in condition �B� is an operator

A � AidAid�� � � �Ai� �

According to lemma ��	��� A is a compact operator� From lemma ��	��� there exists n� such

that kAn�k� 	� Since all Ai�s satisfy kAi k� 	 � �i�

k �F d�n� k � 	� �
dY

k��

ik�
n� # �

dY
k��

ik�
n� kAn� k

� 	�

We further note that� in random scanning� the forward operator F is self�adjoint� Hence

kFn�dk�kFkn�d�

the norm of F is also less than one� �

Corollary 	���� Under the conditions �A�� �B� and �C�� the random scan Gibbs sampler is

functional geometric convergent� and the autocorrelations corr�t�X��� t�Xn�� for any square

integrable function t��� is geometrically decreasing�

Proof� Follow from lemma 	���� and theorem ������ �

For discrete and �nite state spaces considered in ��	�� it is a trivial fact that the operator

F is compact and self�adjoint� If condition �C� is also satis�ed� it has been shown that the

norm of F is less than one� Its maximal eigenvalue equals this norm� Theoretically� the

maximal eigenvalue can be obtained by �nding the largest � such that nontrivial solution

t�X� of the following linear equation exists�

Ft�X� � �t�X��
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It is usually formidable in practice because the system is huge� If we use Ii � f	� � � � � lig

to denote the possible states of each x�i�� the classical proof used by ��	� requires that

��X�  � for all X � I� 
 � � � 
 Id� where � denotes the stationary distribution� In our

proof we replace it by a weaker condition that there exists no nontrivial t�X� such that

E�t�X�jX�i� � t�X� a�e� for all i�

This new condition is actually the weakest possible in the sense that if it is violated� there

will be a nontrivial function t��X� such that Ft��X� � t��X�� Hence the correlations

corr�t��Xn�� t��X��� will stay the same� The chain ft��Xn�g is not even ergodic� There�

fore� the Gibbs sampler will usually not converge if we cannot start from a �good� starting

density� Whereas some functional chains of fXig may still be geometric ergodic� It is a

consequence of the fact that if we choose some function orthogonal to the eigenspace cor�

responding to the largest eigenvalue� the covariances between t�X�� and t�Xn� will still

converge to zero in geometric rate� Furthermore� if we can choose a starting density which

satis�es a certain property� the geometric convergence rate of the density can also be ob�

tained� This idea will be summarized in the section of spectral analysis of the reversible

chains�

��� Other scans

����� Symmetric random permutation scan �SRPS�

In the case of pure random scanning� it is possible that we choose the same site in consecutive

iterations� This is obviously ine�cient because repeated drawings from ��x�i�jX�i� is the

same as drawing once� The symmetric random permutation scan �SRPS� is introduced here
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to avoid such immediate repetition� The SRPS is an updating scheme which at each step

chooses an ordering �i�� � � � � id� of the d sites according to a certain probability distribution

) on the set of the permutations of 	� � � � � d� and update X � �x�	�� � � � � x�d�� in the order

we choose� The distribution ) is required to be symmetric in the sense that

)�i�� � � � � id� � )�id� � � � � i���

It can be visualized heuristically that the Markov chain constructed by the above procedure

is reversible because we may think that the reverse of the updating order �	� � � � � d� is

equivalent to updating X using ordering �d� � � �� 	�� A rigorous proof is contained in the

following lemma� To be consistent in the thesis� we keep the notations in previous chapters�

Further� we use O to denote the set of permutations of f	� � � � � dg� For each permutation

o � O we use

Ao � Ai�Ai� � � �Aid �

The reverse of the permutation o is denoted by o�� Therefore the forward operator F

corresponding to SRPS can be written as

F �
X
o�O

�oAo�

where
P

o �o � 	� and �o � �o� �

Lemma 	���� The chain constructed by SRPS is a reversible Markov chain�

Proof� For any �xed ordering� say o � �	� � � � � d�� we can write down the one step transition

function Ko�Y jX� from X to Y �

Ko�Y jX� � ��y�	�jY �����y���jY����� x�� � � ���y�d�jX�d��
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To obtain reversibility� we only need to check that

�Ko�Y jX� #Ko��Y jX����X� � �Ko�X jY � #Ko��X jY ����Y ��

since the two orderings have the same probability assignment� But it is easy to see that

Ko�Y jX���X� � ��y�	�jY�����y���jY����� x�	�� � � ���y�d�jX�d���X�

� ��Y ���x�	�jY��� � � ���x�d� 	�jX�d��d���� y�d��p�x�d�jX�d�

� ��Y �Ko��X jY ��

Therefore the conclusion follows� �

We can easily see that if condition �B� is satis�ed� the norm of F is less than one since F

is a weighted average of all the di�erently ordered systematic scan� F is furthermore a self�

adjoint operator because of reversibility� Hence the upper bound for the autocorrelations is

the power of kFk� The following theorem is a summary�

Theorem 	���� If conditions �B� and �C� are satis	ed� the norm of the forward operator

F is strictly less than one� If condition �A� is also satis	ed for the starting density p��X��

then the chain generated by SRPS is functional geometric convergent� The autocorrelations

are also geometrically decreasing�

By corollary 	���	� the reversibility of the chain also provides us with nonnegative

monotone decreasing even�lag autocorrelations between t�Xn� and t�X��� The following

example shows that the odd�lag autocorrelations can indeed be negative�

Example � Here we again consider the bivariate normal example previously studied�

Our objective here is to show that a reversible Markov chain may have negative odd�lag
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correlations� Let us consider a new transition function from �x�� y�� to �x�� y���

K��x�� y��j�x�� y��� � 	

�
fp�x�jy��p�y�jx�� # p�y�jx��p�x�jy��g�

which corresponds to a SRPS in two dimensions� Here we demonstrate that the 	�lag

correlation� however� is negative if we choose a positive � in the joint distribution of x� y

and the same function t as in Example 	�

E�t�x�� y��t�x�� y��� � E�x�x�� #E�y�y���E�x�y���E�x�y���

Direct calculations show E�x�x�� � E�y�y�� � ��� which are the same as in example 	� and

E�x�y�� � E�x�y�� �
	

�
��# ����

Hence E�t�x�� y��t�x�� y��� � ���	� ��� is negative for any � � � � 	� �

Similar to the systematic scan� if we are interested in the function t�x�i�� of a single

component� it can be shown that the one lag autocorrelation is nonnegative and greater

than the two lag autocorrelation�

Proposition � Suppose X and Y are two consecutive samples taken from the stationary

SRPS chain� Then for any square integrable centered function t of their i�th covariate� we

have the expression

E�t�x�i��t�y�i��� � E�E��t�x�i��jX�i��� ���
�

It is greater than the ��lag covariance which equals E�E��t�x�i��jY ���

Proof� From proposition ��	� for any order o of updating� we always have

Eo�t�x�i��t�y�i��� � E�E��t�x�i��jX�i���
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SRPS incorporates a probability distribution on such orders� Hence the expectation taken

under SRPS chain is a weighted sum of Eo�t�x�i��t�y�i���� Therefore the expression for the

one lag correlation is still the same as that in OSS�

For the second part� we notice that

E�t�x�i��jY � �
X
o�O

�oAot�Y �

and we also have Aot�Y � � E�E�t�x�i��jx�i#	�� � � � � x�d�� y�	�� � � � � y�d� 	��jY �� Hence the

discrete version of Cauchy�Schwartz inequality shows that

E�E��s�x�i��jY �� � E��
X
o�O

�oAot�Y ���� � E�
X
o�O

�o�Aot�Y ���� � E�E��s�x�i��jX�i���

�

����� Symmetric systematic scan �SSS�

This is a kind of systematic scan which also possesses reversibility and the interleaving

Markov property� It has already been used in practice� see Johnson� et al ����� but has not

been analyzed theoretically�

Description of the scan� suppose X � fx�	�� � � � � x�d�g� one round of scanning consists

of updating x�	�� x���� � � � one by one until reaching x�d� and then reversing the order and

updates x�d� 	�� x�d� ��� � � �� sequentially until returning to x�	�� It is illustrated by the

following diagram�

x�	�	 x���	 � � �x�d�	 x�d� 	�	 � � � 	 x�	��

The one�step transition function from X to Y can be written as

K�Y jX� �

Z
��z�	�jX��� ��z���jX�f���g� z�	�� � � ���z�d� 	�jx�d�� Z�fd�d��g�
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��y�d�jZ�d� � � ���y���jz�	�� Y�f���g� ��y�	�jY��� dZ�

In this scan� one step of the Markov chain involves �d� 	 individual updates� The conver�

gence property of this scan is exactly the same as the systematic scan�

Lemma 	���� The Markov chain constructed by SSS is reversible�

Proof� We need to check the detailed balance condition for this chain� i�e�� we require the

following equality�

K�Y jX���X� � K�X jY ���Y ��

Look at the �rst part of the transition K�Y jX��

��X���z�	�jX�����z���jX�f���g� z�	�� � � ���y�d�jZ�d�

� ��x�	�jX�����x���jX����� z�	�� � � ���x�d�jZ�d���Z�d� y�d���

Continuing with the other half of the transition we have

��Z�d� y�d����y�d� 	�jZ�fd�d��g� y�d�� � � ���y�	�jY���

� ��z�d� 	�jZ�fd�d��g� y�d�� � � ���z�	�jY �����Y ��

Putting the two parts together gives us the detailed balance condition� �

As we noted� Z is of �d� 	��dimensional� This Z plays the role of y in data augmen�

tation� It can be easily proved that the chain fXkg constructed by SSS has interleaving

property with the conjugate chain fZkg� Therefore we have the correlation structure theo�

rem for SSS�

Theorem 	���� The correlation between t�Xk� and t�Xk�n� is a monotone decreasing non�

negative function of n� It has the expressions

E�t�Xk�t�Xk�n�� � E�E��E�� � �E�E�t�X�jZ�jX� � � � jZ�� � for n � odd�



��

E�t�Xk�t�Xk�n�� � E�E��E�� � �E�E�t�X�jZ�jX� � � � jX�� � for n � even�

in which X and Z are half�lag apart as described in the expression of the transition function�

The expectations are taken by conditioning alternately on Z and X�

The convergence property is obvious� We will not repeat the proof here� The conditions

needed for geometric convergence are still �A�� �B� and �C��



CHAPTER �

FURTHER ANALYSIS AND

EXAMPLES

��� Spectral analysis on the forward operators

We discuss in this section some �ner properties of the self�adjoint compact opera�

tors studied� These include the forward operators in data augmentation� the SRPS with

strengthened condition �B� and the SSS� The operators with respect to OSS and RS will

typically not be included in this group except the case when the state space is discrete and

�nite� The literature on the theory of self�adjoint compact operators are overwhelming�

Here we only make use of some elementary results taken from the theory� Readers who are

interested in details of this theory are referred to Dunford and Schwartz �	��� Riesz and

Nagy ����� and Yosida ����

From here on we assume F to be a self�adjoint compact operator on the Hilbert space

L�
��X�� According to Riesz�Schauder�s theorem �see page ��� of Yosida ��� � on the spec�

trum of compact operators� there exist countable eigenvalues ��� ��� ��� � � � and the only

��



�


possible accumulating point of them is zero� Without loss of generality� we may assume

�� � �� j��j  j��j  � � �

Also the eigenspace &i corresponding to �i is �nite dimensional� If &� is the null space of

the operator F � which means for any t � &� Ft � �� we have the direct sum decomposition

of the space

&� � &� � &� � � � �� L�
��X��

where &i and &j are orthogonal for i �� j in the sense that E�ti�X�tj�X�� � � for ti � &i�

tj � &j �

Since &i� i � 	 are all of �nite dimensions� we may �nd the orthonormal basis for each

of such subspaces� say� for example� f�ij � j � 	� � � � � nig is a basis of &i� All such basis

together give a set of orthonormal basis of &�� � Now any t�X� � L�
��X� has an expansion�

t � t� #
�X
i��

niX
j��

�ij�ij � ���	�

Hence

F pt �
�X
i��

niX
j��

�ij�
p
i�ij �����

k F pt k� �
XX

��ij�
�p
i � �����

The last equality is also called Parseval�s identity� If the largest eigenvalue �� is less than

one� the norm of F p converges to zero geometrically� But the point we want to make here

is that even if the maximal eigenvalue is one� which means the condition �C� is violated�

we can still �nd some starting density which leads to a geometric rate of convergence� It is

clear that if we choose some function s�X� � &�� � from the Parseval identity and the fact



��

that �� term will be zero after one iteration�

k F p��s k�� ��p� k Fs k �

Therefore the iterative use of the operator on such s will make its norm converge to zero

geometrically fast�

If the starting density p��X� is chosen so as to make p��X����X� orthogonal to &��

which means that for any f��X� � &�

E��f��X��
p��X�

��X�
� 	�� � Ep��f��X��� E��f��X�� � ��

the convergence rate will always be geometric� But unfortunately this is practically useless�

Whether this information can be utilized will depend on more detailed knowledge about

the problem we deal with� For example� in the bivariate normal case� from the discussion

of example � we know that if we can choose the starting density to be symmetric about the

same mean as the true one� it will double the convergence rater�

Example �� This example illustrates the spirit of the above discussion� We consider the

case d � �� X � I�
 I� where I� � I� � f	� �� �� �g� The stationary distribution is assumed

to be

P �

�
BBBBBBBBBBB�

��	� ��	� � �

��	� ��	� � �

� � ��	� ��	�

� � ��	� ��	�

�
CCCCCCCCCCCA
�



�

which is decomposable� Therefore we can �nd a t� which violates condition �C�

t��i� j� �

��������	
�������


p
��� i� j � 	� ��

�p��� i� j � �� ��

� Otherwise�

If our starting density is chosen so that p��X����X� is orthogonal to the eigenspace cor�

responding to the eigenvalue 	� which is a linear space spanned by t�� the random scan

procedure will still converge to the equilibrium in a geometric rate� The possible choices of

such P� can be characterized by the condition that

�X
i�j��

P �i� j� �
�

�


X
i�j��

P �i� j��

On the other hand� if the chosen prior distribution does not satisfy this� the chain will not

converge to the required distribution� To be extreme� if we choose starting distribution to

be uniform� the Gibbs sampler will have no e�ects at all� it will remain uniform no matter

how many iterations one may do� �

The spectral analysis not only provides us some theoretical understanding of the

schemes� but also implies some practical methods to derive useful stopping rules for the

Gibbs sampler� In the following� we propose a tentative method�

For a function t�X� � L��X� which is not required to have zero expectation� by the

expansion ���	� we have

t�X� � E�t� # t��X� #
�X
i��

niX
j��

�ij�ij�X��

If the function t�X� is chosen in random� then with probability one� it will not be orthogonal

to the subspace &�� Hence� after n iterations� using the di�erences between two di�erent




�

starting values gives

Fnt�x�� Fnt�y� �
�X
i��

niX
j��

�ij�
n
i ��ij�x�� �ij�y���

As n	�� the largest eigenvalue term will dominate� So�

lim
n��

log jFnt�x�� Fnt�y�j
n

� log��� �����

provided that
P

j���j�x�� ��j�y�� �� ��

For example� the multivariate normal case has been extensively discussed in the liter�

ature� e�g� Amit ���� In that case� the eigenspace &� consists of certain linear functions� If

we choose random coe�cients ai such that

t�X� � a�x� # a�x� # � � �# adxd�

there is probability zero that t�X� and &� are orthogonal� If one can get hold of the

analytical expressions of the powers of the operator F � he will likely be able to determine

the largest eigenvalue and hence the convergence rate� A straightforward algorithm is

to iteratively apply the operator F on such a t�X� and estimate the limiting value of

�
n log jFnt�x�� Fnt�y�j� Here we suggest using the linear test functions for other cases too

because of its simplicity and the fact that it is unusual for the forward operator to have

the eigenspace corresponding to the largest eigenvalue to be orthogonal to all the linear

functions� However� the problem arises when we cannot get the analytic forms of Fnt�

where we have to use Monte Carlo method� When using simulations to estimate Fnt�X�

for X � x� estimates in the form of a mean have the errors that will swamp the information

about the eigenvalues� Writing out explicitly we have� after m independent runs of the




	

chain starting from x by n steps�

�Fnt�x� �
t�xn�� # t�xn�� # � � �# t�xnm�

m
�

The error for this estimate is of orderm����� Hence m has to be exponentially greater than

n to make the estimated eigenvalue meaningful� On the other hand� we do not really need

this eigenvalue� Our aim is to make sure that the chain has converged� If the chain really

converges� the value

	

n
log j �Fnt�x�� �Fnt�y�j �����

will go to zero and maybe %uctuate around zero� Therefore this value can serve as an

indicator for checking convergence�

��� Examples

�� Gaussian distribution

In this example we consider the application of the Gibbs sampler to Gaussian models�

X is assumed to have a nondegenerate multivariate normal distribution with mean zero

and the covariance matrix "d�d which is unknown to us in practice� Using the notations in

Amit ���� we can write out the density function

��x� �
det�Q�

����
d
�

expf�	

�
xtQxg�

where Q � "��� All the conditional distributions� ��x�i� j X�i�� are known to us� By

lemma 	 of Amit ���� it can be written as

x�i� j X�i  N

�
��X

j ��i

qij
qii

x�j�� q��ii

�
A �




�

where Q � �qij�d�d� In image processing� these conditional distributions depend only on

the �neighborhood structure� of the model� The simplest such case is the so�called �nearest

neighbor structure� in which the conditional distribution of the site i is determined by the

four nearest neighbors in the lattice structure of the model�

Now consider the ordinary systematic scan in which the transition function from X to

Y can be written as

K�Y jX� � ��y�	�jY �����y���jY ����� x�	�� � � ���y�d�jX�d�

where Y and X are identically distributed as N���"�� Therefore

�y�	�� � � � � y�d�� x�	�� � � � � x�d��

is also normally distributed with covariance matrix

) �

�
BB� " "�yx

"yx "

�
CCA �

Here "yx is determined by the special structure in the real problem where the Gibbs sampler

is applied� We start by proving that ) is nonsingular� Suppose it is not� then there exist

nontrivial vectors a � �a�� � � � � ad� and b � �b�� � � � � bd� such that

X
aiy�i� #

X
bix�i� � ��

Because Y and X are not degenerate� there exists at least one k such that

y�k� �
X
i�k

aiy�i� #
X
i�k

bix�i� #
X
i	k

bix�i�� �����

However� from the sampling scheme� we know that given y�k#	�� � � � � y�d�� x�	�� � � � � x�k�	��

we have conditional independence between zk and x�k�� x�k# 	�� � � � � x�d�� Hence

E�y�k�jy�k# 	�� � � � � y�d�� x�	�� � � � � x�d�� � E�y�k�jy�k# 	�� � � � � y�d�� x�	�� � � � � x�k� 	���




�

which is a linear function of y�k# 	�� � � � � y�d�� x�	�� � � � � x�k� 	�� On the other hand� from

equation � ����� we know that

E�y�k�jy�k# 	�� � � � � y�d�� x�	�� � � � � x�d�� �
X
i�k

aiy�i� #
X
i�k

bix�i� #
X
i	k

bix�i��

All bi � i � k must be zero� On the other hand� �y�k�� y�k#	�� � � � � y�d�� x�	�� � � � � x�k�	�� is

normally distributed with a nonsingular covariance matrix "� This leads to a contradiction�

Now with the nonsingularity result we may apply the method of example � in section

���� There we pointed out that the maximal correlation between X and Y is the maximal

eigenvalue of

"��"�yx"
��"yx�

By lemma �	������ this value equals the norm of the forward operator� An explicit bound

can also be expressed as the function of the maximal and minimal eigenvalues of )� To

summarize� we have the following theorem�

Theorem 
���� Suppose X is nondegenerate Gaussian distributed with covariance matrix

" and mean vector zero� ) is the �d
�d matrix de	ned above� then the ordinary systematic

scan Gibbs sampler is functional geometric convergent with rate � where

�� � �� � ��d
�� # ��d

�

�� and ��d are the largest and smallest eigenvalues of the matrix )� and ��d is strictly

greater than zero�

This theorem provides us with some theoretical understanding of the scheme� but it

is not very useful in practice because of the lack of knowledge of the covariance matrix

"� By using the idea of spectral analysis� we propose a practical method to estimate the




�

convergence rate� Since the the maximal correlation is attained by a pair of linear functions

of X and Y � which also corresponds to the eigenspace &� of the largest eigenvalue of the

forward operator� we may start with a linear function t ofX by choosing random coe�cients

a�� a�� � � � � ad such that

t�X� � a�x�	� # a�x��� # � � �# adx�d��

It is with probability one that this function is not orthogonal to the eigenspace &�� It can

be seen that the forward operator of the OSS on t is

Ft�X�� � E�a � Y jX�� � a � �I �D�Q��I �D�Q� � � ��I �DdQ�X��

where a � �a�� � � � � ad�� the matrix Di has all entries zero except for the i�th entry on the

diagonal which is q��ii � Q � �qij� is the inverse of the covariance matrix "� At this stage we

basically have two ways to proceed�

	� If the conditional expectations are analytically manageable� we can directly assess n�

round iterations of the operator F � and use the method in ���	� to estimate an approximate

value of the maximal eigenvalue ���

�� However� analytical calculations are usually formidable in practice� We may employ

a Monte Carlo method to estimate� Since the error may soon swamp the information on

�� as pointed out at the end of section ��	� we propose here a modi�ed way of estimation�

Because of the linearity of the conditional expectation in the Gaussian case� we may amplify

the value by multiplying a constant �� or �� during each iteration� and at the end we subtract

this amount from the estimate� This can be summarized as follows�

ALGORITHM�




�

a� From X � X�� start m independent OSS chains� �m need not be too large�� X� is

chosen randomly�

b� After getting the m independent �rst round OSS samples X��� � � � � X�m we multiply

each one by c �c can be � or �� in spirit it should be chosen a little bit greater than � 	�����

Then do the second round OSS starting from the m di�erent values cX��� � � � � cX�m� So we

still have m independent OSS chains�

c� Repeat step �b� till a moderate nth round� then start to calculate the number

�n �
	

n
log j t�Xn�� # � � �# t�Xnm�

m
j � n� 	

n
log�c��

d� Stop until j�n � �n��j is small� This value is an estimate of the convergence rate�

NOTE� If the mean is not known� we can similarly initiate another set of chains from a

di�erent starting value y� and use formula ������

�� Murray�s data

The data in the following table are supposed to be drawn from a normal distribution

with mean 
� � 
� � �� This data was originally given by Murray ��	�� and used later

by Tanner and Wong ���� to illustrate the data augmentation method�

TABLE 	� Twelve Observations From a Bivariate

Normal Distribution With Known Mean

	 	 �	 �	 � � �� �� * * * *

	 �	 	 �	 * * * * � � �� ��

* indicates that the data is missing�

Je�ery�s non�informative prior is given to the covariance matrix� see Box and Tiao ���

p�"� � j " j�m��

� �




�

where m � � is the dimension of the distribution� Our purpose here is not to investigate the

posterior distribution of the correlation �� We are interested here in whether the conditions

�B� and �C� can be veri�ed�

Condition �C� is �ne with this example because the densities required are all positive�

The main di�culty is condition �B�� We can rewrite condition �B� as

Z
p�X jY �p�Y jX�dXdY ���

Suppose we denote the missing data by xi and yi as the follows� corresponding to the original

pattern�

	 	 �	 �	 � � �� �� x� x� �x� �x


	 �	 	 �	 y� y� �y� �y
 � � �� ���

Using the notations in Tanner and Wong ����� Z � �x�� � � � � x
� y�� � � � � y
� is the latent data

and

" �

�
BB� ��� �����

����� ���

�
CCA �

The two conditional distributions are

p�Zj"� �
	

��������	� ����

exp�� 	

��	� ���
f
P
x�i

���
#

P
y�i

���
� ��

P
�xi # yi�

����
# �

	���

���
#

	���

���
�g��

p�"jZ� �
j"j��	��jBj�

������
exp�� 	

��	� ���
f
P
x�i

���
#

P
yi

���
� ��

P
�xi # yi�

����
#

��

���
#

��

���
g��

where

B �

�
BB� �� #

P
x�i �

P
�xi # yi�

�
P
�xi # yi� 	� #

P
y�i

�
CCA �

When we multiply the two conditional distributions together� it is seen that the exponential

part can be rearranged to form the sum of complete squares�

	

��	� ���
f�
X
i

�
xi
��
� ��

��
�� # �

X
i

�
yi
��

� ��

��
�� #

��� 	���

���
#

��� 	���

���
g�







Since jBj� is a polynomial of xi and yi with the maximal degree 	� on each xi and yi� when

we integrate out xi and yi we get moments up to order 	�� The result is a polynomial on

	���� 	��� and is also a rational function of �� Together with all the other coe�cients left�

we get an integral Z
f�

	

��
�
	

��
� �� expf�	�� ���

	� ��
�
	

���
#

	

���
�gd"�

where f is a polynomial on �rst two arguments� a rational function on the third one� The

integral is less than in�nity because of the exponential term� Thus we have veri�ed condition

�B�� The convergence rate of data augmentation is therefore geometric in this case �



CHAPTER �

A REVIEW OF STOCHASTIC

RELAXATION TECHNIQUES

��� The Metropolis Algorithm

The root of the Gibbs sampler can be traced back to the work of Metropolis et al�

���� a group of physicists and chemists� who invented a method for investigating equations

of state for substances consist of interacting individual molecules� In order to solve the

problem they had to carry out an integration over the �N �dimensional con�guration space�

where N � the total number of particles� was usually very large� A Monte Carlo method is

therefore introduced�

Since their integration has the form

R
t�X� exp��E�kT �dXR
expf�E�kTgdX �

where E� the energy of the system� is a function of the �N �dimensional variable X � the naive

Monte Carlo method� which is to simulate N random positions uniformly in the square and


�






to calculate the energy according to the equation

E �
	

�

X
V �x�i���

then give t�X� a weight expf�E�kTg� is quite ine�cient� This led them to think about

simulating X directly from the probability distribution

��X� � expf�E�kTg�

and use the law of large number� or more precisely� the ergodic theorem for the Markov

chain�

The method� which is later named the �Metropolis algorithm� in statistical physics�

is related to rejection techniques since it involves explicitly proposing a tentative value

which may be rejected� Because the rejection rule only needs the ratio between the two

density values of two di�erent con�gurations� the renormalization constant of the sampling

distribution ��X� is irrelevant� so that we never need to know it� This property allows us

to sample from any distribution known up to a constant�

The Metropolis algorithm is of great simplicity and power� it can be used to sample es�

sentially any density function regardless of analytic complexity in any number of dimensions�

Of course� higher dimensionalities may make the algorithm slower� The disadvantages are�

just like the Gibbs sampler� that sampling is correct only asymptotically and that successive

samples produced are correlated�

Since its invention� the method had mostly been used in theoretical chemistry and

statistical mechanics� Later and also quite recently� it was recognized by researchers in

image science� In the past two or three years� statisticians began to �nd its potentials in

statistical computations� and extensively apply the method to various seemingly unrelated

problems�



��

The general description of the Metropolis algorithm can be found in Valleau and Whit�

tington ����� Kalos and Whitloc ����� The method was motivated by an analogy to the

behavior of systems in statistical mechanics that approach an equilibrium whose statistical

properties are independent of the kinetics of the system� In probability terms� it implies

that the system will converge to a stationary process eventually�

Let X � !� where ! �typically in Rn� be the sample space� K�Y jX� is the transition

function that governs the evolution of the system �Markov chain� as before� The Metropolis

algorithm prescribes a way of �nding a tractable transition function K�Y jX� so that the

system will have the desired probability distribution ��X�� the one we want to simulate

samples from� as its equilibrium distribution� The function K�Y jX� is also required to

satisfy the �detailed balance� condition

K�X jY ���Y � � K�Y jX���X�

so that the induced Markov chain is reversible� The condition is needed because it auto�

matically implies that ��X� is invariant under the transition K�Y jX�� and is therefore a

possible equilibrium distribution of the chain� This point is easily seen because

��Y � � ��Y �
Z
K�X jY �dX �

Z
��Y �K�X jY �dX �

Z
��X�K�Y jX�dX

To �nd such a proper transition function K�Y jX�� a tentative initial one is proposed

from� say� X to Y �� using essentially any distribution T �Y �jX�� �Therefore we can make it

easy enough to meet our capacity�� Then on comparing ��Y �� with ��X�� and taking into

account T as well� the system is either moved to Y � �accepted�� or returned to X �rejected��



�	

Acceptance of the move occurs with probability A�Y �jX�� Consequently we have

K�Y jX� �

���	
��


A�Y jX�T �Y jX� if Y �� X�

	� R
Y

� �� X A�Y �jX�T �Y �jX�dY � if Y � X�

A�Y jX� has to be chosen so that K�Y jX� satis�es the detailed balance condition� i�e��

A�X jY �T �X jY ���Y � � A�Y jX�T �Y jX���X�

If we de�ne

q�Y jX� �
T �X jY ���Y �
T �Y jX���X�

�

then q�Y jX� � A�Y jX�
A�XjY � �

There will be many ways of choosing A�Y jX�� Metropolis ��� suggested using

A�Y jX� � min�	� q�Y jX���

Barker ��� later suggested a more �continuous� acceptance function as follows�

A�Y jX� �
q�Y jX�

	 # q�Y jX�
�

Peskun �	
�� ���� shows that Baker�s prescription is inferior to Metropolis� one in most

situations� The heuristic argument is that Metropolis� method allows more transitions� so

when using

t�X�� # t�X�� # � � �# t�Xn�

n

to estimate Et�X�� the average is over more independent terms�

In either cases� it can be easily checked that the corresponding Markov chain under the

transition K�Y jX� is reversible� so ��X� is the invariant function of the transition which�

together with other conditions� assures that the asymptotic probability distribution exists

and is unique� Therefore ��X� will be its asymptotic distribution�



��

The original proposals of the initial transition function T �Y jX� suggested by both

Metropolis et al� ��� and Barker ��� are those �symmetric� ones in the sense that

T �Y jX� � T �X jY �� for all X and Y �

In that case� the acceptance probability of each step only depend on the ratio ��Y �
��X� � Hast�

ings ���� extended such arguments and made the choice of T arbitrary� So the algorithm

described here should be more precisely named as the �Metropolis�Hastings algorithm�� For

convenience� we use the term �Metropolis algorithm� to denote such a class of similar Monte

Carlo schemes shown above� including the individual algorithms proposed by Metropolis et

al�� Barker� and Hastings�

A probabilistic argument to solve the problems of uniqueness of the equilibrium measure

and the convergence to it� when the state space is discrete and �nite� is quite illustrative�

Here we assume A�Y jX� to be the one given by Metropolis et al� Then it is apparent that

K�Y jX�  � if only if T �Y jX�  ��

Hence the K�chain is irreducible if and only if the T �chain is irreducible which can be

guaranteed by purposely choosing the initial transition T �Y jX� to be so� By the theorems

in chapter 	� of Feller �	��� the equilibrium distribution of the K�chain is unique because of

the irreducibility� Furthermore� if the chain is aperiodic too� the distribution pn�X� of the

n�th iterated sample will converge to ��X�� Note that the chain is aperiodic if we can �nd

one X� such that K�X�jX��  �� This is true for the K�chain except for the trivial case

with ��X� being uniform on !� If it is not true� since K�X jX� � � implies T �X jX� � �

and also

��Y � � ��X� for all Y with T �Y jX�  ��



��

we can construct the set of minimum

A � fX � ��X� � min
Y ��

��Y �g�

Then T can never move out of A once the chain gets into it� Therefore it contradicts to the

assumption that the T �chain is irreducible� Hence the K�chain is aperiodic� �Note that we

don�t even require that T is aperiodic�� Thus a su�cient condition if � is not constant is

to check that if it is possible to move from any state to any other under T �

If we take a view from a new angle� it is possible to analysis the forward operator

Ft�X� � E�t�Y �jX� �

Z
t�Y �A�Y jX�T �Y jX�dY # t�X��	�

Z
A�Y jX�T �Y jX�dY �

as well� If we further denote c�X� �
R
A�Y jX�T �Y jX�dY � which represents the probability

of not staying at X in the next step� and the associate operator

F�t�X� �
	

c�X�

Z
t�Y �A�Y jX�T �Y jX��

then F can be further decomposed as

Ft�X� � �	� c�X��t�X�# c�X�F�t�X��

Therefore� if a function t�X� is an eigenfunction of F� corresponding to the eigenvalue 	�

it is also an eigenfunction of F with eigenvalue one� and vise versa� We can easily choose

the initial transition function T �Y jX� so that F� is a compact operator� Furthermore� if we

consider the discrete state space of !� both F and F� are compact operators� If the maximal

eigenvalue of F� is not unity� then it is also true for F � So the geometric convergence of

the associated chain corresponding to F� will imply the geometric convergence of the chain

corresponding to F � However a general result does not exist because of the complex nature



��

of the initial choice of transition T � the rejection rule� and the possible non�compact sample

space�

The algorithm can be described more verbally� at step n of the evolution �random

walk of the Markov chain�� the value of X is Xn� a possible next value for X � X
�

n��� is

sampled from T �X
�

n��jXn�� and the probability of accepting X �
n�� is computed according

to a rejecting rule A�Y jX�� With probability A�X �
n��jXn� we set Xn�� � X �

n��� otherwise

we set Xn�� � Xn�

Since the procedure can only guarantee to sample from ��X� asymptotically� we need

to throw away �rst L steps of the iteration� This value L is usually hard to determine�

Heuristically� one may want to choose the starting density p��X� and the transition T �Y jX�

as close to the true density ��X� as possible so as to obtain rapid convergence and small

sample correlations�

Some ad hoc methods of deciding when to stop have been suggested� For example� one

way is to extract some summary quantities such as mean� variance� histogram� etc�� which

can characterize the distributions to certain degree� by averaging over �say� every 	�� steps

and observe the behavior of such quantities� A decision is then made about whether in the

random walk the observed values have converged� Careless observation of the attainment of

the asymptotic distribution in the Metropolis algorithm has led to some bad Monte Carlo

calculation in the past� It is also the case for applications of the Gibbs sampler�

Another problem arises from choosing of the original transition function T �Y jX�� If it

is badly chosen� most of the initial steps will be rejected� which will result in ine�ciency of

the algorithm� Some initial rough approximation of the true density ��X� may be helpful

to resolve the problem� However� in practice a simple uniform distribution of T �Y jX� is



��

often employed for the sake of simplicity�

Example� Suppose we are going to sample from

��X� �

���	
��


�X� X � ��� 	��

�� otherwise�

We can choose the initial transition function to be uniform�

T �Y jX� �

���	
��


	� Y � ��� 	��

�� otherwise�

Then

q�Y jX� �

���	
��


	� Y�X � ��� 	��

�� otherwise�

Hence we can choose A�Y jX� � minf	� Y�Xg� so that

K�Y jX� �

���	
��


minf	� Y�Xg� Y �� X�

	�X��� Y � X�

If we use �n�X� to denote the density function after n�th iteration� the recursive equation

can be derived�

�n���X� �
Z �

X

X

Y
�n�Y �dY #

Z X

�
�n�Y �dY #

X�n�X�

�
�

�

Recently� there are several articles on estimating the rate of convergence for the Markov

chain with �nite discrete state space� by bounding the second largest eigenvalue of the cor�

responding transition operator with a geometric method� The basic tools used are Poincar+e

inequalities and Cheeger�s inequality� The so�called Poincar+e inequality is a discrete analog

of the classical method of Poincar+e for estimating the spectral gap of the Laplacian on a



��

domain �see� e�g�� Bandle ����� A quite thorough overview of such methodology can be

found in Diaconis �		�� Diaconis and Stroock �	��� and Fill �	
�� Some stimulating results

for solving a problem in computer science are derived by Sinclair and Jerrum���� from using

such methods� Sinclair ��	� also used these inequalities to get bounds in the approach to

equilibrium for using Metropolis algorithm to simulate Ising Models� Ingrassia ���� has used

the techniques to get bounds on the rate of convergence in simulated annealing�

��� The Gibbs Sampler

In 	��� Geman and Geman ��	� introduced an algorithm combining both stochastic

relaxation and an annealing procedure for computing the maximum a posteriori �MAP�

estimate of a large stochastic system used to model a true image� The relaxation step�

which can be viewed as a variation of the old Metropolis algorithm� the so�called �the Gibbs

sampler�� is named after the great physicist and mathematician of the last century� Josiah

Williard Gibbs� who is apparently not quite responsible for the method� This is another

veri�cation of Stigler�s law of eponymy� The reason why Geman and Geman named it so

is� perhaps� that they �rst applied such technique to a system with the Gibbs distribution

structure� By a theorem in Besag ���� the Hammersley�Cli�ord theorem� the system with a

Gibbs distribution is equivalent to a Markov random �eld�

Consider a process that takes one of L values� v�� � � � � vL� at each of a set of sites�

S � f	� � � � � dg� These sites will be related to each other by a graphical structure� for

example� sites on a square lattice� so each site has a number of neighbors� The process

is speci�ed by giving the joint distributions of all the random variables �x�s�jx � S�� A



�


Markov random �eld has the special property that

P �x�r� � vijx�s��s �� r� � P �x�r� � vijx�s��s a neighbor of r��

In other words� the conditional distribution at a site given the rest depends only on the values

at the neighboring sites� Such processes are thus speci�ed by giving all these conditional

distributions with the result that the joint distribution is known only up to a renormalizing

constant�

The Gibbs sampler proposed by Geman and Geman makes full use of the special

Markov random �eld structure to model a true image� The transition function T �Y jX�

is such created so that each transition can be accepted� Actually the function T proposed

by Geman and Geman ��	� satis�es

T �Y jX���X� � T �X jY ���Y ��

There will be no need for rejection� Later extensions of such technique make it possible

that T is not reversible� but still has ��X� as its equilibrium distribution� i�e��

Z
T �Y jX���X�dX � ��X��

Therefore these extensions� for example� Tanner and Wong ���� which is equivalent to a

two�dimensional Gibbs sampler using systematic scan� are not entirely equivalent to the

original Metropolis algorithm where the detailed balance for a reversible chain is required�

An obvious advantage of such choice of the transition function is that the ine�ciency

caused by rejections is diminished� However the samples from such a procedure may be

more correlated than the ones from the original Metropolis algorithm because in each step

of the Gibbs sampler we only allow one variable� x�i� for some i � S� to change� The
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�improvement� in each step is therefore restricted to only one direction� An explicit formula

for such correlations in the case of the random scan has been derived in Chapter �� which

is always nonnegative for all lags�

Geman and Geman�s transition can be specially written as

K�Y jX� � T �Y jX� �

���	
��


�
d��y�i�jX�i�� if Y �i � X�i�

� otherwise�

which was used in their examples� However� their theoretical result of convergence is for

more general cases where K�Y jX� is even allowed to be inhomogeneous in the sense that

K�Y jX� may change with the evolution of the system� as long as each site is visited in�nitely

often� The following theorem about the convergence and also the rate for the case of �nite

discrete state space was provided by the original Geman and Geman ��	�� The positivity

condition was assumed everywhere� In this special case of the random �eld� it implies that

for any possible one of the Ld con�gurations of the process� X � its probability assignment

is not zero� i�e�� ��X�  � for all possible X � The reason why we can�t use the result

about the Metropolis algorithm directly is that the initial transition T there is the one

we choose and needs not be related directly to the equilibrium distribution� but here the

transition is determined entirely by the structure of the equilibrium distribution� Therefore

the convergence results need to be renewed�

Theorem ����� �Geman and Geman� Assume that for each i � S � f	� � � � � dg� the

sequence fit� t � 	g� in which t represents the number of iteration� contains i in	nitely

often� Then under the positivity condition� for every starting con	guration � � ! and any

� � !�

lim
t��P �Xt � �jX� � �� � �����
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To prove the theorem� some lemmas are needed� Some settings are useful too� Let T�

be the shortest time that all sites are visited� i�e��

T� � minft � S � fi�� � � � � itgg

Recursively� we can de�ne

Tk � minft  Tk�� � S � fiTk����� � � � � itgg�

Also we de�ne k�t� � supfk � Tk � tg� which goes to in�nity as t goes to in�nity�

Lemma ����� For any � and �
��

� we will have

P �XTk � �jXTk�� � �
��

� � �d

for all k� where � � min�P �x�i�jX�i���

Proof� Let mi � supft � t � Tk� it � ig� for i � 	� � � � � d� the latest time for the site

i to be drawn in the period �Tk��� Tk�� Without loss of generality� we may assume that

m�  � � �  md� So

P �XTk � �j XTk�� � �
��

�

� P �xm�
�	� � ��	�� � � � � xmd

� ��d�jXTk�� � �
��

�

�
dY

j��

P �xmj
�j� � ��j�jxmj��

�j # 	� � ��j # 	�� � � � � xmd
�d� � ��d��XTk�� � �

��

�

� �d

The last inequality follows directly from the Markov property of the chain Xt� �

Lemma ����� There exists a constant r� � � r � 	� such that for every k � 	� �� � � � �

sup
��	��	��

jP �XTk � �jXTk�� � ���� P �XTk � �jXTk�� � �
��

�j � r

holds for any �� �� and ��



�

Proof�

sup
��	��	

��

jP �XTk � �jXTk�� � ���� P �XTk � �jXTk�� � �
��

�j

� sup
�
fsup

	
P �Xt � �jX� � ��� inf

	
P �Xt � �jX� � ��g

� sup
�
fI � IIg

where

I � sup
	

X
��

P �Xt � �jXT� � ���P �XT� � ��jX� � ��

� sup

����
�d

X
��

P �Xt � �jXT� � ���
����

in which the last supremum is taken over all possible probability measure with the restriction

that 
���� � �d due to lemma ����	� Now suppose P �Xt � �jXT� � ���� for a �xed �� attains

its maximum at �� � �o� i�e��

P �Xt � �jXT� � �o� � sup
��

P �Xt � �jXT� � ����

Then the best possible probability measure 
 for the quantity I is to assign 	� �Ld � 	��d

on ��� the rest for �d each� �Recall that j!j is equal to Ld� which is the total number of

possible con�gurations�� Hence

I � �	� �Ld � 	��d�P �Xt � �jXT� � �o� # �d
X

�� ����
P �Xt � �jXT� � ����

Similarly� we can �nd the minimum possible value of II as

II � �	� �Ld � 	��d�P �Xt � �jXT� � �o� # �d
X

�� ���o
P �Xt � �jXT� � ����

where P �Xt � �jXT� � �o� � inf�� P �Xt � �jXT� � ���� Therefore

I � II � �	� Ld�d��P �Xt � �jXT� � �o�� P �Xt � �jXT� � �o��

The result follows inductively� with the bounding constant r � 	� Ld�d� �



	

Proof of the theorem�

lim
t�� sup

��	
jP �Xt � �jX� � ��� ����j

� lim
t�� sup

��	
j
X
	�

f�����P �Xt � �jX� � ��� P �Xt � �jX� � �
�

�gj

� lim
t�� sup

��	�	
�

jP �Xt � �jX� � ��� P �Xt � �jX� � �
�

�j�

We can apply lemma ����� to get the geometric convergence rate of the scheme with the

bound rk�t�� where r � 	� Ld�d� k�t� � supfk � Tk � tg� �

The above proof illustrates the di�culties of the problem and the limitations of Geman

and Geman�s approach� in which the discreteness and the positivity condition are relied on

too heavily�

When considering the case of the systematic scan where Tk � kd� a much simpler

argument based on lemma ����	 can be given� Let us consider the embedded Markov chain

consists of

XT� � XT�� � � � � XTk� � � � �

which� by lemma ����	� is aperiodic and irreducible� Hence the chain is ergodic� When the

scan used is purely random as described in section ���� the argument is the same� except

that in this case fTkg are identically and independently distributed random variables�

The stochastic relaxation and simulating annealing techniques proposed by Geman and

Geman ��	� is used for image restoration� The essence of their approach to restoration is a

relaxation algorithm which generates a sequence of images that converges in a appropriate

sense to the MAP estimate� The stochastic relaxation permits changes that decrease the

posterior probability values� and is made on a random basis� The e�ect of which is to avoid

converging to a local maxima� It can also be viewed as an optimization algorithm for a



�

large system�

Example� Ising Model

Ising model is a special Markov random �eld in which anm
m square lattice structure

is assumed� Each component of X � i�e�� x�s�� s � 	� � � � � m�� takes only two values� �	 or

#	� The conditional distribution is given by

��x�i� � 	jX�i� �
e	

	 # e	

where � � �
P

j ��i x�j�x�i�� the sum is over all the neighbors of site i� � is a global constant

to control the %atness of the distribution� The form of the joint density can be easily written

down� up to a constant �d � m� �� as�

��x�	�� � � � � x�d�� � exp��
X
i��j

x�i�x�j��

For implementing the Metropolis algorithm� an initial transition function T �Y jX� must be

selected� For simplicity we may choose T to be a transition which picks a site at random

and changes its value to �	 and #	 randomly with probability 	�� each� This transition

is clearly irreducible� and aperiodic� Therefore the Metropolis algorithm applies� If the

acceptance function A�Y jX� is chosen according to Metropolis� method� we end up with a

function

A�Y jX� � min�	� ��Y ���X���

Such a choice of the acceptance function has been shown to dominate the function A�Y jX�

suggested by Barker ���� which in this special case is

A�Y jX� �
��Y �

��X� # ��Y �
� ��Y jY �i�

where Y possibly di�ers from X only at site i� This is exactly the same as the Gibbs

sampler used with a random scan� Therefore by choosing di�erent A�Y jX�� we can derive a
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Gibbs sampler scheme directly from a Metropolis algorithm� Also� in this case� the original

Metropolis algorithm dominates the Gibbs sampler� �

��� Applications in statistics

The applicability of the Metropolis algorithm� the Gibbs sampler� and their variations

is due to the rapid growth of the computer facilities� It is also the case for many other

modern developments of statistics� for example� bootstrap� ACE algorithm� EM algorithm�

to name a few� The �rst formal application of the Gibbs sampler technique to the computa�

tion of posterior densities should be ascribed to Tanner and Wong ����� though concurrently

Li ���� has applied the method to the imputation of missing data�

Tanner andWong �����s work focuses on the missing data problem setting from Bayesian

point of view� and is also applicable to many others which can be treated as missing data

problems� The basic assumption for their method to work� which is similar to the basic

requirement for the EM algorithm� is that the complete data posterior is easy to deal with�

i�e�� to be able to draw sample from� Suppose we use 	 or � to denote the parameter of

interests� x � �y� z� to denote the complete data in which y represents the observed part�

while z the missing part� and � to stand for various kinds of distributions derived from the

true joint distribution� The basic algorithm� which is later referred as �data augmentation��

involves two steps in general�

�a� Generate samples z���� z���� � � � � z�m� from the current approximation to the predictive

density ��zjy��



�

�b� Update the current approximation to ��	jy� to be the mixture of conditional densities of

	 given them sets of the augmented complete data with the form �y� z�k��� k � 	� � � � � m�

where z�k� are generated from step �a�� that is

gi���	� �
	

m

mX
k��

��	j�y� z�k����

To implement step �a�� there will be two more steps�

�a	� generate 	 from gi�	��

�a�� generate z from ��zj	� y�� where the 	 is from step �a	��

If the value of m is taken to be one� which implies that there is no repeated sampling at

each iteration� we boil down to a simpler version of the algorithm by combining steps �a	��

�a��� and �b��

�	� Draw zi from ��zj	i� y�� where 	i is from previous iteration�

��� Draw 	i�� from ��	jzi� y�� where zi is from step �	��

This is exactly the same as a ��dimensional Gibbs sampler used with the systematic scan�

When Tanner and Wong ���� �rst invented such an algorithm they didn�t realize the con�

nection between the two� It only became clear later on� Until quite recently� the paper by

Gelfand and Smith �	� formally explores the relations between the Gibbs sampler� data

augmentation� importance sampling etc�� and uses the name �sampling�based techniques�

as a summary� The later version of the data augmentation scheme �i�e�� steps �	�� ����� may

works more e�ciently in lots of cases than the original one because� as was also pointed out

by Tanner and Wong ���� �section 
�� the �rst few iterations are far from the truth anyway�



�

it is not worth being accurate� i�e�� simulating a large amount of samples� for the beginning

iterations�

To theoretically prove the convergence of their scheme� Tanner and Wong adopted an

elegant argument using L� theory on the transition operator� The condition they require

is called condition �C� in their paper� To distinguish it from our condition �C�� we will call

that the C�Condition� Let

K�	j�� �
Z
��	jy� z���zj�� y�dz�

which is the same as what we have de�ned as the transition function of the marginal chain

in section ��	�

C�Condition� K�	j�� is uniformly bounded and is equicontinuous in 	� For any 	� � ,�

there is an open neighborhood U of 	�� so that K�	� ��  � for all 	� � � U �

This condition is quite strong and is usually hard to check in practice� As for the

method of proof� they are using L� theory on the operator de�ned as

Tf�	� �
Z
K�	j��f���d�

which transit a density function to another one� Obviously� the true posterior ��	jy� is a

�xed point of such transition� or in other words� the eigenvalue of the operator T because�

if we use g��	� � ��	jy��

Tg��	� �

Z
K�	j��g����d�

�
Z Z

��	jy� z���z� j�� y����jy�dxd�

�
Z
f
Z
��z� j�� y����jy�d�g��	jy� z�dz

� ��	jy�
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L��theory is relatively more awkward than L� theory� which creates obstacles to the

theoretical result of Tanner and Wong ����� In fact� the proof of theorem � in Tanner and

Wong ����� which claims a geometric convergence rate for the scheme� i�e��

k gi � g� k� �i k g� � g� k

contains a mistake at step �e�� The question remains an unsettled issue for quite long�

until our latest work �Liu et al� ���� ������ and independently the work of Schervish and

Carlin ����� The new result in Schervish and Carlin ���� is more general than required by

Tanner and Wong and is applicable to the general Gibbs sampler used with a systematic

scan� The method can be viewed as a substantial extension of the original Tanner and

Wong �����s argument� Instead of applying L� theory on the operator T as was done by

Tanner and Wong� Schervish and Carlin adopted an analysis on the operator U � T �T �

where T � is the adjoint operator of T � using L��theory� Such an operator U is self�adjoint�

and compact under certain condition� Although the largest eigenvalue of U is still unity

with the eigenfunction ��	jy�� they proved that the second largest eigenvalue of U is strictly

less than one when the positivity condition holds� This� together with an assumption on

the starting density which is the same as our condition �A� in chapter 	� gives the geometric

convergence of the scheme� Our approach� as has been shown in previous chapters� is more

direct and elegant by dealing with the forward operator which is slightly di�erent from the

traditional transition operator T � Other convergence results concerning Gaussian models

can be found in the works of Knoerr ����� Amit and Grenander ���� Goodman and Sokal

�����

A huge amount of literature on applying the Gibbs sampler and data augmentation

techniques have emerged recently since the papers of Tanner and Wong ���� and Gelfand and






Smith �	�� Its conceptual simplicity and practical ease of implement have been recognized

and appreciated by more and more statisticians� The stochastic relaxation techniques open

a new page for solving hard statistical computation problems� To illustrate� I name a few

areas where such techniques have been actively used� For example� one can read about the

inference for normal models by using the Gibbs sampler from Gelfand et al� ����� genetic

linkage analysis from Kong et al� ��	�� Geyer and Thompson ����� and Thompson et al�

����� hierarchical models� variance components and errors�in�variables in Gelfand and Smith

�	�� latent�class model in original Tanner and Wong ����� outlier detection in Verdinelli and

Wasserman ��
�� level�changing problem in autoregressive time series model in McCulloch

and Tsay ����� and even non�parametric Bayesian analysis using Dirichlet Process prior in

Escobar �	���

The boom of the area may lead people to think that the Gibbs sampler is omnipotent�

However this is not true� In applications� it is possible to get a nonergodic chain for the

iteration� it is also possible for individuals to misjudge the convergence of the algorithm�

There are also many issues like computing time� choosing proper variables to iterate� setting

good starting values etc�� which are all very important� The technique is not fool�proof� It

was invented to allow us to solve harder problems� To conclude� I would say that I warmly

welcome the fully appreciation and application of the Gibbs sampler� but one should not

apply it blindly�
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