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As Casella points out the conditionals f l  and f2 are only functionally 
compatible, corresponding to an improper joint density f (x ,  y) oc e -xv. 
Here too, the Gibbs chain cannot be positive recurrent. However, here the 
Gibbs chain (Xl, Yl), (x2, Y2), �9 �9 �9 is obtained by successive substitution 
into 

x ~ / x i  (4) xi = e i /Y i -1  and Yi = 
x and  Y where Q c i are independent exponential variables with mean 1. 

Y is Thus, the derived Markov chain Zl, z2 , . . ,  where zi =- xiYi : e i  

simply an iid exponential sequence, again positive recurrent. 
In both of the above examples, a positive recurrent chain Zl, z2,. �9 �9 

was constructed from the non positive recurrent chain ( x l , y l ) ,  
(x2, Y2), . . . .  It is interesting to consider how the distribution of z arises 
through formal transformation of the improper density f ( x ,  y) corre- 
sponding to the Gibbs conditionals. In the first example, where f (x, y) c< 

e -(x+y)2/2, the joint distribution of z = x + y and w = y is obtained as 

f ( z ,  W) O( e -z2/2. In the second example, where f ( x ,  y) c( e -zy,  the 
1 c - z  joint distribution of z = xy  and w = y is obtained as f ( z ,  w) o( - 5  �9 

In both of these examples, an improper joint distribution has been trans- 
formed into the product of a proper distribution on z and an improper 
distribution on w. Thus, in both of these examples f ( x ,  y) contains 
a proper one-dimensional component which can be extracted from the 
output of a Gibbs sampler. 

In light of these examples, I would like to ask Casella about the 
Gibbs subsequence of overall means/3(/), j > 1 from Example 4 where 
a = b = 0. When (if ever) is this subsequence a positive recurrent 
component of the Gibbs chain? I have a hunch that it will be positive 
recurrent when 7r(/3[y), the posterior of/3, is proper, in which case the 
subsequence will converge to 7r(/3[y). Can this be checked for the Gibbs 
output from Example 4? 

JUN S. LIU (Stanford University, USA) 
Professor Casella has provided us with a timely exposition of an 

important aspect of modem Monte Carlo methods. Stimulated by this 
reading, I would like to take the liberty of bringing up a few ideas on 
two interesting issues. 

Rao-Blackwellizing an Importance Sampler. Consider an importance 
sampling scheme for a two-component random vector. Following no- 
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tations of Professor Casella, we let the target distribution of (X, Y) be 
f (x ,  y) and let the trial sampling distribution be g(x, y). Of interest is 
the estimation of, say, ~- = E l {h (X ,  Y)}, for a given integrable function 
h. This can be achieved by using either rejection sampling, as demon- 
strated by Professor Casella, or importance sampling (IS). Suppose that 
we have drawn samples ( X X ,  Y I ) ,  �9 �9 � 9  (Xn, Yn) from g(x, y). A standard 
IS estimate of 7- is 

1 n f (x ,y )  
~- = - E w(xi, yi)h(xi, Yi), where w(x, y) = 9(x, y) 

n i = 1  

A rescaled estimate, as illustrated in Section 4.2 and used in Casella and 
Robert (1996b), Kong et al. (1994), Liu (1996) etc., is 

1 n n 
~---~ ~ E w ( x i , Y i ) h ( x i , Y i ) ,  where W =  E w ( x i , Y i ) .  

i = 1  i = 1  

Besides the advantage mentioned by Professor Casella, using the resca- 
led estimate ~ allows us the flexibility of knowing f and 9 only up to 
a normalizing constant. This advantage is much more pronounced in 
complicated problems (Kong et al. 1994). Because asymptotically the 
two estimates are equivalent and also because "7- is much more approach- 
able mathematically, we will use ? for theoretical discussions, although 
practically we advocate using "~ all the time. 

There are two ways of Rao-Blackwellizing: conditioning on either 
X or Y. If conditioned on Y, for example, we have 

Ea{w(X ,Y )h (X ,Y )  I Y = y} = / h ( x , y ' ~  f (x ' y )  g(x 

= Wy(y)Ef{h(X, Z) I Z = y}, 

where Wy(y) = fy(y)/gy(y). A more efficient estimate than ? results: 
n 

1 ~Wy(ydEf{h(X,Y))]Y=yi}. 
i = 1  

When h is a function of one component alone, say h(x, y) = h(y), the 
estimate ;rrby is reduced to 

n 

1 E Wy(Yi)h(yi). 
i = 1  
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A quite different intuitive interpretation of this R-B effect is that margi- 
nalization reduces importance sampling variation. MacEachern, Clyde, 
and Liu (1996) derived one special case of this fact, and Rubinstein 
(1981, Section 4.3.7) recorded another. 

Under this formulation, the importance sampling can be treated ap- 
proximately as a Rao-Blackwellized rejection sampling; hence, it is 
statistically more efficient. This fact has been established by Casella 
and Robert (1996b) in a sophisticated setting and will be re-derived here 
more directly and heuristically. Let (Ii, y~), i = 1 , . . . ,  n, be jointly 
drawn according to the acceptance-rejection rule; that is, the Yi are iid 
from a trial distribution g(Y), and the conditional distribution [Ii I yi] 
is Bernoulli(r(yi)) with r(y) = f(y)/Mg(y). Suppose the stopping 
effect of this rejection sampling can be safely ignored. Then Ii plays the 
role of xi in the foregoing argument; and the R-B counterpart of tSAR in 
(10) of Casella is 

1 n -E  5IS = n w(yi)h(yi). 
i-----1 

Without loss of generality we assume that T = 0. Then, since M >_ 
maXy{W(y) }, 

nvar(SAR) ,~ Mvarf{h(Y)} > f Wmaxh2(y)Z(y)dy 

f f(Y) h 2 - ~  (y)f(y)dy = Eg{w2(y)h2(y)} > 
J 

= varg{w(y)h(y)} -= nvar(Sis ). 
An effort of comparing the two samplers with the Metropolized inde- 
pendence sampling was made in Liu (1996). Since the advantage of 
the rejection method is that exact draws from f can be obtained, it is 
sometimes useful to combine the two samplers when one wants to reduce 
importance sampling variations (Liu, Chen, and Wong 1996). 

In many practical problems, the marginal weight Wy(y) is difficult 
to compute, whereas the conditional expectation Ef{h(X) [ Y = y} is 
relatively easy to obtain. In such cases, as shown in Kong et al. (1994), 
one can use a partial RB-estimate 

n 

1 E w ( x i ' Y i ) E f  {h(X'Y)  IY  = Yi}, 
i = 1  
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which is easily seen to be unbiased and consistent. Although many 
numerical results show that significant improvements can be obtained, 
optimality properties of "7-prb are difficult to come by. 

Imagine that a partial R-B is applied twice; then each summand of 
"~prb, Ey{h(X,Y) I Y = Yi}, is substituted by Ef[Ef{h(X,Y)IY}[ 
X = xi]. By applying partial R-B repeatedly, each summand has the 
form of iterative conditional expectations: 

Ef[.. .EI{EI{h(X,Y) I Y} I X} . . .  I'], 

whose limit converges to the true value T. This form alludes to the 
Gibbs sampling structure (Liu, Wong and Kong 1994, 1995). When 
analytical evaluation of these iterative conditional expectations is not 
feasible, one is naturally reminded of the Gibbs sampler. A suggestion 
thus derived is that incorporating a Gibbs sampler or any MCMC step 
into an importance sampling scheme can be useful (MacEachern et al. 
1996). 

The Gibbs Sampler for Incompatible Conditionals 
An impressive result of Hobert and Casella (1996) is concerned 

with the stochastic instability of Gibbs sampling with incompatible - -  
but functionally compatible - -  conditionals. I would like to venture 
on the functionally incompatible case. Consider the following exam- 
ple: suppose that the two conditionals f l (y lx)  and f2(xly ) are given as 
follows: 

y = l  y = 2  x = l  x = 2  

f l ( y [ x ) :  x = 1 0.9 0.1 f2(xlY): y = 1 0.4 0.6 
x = 2 0.3 0.7 y = 2 0.2 0.8 

It is easy to show that f l  and f2 are not functionally compatible using 
Besag's (1974) criterion. When running a systematic-scan Gibbs sam- 
pier, the concept of "limiting distribution" becomes a little complicated. 
In fact, the sampler has two limiting distributions depending on whether 
stopping at x or at y, i.e., whether (x, y) or (y, x) is defined as a joint 
state. Thetwol imi t ing  distributions are 

y = 1 

~ l ( x , y ) :  x = l  0.26591 
x = 2 0.21136 

y=2 

0.02955 
0.49318 
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y = l  y = 2  

7r2(x,y) �9 x = 1 0.19091 0.10455 
x = 2 0.28636 0.41818 

The sampler is, therefore, a combination of two positive recurrent Mar- 
kov chains; and depending on how to define the joint state, the sampler 
converges into two different, though very close, distributions. When 
running a random-scan Gibbs sampler, however, a proper limiting dis- 
tribution - -  that is the mixture of the two distributions given above - -  
exists. 

Under some regularity conditions that are satisfied in most prac- 
tical situations, Tx(xo,zl) = ff l(y[xo)f2(xl[y)dy defines a posi- 
tive recurrent transition function for the X space, and Tu(yo, yl) = 
f f2(xlyo)fl (yl [x)dx defines that for the Y space. Hence two limiting 
distributions 7rl (x) and 7r2(y), for Tx and Ty, respectively, are uniquely 
determined. In the incompatible case, we observe that 

71"I(X,y) ~ 7rl(x)fl(y l x) 7 s 7r2(Y)f2(x l Y) = 7r2(x, y). 

But 

Trl(X)fl(y l x)dx = 7r2(y) and /Tr2(y)f2(x l Y)dY = 71"l(X).  

Let 791 be the set of all probability distributions compatible with 
f l (y lx) ,  and let 792 be that for f2(xly). Then 7rl(X, y) C 791, 7r2(x, y) C 
792, and 71" 1 and 7r2 have identical marginal distributions. On the other 
hand, if two distributions Pl (x, y) C 791 and P2 (x, y) C 792 have identical 
marginal distributions, they have to be the same as 7rl and 7r2. 

Due to numerical approximation in practice, we may end up having 
slightly incompatible conditionals. If the numerical error is small, the 
resulting Tz will be very close to the one, say, T~, resulting from the 
compatible conditionals. This implies that the eigenvalues and eigen- 
vectors of Tz and T~ are close to each other (true in the finite state space 
case); hence, the resulting limiting distributions are similar. It further 
suggests that no disasters are to be expected as long as the numerical 
approximation is reasonably accurate. The argument may be extended 
to a Gibbs sampler with more than two components. For a k component 
sampler, a systematic scan with a particular sweeping order will have 
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k limiting distributions, depending on which component the sampler 
stops. The total number of such limiting distributions is kt. The limit- 
ing distribution for a random-scan sampler is then a mixture of these k! 
distributions. 

XIAO-LI MENG (The University of Chicago, USA) 
Posterior Checking. My discussion will focus on only one issue: check- 
ing the propriety of a posterior resulting from the Gibbs-sampler speci- 
fications. Professor Casella's article is much broader, touching on many 
issues that are of current interest to me (e.g., the emphasis on being re- 
ceptive to both frequentist and Bayesian perspectives; the interplay of 
algorithms and inferences; the connection between EM-type algorithms 
and the Gibbs sampler). However, due to stringent time constraints 
(being a father of a newborn and a 16-month-old, I had to prepare this 
discussion in between frequent posterior checking; no impropriety was 
found, though I did learn why it is a good idea to avoid a sensitive 
posterior), I have to skip this great opportunity for advertising several 
related papers that I authored or co-authored. Nevertheless, I want to 
thank the Editor, and of course the author, for providing me with such 
an opportunity. 

Recursive De-conditioning and Conditional Compatibility. The need for 
checking the compatibility of conditional distributions reminds me of an 
identity I learned more than a year ago. Let p(xl, x2) be a probability 
density function with respect to a product measure # = #1 • #2 and 
with a support in the form ~1 • f~2; we thus are assuming the positivity 
assumption of Hammersley and Clifford (c.f., Besag, 1974). Then ]1 

p(Xl) = p(x2 I Xl) #2(dx2) (1) 
2 p(Xl Ix2) 

which is a trivial consequence of the well-known identity 

p(x2 Ix1) p(x2) 

p(ml l m2) p(xl)" 
(2) 

While identity (1) also provides an explicit formula showing how p(xl I 
x2) and p(x2 I Xl) uniquely determine p(xl, x2), it seems to be much 


