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SUMMARY

In an effort to extend the tempering methodology, we propose simulated sintering as a general framework
for designing Markov chain Monte Carlo algorithms. To implement sintering, one identifies a family
of probability distributions, all related to the target one and defined on spaces of different dimensions.
Then, a Markov chain is constructed to move across these spaces, with the hope that the fast mixing
of transitions in lower-dimensional spaces facilitates the simulation from the target distribution. Two
types of sintering are discussed: conditional sintering, which is motivated by the multigrid Monte Carlo
idea and can be regarded as a generalization of the Gibbs sampler; and marginal sintering, which can be
achieved by reversible jump MCMC. To help mixing in a reversible jump MCMC algorithm, we suggest
incorporating the dynamic weighting method proposed by Wong and Liang. Examples in graphical
modeling and computational biology illustrate how these techniques can be applied.
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MODEL; MODEL SELECTION; MULTIGRID MONTE CARLO; REVERSIBLE JUMP; SIMULATED

TEMPERING; TRANSFORMATION GROUP.

1. INTRODUCTION

1.1. Prelude
Markov chain Monte Carlo (MCMC) has grown to be a standard tool for statistical

computing. It is arguably the main driving force behind the recent surge of interest in
computationally-intensive areas such as probabilistic expert system and graphical modeling
(Lauritzen, 1996); Bayesian CART (Chipman et al., 1997); neural network training (Neal,
1996); classification and mixture models (Green, 1995); and nonparametric Bayes (Bush and
MacEachern, 1996). In many complicated problems, however, slow-mixing of the Markov
chain produced by a standard MCMC recipe still posts the greatest challenge. To overcome this
difficulty, many techniques have been proposed, among which simulated tempering (Marinari
and Parisi, 1992; Geyer and Thompson, 1995) is particularly interesting.

Suppose ��x� is the target distribution. In simulated tempering, one builds a distribution
family � whose members differ by one parameter, the temperature, and � corresponds to
the ‘‘coldest’’ member of the family. Within �, one finds members that induce fast-mixing
Markov chains and can be used to improve the simulation of �. The tempering methodology is
very powerful, but its current implementation is somewhat limited.

� Partially supported by NSF grant DMS 95-96096 and the Terman fellowship from Stanford
University. Part of the manuscript was prepared when Liu was visiting Department of
Mathematics, National University of Singapore; and Department of Statistics, University of
California, Los Angeles.
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1.2. A simple illustration

To illustrate the basic idea of simulated tempering and one of its potential problems, we
consider a target distribution � which is a discretized mixture of two bivariate normal densities
with the modes separated by more than 10 standard deviations. The distribution is shown on
the top left panel of Figure 1.
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Figure 1. Simulated tempering and simulated sintering. The normal distributions originating the
mixtures have means (-5,5) and (5,-5). On the left hand side, from the top to the bottom, the value of the
variance is 1, 4, 10. On the right hand side, � � �, but the cardinality of the sample space is ��� ��,
��� �� and �� �.

Suppose one tries to sample from � by a Metropolis algorithm (Metropolis et al., 1953)
with the nearest-neighbor simple random walk as the proposal chain. It is easily seen that such
a sampler always gets stuck in one of the modes.

As shown in the left panels of Figure 1, simulated tempering can be used to overcome the
difficulty. In particular, we can build the distribution family � as � � f��� ��� ��g, where

�i �
�

�
N ��������� ��

i 1	 

�

�
N ���� ��� ��

i 1	� with ��
� � �� ��

� � �� ��
� � ���

Note that �� corresponds to the target �. A MCMC algorithm can be designed (Geyer and
Thompson, 1995) to draw �x� I� from the distribution ���x� I� � f�I��I�x�, where f�I�
can be adjusted. Once convergence is reached, those x’s associated with I � � follow the
distribution �.
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It is clear that in the hottest distribution (i.e., ��) the separation of the two modes is greatly
reduced and the same Metropolis algorithm can be applied to draw from �� without difficulty.
However, by implementing the tempering suggestion, the Markov chain tends to spend too
much time in uninteresting regions around (0,0), losing the advantage of MCMC over a simple
random sampling approach. This problem becomes more serious as the dimension of the space
increases. Other potential drawbacks of tempering are discussed in Liu and Sabatti (1998).

On the right panel of Figure 1, we show an alternative solution to the problem. Instead
of varying one parameter, i.e., the variance of the system, we change the accuracy used in
describing the underlying phenomena. As can be intuitively seen, this overcomes the problem
of bi-modality and also avoids the curse of dimensionality encountered by simulated tempering.

1.3. Outline of the article

In this article, we explore possible generalizations of the tempering procedure along the
line proposed by Wong (1995). More precisely, we consider the construction of the distribution
family � with spaces of varying dimensions. We call this method simulated sintering. As
tempering, sintering is a metallurgical technique: it consists of a combination of chemical
reactions and temperature manipulation and is used to obtain a uniform piece of metal from
an agglomerate of metal powder and plastic compounds. Because it implies the fractioning of
the object of interest in smaller portions, we feel that it is a good metaphor for the procedures
explored in this article.

There are two main tasks in realizing simulated sintering: to find/construct the distribution
family � � f�ig, and to design effective moves between the family members. The multigrid
Monte Carlo (MGMC) provides a means to accomplish both of these tasks: it constructs the
members of � and describes the moves between them via appropriate conditional and marginal
distributions of �. In a sense, it is a generalized Gibbs sampler, but with the conditional
distributions sequentially built up by the multigrid heuristics. Because the procedure uses
conditional distributions exclusively, we call this construction conditional sintering.

It is also of interest to construct the family � more freely by using approximations of
��x� at different resolution levels. For example, we can let � � f�j�x�j��� j � �� �� � � � � kg,
where �� � � and x�j� is a dj-dimensional vector with d� � d� � � � � � dk. Then a reversible
jumping rule (Green, 1995) can be designed to draw �x�I�� I� from ���x�I�� I� � f�I��I�x�I��,
where I � �� �� � � � � d. The coefficient f�I� is adjusted to make the chain spend about equal
time at each state of I . This procedure may be called marginal sintering. Simulated tempering
can be seen as a special marginal sintering.

As noted by Green (1995), dimension-change occurs naturally in Bayesian model selection
problems, image segmentations, change-point problems, etc. In these situations, members
of the family � are naturally induced by the problem (e.g., the posterior distribution of the
parameters under each model type). Thus, the MCMC algorithm involved in such problems
is also a marginal sintering, in which prominent difficulty is in the construction of efficient
moves between the family members. Green (1995) gives explicit rules to guide for the choice
of proper proposals for jumping across different dimensional spaces. When applying the
rules in a difficult problem, however, we found that acceptance probability for the jump can
be extremely small: thus, the resulting Markov chain mixes very slowly. To cope with the
difficulty, we propose to use the dynamic weighting method of Wong and Liang (1997) to help
for space-jumping. In dynamic weighting, a weight variable is associated with the Markov
chain sampler so as to let the chain move across low-probability barriers more freely. The
weights can later be used to correct the bias.

This article is organized as follows: Section 2 presents the group move in MCMC and
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conditional sintering; Section 3 describes dynamic weighting and discusses how to use it in
marginal sintering; Section 4 gives an example of graphical model selection; Section 5 outlines
an algorithm for protein sequence alignment and classification; Section 6 shows an improved
algorithm for inference with multivariate t-distribution; and Section 7 concludes with a brief
discussion.

2. MULTIGRID MONTE CARLO APPROACH

2.1. Gibbs Sampler and Beyond

Suppose X is the space on which � is defined. Let x � �x�� � � � � xd� be a point in this
space. The Gibbs sampler (Gelfand and Smith, 1990) is an effective method for reducing
a high dimensional simulation problem to a lower dimensional one --- via using conditional
distributions (it is important to realize that there are methods other than reversible jump for
traversing different dimensional spaces). In Gibbs sampling, one randomly or systematically
choose a coordinate, say x�, and then update it with a new sample x�� drawn from a conditional
distribution --- ��� jx�����, where x��A� refers to �xj� j � Ac� for any subset A of the
coordinates. A simple restatement of this procedure can be potentially useful: the update can
be seen as a random move

x� � x�� � x� 
 c��

where c� is drawn from distribution p�c�� � ��x� 
 c�� x�����. The reason why this move is
appropriate is simply that it leaves � invariant. Therefore, any Gibbs sampling update can be
seen as an appropriate random additive move along a coordinate, or more generally, a direction.

Along this line of thinking, we can propose a simple generalization of the Gibbs sampler
for moving several coordinates, say �x�� x�� x��, together: conduct a random additive move

�x�� x�� x��� �x��� x
�
�� x

�
�� � �x� 
 c� x� 
 c� x� 
 c��

where c is drawn from an appropriate conditional distribution. It is easy to verify that this
conditional distribution has to be

p�c� � ��x� 
 c� x� 
 c� x� 
 c� x������������

Going one step further, we can ask a more general question: suppose we want to make a
random but not necessarily additive ‘‘move’’ onX , how can we do it? For example, if we want
to make the following move

�x�� x�� x��� �x��� x
�
�� x

�
�� � ��x�� �x�� �x���

what is the appropriate distribution from which we should draw �? We formulate and answer
this question in the next subsection.

2.2. The Group Move in Markov Chain Monte Carlo

Let  be a locally compact transformation group (Rao, 1987) on X . By ‘‘transformation
group" we mean that all elements in  correspond to transformations on space X and these
elements form a group, i.e., (a) the composition of any two transformations in  is also an
element of ; and (b) �� � , we can find its inverse in . The concept of locally compactness
roughly means that one can define a topology and probability measure on . If the current state
is x, we define a group move as follows:
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Group Move

Draw a group element � �  according to

� 	 p�� j x�H�d�� � ����x��J��x�H�d��� ���

and update x� � ��x�. Here H�d�� is the right-invariant Haar measure on  and J��x� is
the Jacobian of � evaluated at x.

We say that H�d�� is a right-invariant Haar measure on  if for any measurable subset
A �  and �� � , H�A� � H�A��. Liu and Wu (1997) show that the group move leaves
� invariant, i.e., x� follows distribution � provided that x 	 �. This answers the question
raised in Section 2.1. For example, in order to make the move x � �x�� � � � � xd� � �x 

��x�� � � � � �xd�, � must be drawn from

p��� � j�jd�����x��

The standard Gibbs sampler corresponds to drawing an element from a translation group that
acts on one component of x. Conceivably, one can construct a MCMC algorithm for the
simulation of � by alternating a group move with a traditional (Metropolis or Gibbs sampler)
transition kernel.

In many cases, however, sampling of � in the group move is not easily achieved. One may
substitute instead by a Markov transition, say Tx���� ��H�d��, which leaves (1) invariant. An
additional requirement for such a transition is the transformation-invariance (Liu and Sabatti
1998), i.e.,

Tx��
�� �� � T

���
�

x
������ ���� ���

for all �, ��, and �� in . Examples in Sections 5 and 6 show how a single group move can
be applied to improve convergence of a standard Gibbs sampler. A more general concern,
however, is that how we can effectively use a set of possible group moves to improve a MCMC
sampler. The multigrid idea in numerical mathematics provides an answer. We give more
details in the next subsection.

The group move is a flexible generalization of the Gibbs sampler. It enables us to design
more efficient MCMC algorithms based on our understanding of the problems. Bush and
MacEachern (1996)’s cluster-moving algorithm for nonparametric Bayes computation is a
demonstration of this proposal. Moreover, as noted by some researchers, one can improve
efficiency of a Gibbs sampler by reparameterization (Gelfand et al., 1995; Nandram and Chen,
1996). However, when one has some knowledge on how to improve MCMC convergence
by reparametrizing the problem, she/he can usually achieve the same improvement without
actually doing the reparameterization. The trick is to specify a group of transformation, which
is often suggested by reparameterization consideration, and then use appropriate conditional
distributions derived from (1) for updating (Liu and Sabatti, 1998).

2.3. Multigrid Heuristics

In order to numerically solve a partial differential equation with a given boundary condition,
say�u � f with uj�D � g, one usually discretizes the domainD and solves the corresponding
difference equation using iterative methods. The most popular iterative algorithms are the
Gauss-Seidel method and the Jacobi method, of which the Gibbs sampler can be regarded as a
stochastic version. It is observed that if the discretization is too coarse, the solution will not
be accurate enough. Whereas if the discretization is too fine, the algorithm will converge very
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slowly. In particular, the smooth components of the target function will be approximated very
slowly because of the local nature of Gauss-Seidel or Jacobi moves. The multigrid idea offers
an ingenious solution: it suggests to apply iterative methods to different resolution levels of
discretization of the same problem, ranging from the coarsest to the finest (McCormick, 1989).

2.4. Multigrid Monte Carlo (MGMC) of Goodman and Sokal

Goodman and Sokal (1989) notice that the multigrid idea is also useful in Monte Carlo
simulation. Suppose drawing X 	 ��x� is of interest, where x � �x�� � � � � xd�. It is easiest
to understand Goodman and Sokal’s construction from the viewpoint of Gibbs sampling. Let
us take d � � for illustration. A standard Gibbs sampler consists of sweeping through 4
coordinates, each a time. However, we can also consider ‘‘coarser grid’’ moves:

x � �x�� x�� x�� x��� x� � �x� 
 c�� x� 
 c�� x�� x���

and
x� � �x��� x

�
�� x

�
�� x

�
��� x�� � �x��� x

�
�� x

�
� 
 c�� x

�
� 
 c���

where c� and c� must follow suitable conditional distributions which can be computed by using
(1). In these operations, we move �x�� x�� together and �x�� x�� together. An even coarser grid
corresponds to moving all the four coordinates together:

�x�� x�� x�� x��� x� � �x� 
 d� x� 
 d� x� 
 d� x� 
 d��

When it is infeasible to draw c or d from the required conditional distributions, any MCMC
move that satisfies condition (2) and leaves the conditional distribution invariant is appropriate.
Intuitively, these ‘‘coarse-grid" moves help improve convergence of the sampler when the
x’s are positively (and strongly) correlated. Shephard and Pitt (1997) provide a convincing
example of using multi-level moves to improve MCMC convergence in analyzing non-linear
state-space models.

More generally, a ‘‘coarser grid’’ in MGMC corresponds to a space Y of lower dimension
(say, the space of �x�� x�� in the above example). For any given reference point x� � X , One
can define two mappings: the prolongation PR: Y � X , an injection; and the restriction RE:
X � Y , a surjection. They are chosen so that PR(RE(x�))� x�. Therefore, PR has to depend
on x�. Based on features of PR and RE, we can define appropriate distributions to guide
MCMC moves. Let T � be a transition function on Y , which is so chosen that the transition

x�
RE
�� y

T�
�� y�

PR
��x�

leaves � invariant. This invariance can be achieved if T� leaves invariant the distribution
p�y� � ��PR�y��. Note that p�y� is in fact a conditional distribution depending on x�

through PR. This construction can be carried out recursively to build several levels of ‘‘coarser
grids" with decreasing dimensionality (say, Y�Z� � � �). Each level will process a conditional
distribution passed from its preceding level. Goodman and Sokal show that by alternating
coarser and finer grid moves, they can greatly accelerate the simulation of a class of statistical
physics models, where the improvements are similar to those achieved by deterministic
multigrid method in solving differential equations.

To understand the above abstract description, we show two ways of constructing PR
and RE for d � �. Let Y be a 2-dimensional space in both of the following constructions,
and let x� � �x��� � � � � x

�
�� be the reference point. In the first construction, we define

PR�c�� c�� � �c�� c�� x
�
�� x

�
��, ��c�� c�� � Y , and define RE�x� � �x�� x��. The distribution
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passed from X to Y is the conditional distribution ��c�� c� jx��� x
�
��. That is, if we can draw

�c�� c�� 	 ��� jx��� x
�
��, we can update x� to x� � �c�� c�� x

�
�� x

�
��. It is easily seen that this

procedure gives us a regular Gibbs sampling update.
Our second construction corresponds to the ‘‘coarser-grid" move described at the beginning

of this subsection. Define PR�c�� c�� � �x��
 c�� x
�
�
 c�� x

�
�
 c�� x

�
�
 c��, ��c�� c�� � Y , and

define

RE�x� �

�
�

�

�X
i��

�xi � x�i ��
�

�

�X
i��

�xi � x�i �

�
�

Then the distribution passed from X to Y is the conditional distribution

p�c�� c�� � ��x� 
 c�� x� 
 c�� x� 
 c�� x� 
 c���

2.5. Conditional Sintering Via Generalized Multigrid Monte Carlo

In a typical Bayesian inference problem, random variables involved in a MCMC simulation
usually do not possess a natural grid structure. The prescriptions of Goodman and Sokal for
constructing PR, RE, and related conditional distributions may no longer be appropriate or
necessary. Equipped with the group move construction, we can provide a generalization of
MGMC for application in Statistics. In particular, we formulate all the moves in a sampler
as actions of elements in a transformation group, and ‘‘coarse-grid" moves can be built by
considering several transformation groups.

For example, suppose x � �x�� � � � � xd�, and we segment x into k blocks:

x � �
block �z �� �

x�� � � � � xd��
block �z �� �

xd�	�� � � � � xd�� � � � �
block kz �� �

xdk��	�� � � � � xdk��

where dk � d. A multivariate transformation group  � f� � � � ���� � � � � �k�g can be defined
as acting on X block-wise:

��x� � ����
block �z �� �

x�� � � � � xd��� ���
block �z �� �

xd�	�� � � � � xd��� � � � � �k�
block kz �� �

xdk��	�� � � � � xdk���

The distribution passed from X to the space of  can be computed from (1).
To build one more level, we can further ‘‘coarsen" X to form m (m � k) bigger blocks,

and find a ‘‘coarser’’ group � � f� � � � ���� � � � � �m�g acting on X :

��x� � ����
block �z �� �

x�� � � � � xe��� � � � � �m�
block mz �� �

xem��	�� � � � � xem���

Starting with x� � X , a 3-level group move can be described by the following cycle: (a)
draw � from a proper Tx�1� �� (i.e., it leaves (1) invariant and satisfies (2)), where ‘‘1’’ is the
identity of the group, and update x� � ��x��; (b) draw � from a proper Tx��1� �� and update
x�� � ��x��; and finally, (c) draw �� from Tx���1� �

�� and update x� � ���x���. If x� 	 �, then
x� 	 � as well.
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3. DYNAMIC WEIGHTING SCHEME

In marginal sintering, reversible jumps are often needed for traversing different dimensional
spaces. However, it is common that no good proposal distributions can be found for such jumps
and the resulting acceptance probability is very small. Wong and Liang (1997) introduce a
dynamic weighting method for improving acceptance probability in such situations. The basic
idea of dynamic weighting is to augment the original sample space by a positive scalar w,
which can automatically adjust its own value to help the sampler move more freely. Similar
to the Metropolis algorithm, dynamic weighting starts with an arbitrary Markov transition
kernel T �x� y� from which the next possible move is ‘‘suggested.’’ Suppose the current state
is �X�W � � �x�w�, a R-type dynamic weighting move is defined as follows.

R-type Move

� Propose the next state Y � y by drawing Y 	 T �x� y�, and compute the Metropolis ratio

r�x� y� �
��y�T �y� x�

��x�T �x� y�
�

� Choose 	 � 	�w� x� 
 � and draw U 	 unif��� ��. Update �X�W � to �X��W �� by

�X ��W �� �

�
�y� wr�x� y� 
 	�� if U � wr
x�y�

�	wr
x�y� ;

�x�wwr
x�y�	�
� � Otherwise.

���

Although 	 can depend on the previous value of �X�W �, we find that choosing 	 
 �
works satisfactorily in all examples we have tried. Wong and Liang also propose a Q-type move
of which we will use a modified version in Section 5. But we omit its detailed description and
refer the reader to Liu et al. (1998). Since the R-type move violates the detailed balance, � is no
longer a stationary distribution of the chain. One justification of the method is the invariance
with respect to importance weighting (IWIW) principle (Wong and Liang 1997). That is, if one
starts with a correctly weighted pair �x�w�, then after a R-type transition the new pair is also
correctly weighted. Treating the �x�w� as those obtained from a standard importance sampling
can provide a consistent estimate (Liu et al., 1998). However, since the resulting weight
distribution is often long-tailed, Wong and Liang (1997) suggest that a stratified truncation
method be used to improve estimation. Liu et al. (1998) provide a theoretical support for the
method.

Stratified Truncation For Weighted Estimate: Suppose the goal is to estimate � �
E���X�. We first stratify the points of �x�w� drawn by the sampler according to the value of
��x� (i.e., within each stratum, function � should be as close to constant as possible). The sizes
of the strata are made comparable. The highest k� (usually k=1 or 2) of the w within each
stratum are then trimmed down to the value of the ����� k�th percentile of the weights in that
stratum. After truncation, we can use the weighted average of the ��xi� as an estimate of �.

Because the R-type move is apparently more ‘‘random’’ than a standard MCMC, it is a
good strategy to use the dynamic weighting only for crossing low-probability barriers, and to
reserve the Metropolis or Gibbs moves for local explorations.



Simulated Sintering 9

4. MODEL AVERAGING BY DYNAMICALLY WEIGHTED MCMC
We consider a simple graphical model involving 4 binary random variables: A�B�C, and

D. Of interest is to select among or to average over the three competing graphical models in
Figure 2 with incomplete observations. Let M be the model indicator. The three models can
be parameterized as

M � � � 	��	 � �	A� 	Bja� 	Cja� 	Dja�

M � � � 	��	 � �	A� 	Bja� 	Cja�b� 	Dja�

M � � � 	��	 � �	A� 	Bja� 	Cja�b� 	Dja�b�

where 	A is the marginal probability of A � �, and 	Xjy denotes the conditional probability of
X � � given the configuration Y � y. Thus, there are 7 free parameters in model one (M=1),
9 in model two, and 11 in model three. The prior distributions for all the 	’s are uniform.

A

D

B

C

A

D

M=3

B

C

A

D

B

C

M=1 M=2

Figure 2. Three competing graphical models for the binary random vector �A�B�C�D�. Observations
of the vector involve missing parts.

When model type changes, the dimensionality of 	 changes as well. Liu (1994) and York et
al. (1995) suggest to integrate out 	 when jumping between model types. York et al.’s method
amounts to the following steps:

� Draw ymis conditional on 	�m	 and yobs. For any configuration yi � �a� b� c� d�, we have

P �yi j 	� � 	aA���	A�
��a	bBja���	Bja�

��b	cCja�b���	Cja�b�
��c	dDja�b���	Dja�b�

��d� ���

which can be used to derive the conditional distribution of the missing data.
� Draw 	�m	 from P �	�m	 j M � m� y�, where y � �ymis� yobs�. This step involves

sampling from the Beta distributions for this example, but it may need an iterative
sampling scheme in general.

� Draw M from P �M j y� �
R
P �y j 	�m	�P �	�m	 jM � m�P �m�d	�m	.

In contrast, Liu’s (1994) procedure is equivalent to integrating out the 	 in the first step and
skipping the second step. The implementation of either procedure has to rely on the fact that
the 	 can be analytically integrated out when the complete data is given.

In many applications including some in probabilistic expert systems, however, getting an
explicit formula for the complete-data posterior of 	 is an insurmountable task. One is often
forced to prescribe jumps between different dimensional spaces. For example, to move from,
say, M=� to M=�, we need to inflate 	Dja to 	D j a�b. A simple proposal is to use the complete
data posterior of 	D j a�b. With this proposal, the reversible jump MCMC is equivalent to the
algorithm of York et al.

A less optimal, but more universal proposal can be a simple uniform distribution, i.e.,

P �	Dja � 	�D j a�b� � Unif�	�D j a�b�� and P �	D j a�b � 	�Dja� � Unif�	�Dja��
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In this case, the Metropolis ratio can be expressed as

r��� �� �
P �y j 	���	�M � ��P �	���	 jM � ��P �M � ��

P �y j 	��	�M � ��P �	��	 jM � ��P �M � ��
�

in which P �y j 	�m	� can be computed by using (4). Reversely, r��� �� � r��� ����. The
following generic algorithm shows how to use dynamic weighting in model selection problems.

A Generic Algorithm

[1] For given 	t, update the missing data; no change to the weight.
[2] For given imputed complete data,

� with probability 1�q�, do local update: 	t � 	t	�; no change to the weight and model
type (i.e., �mt	�� wt	��=�mt� wt�).

� with probability q�, propose mt � m�, where m�=mt  � equally likely.

- If m� � � or m� 
 �, no changes (i.e., �mt	�� 	t	�� wt	�� � �mt� 	t� wt�).
- Otherwise

(a) Propose an appropriate jump between spaces: 	t � 	� (e.g., uniform).
(b) Compute the Metropolis ratio rt=r�mt�m

�� and pt � wtrt�� 
wtrr�.
(c) Let U 	 unif��� ��, update

�mt	�� 	t	�� wt	�� �

�
�m�� 	�� wtrt 
 �� if U � pt;
�mt� 	t� wt�wtrt 
 ��� Otherwise.

[3] Go back to step 1 if needed.
[4] Use stratified truncation to estimate the quantities of interest.

To test our method, we simulated a dataset of size n � �� from model M � �, with
47% of the components missing at random. We then applied both the plain reversible jump
MCMC algorithm and the one with dynamic weighting based on the uniform jumping proposal.
For confirmation purpose, we have also implemented York et al.’s algorithm. After 300,000
iterations, the reversible jump MCMC gives an estimate for the model posterior probabilities
(.475,.220,.305), whereas York et al.’s method gives an estimate (0.49, 0.21, 0.30), which is
regarded as the ‘‘true" answer. The R-type dynamic weighting method with 300,000 iterations
and 95 percentile stratified truncation gives an estimate of (0.488,0.214,0.298).

As we have mentioned earlier, York et al.’s procedure is optimal for this problem.
However, The generic algorithm just described is applicable to a much larger class of model
selection problems such as the Bayesian CART, neural network training, and phylogenetic tree
constructions.

5. PROTEIN SEQUENCE ALIGNMENT AND CLASSIFICATION

In computational biology, it is often of interest to identify common patterns among a
diverse class of protein or DNA sequences (Lawrence et al., 1993; Liu, 1994). These common
patterns are usually called ‘‘motifs" in the literature. Suppose n protein sequences with lengths
l � �l�� � � � � ln� are believed to share a motif, i.e., every sequence in the dataset contains a
subsequence of length w that are ‘‘similar’’ to each other. The locations of these subsequences
and the motif pattern are unknown. In order to find a subtle motif (i.e., similarities are not very
strong), Lawrence et al. (1993) employ a simple model and the Gibbs sampler. The model
assumes that residues at the jth position (j=�� � � � � w) of the conserved segments in all the
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sequences can be described by a multinomial distribution with parameter 	j � �	��j� � � � � 	���j�,
where 	k�j is the frequency of amino acid type k in position j. Whereas all the residues outside
the conserved segments can be described by a common multinomial model with parameter 	�=
�	���� � � � � 	�����. Residues in all the sequences are assumed to be independent of each other.
Although naively simple, the model nevertheless captures a key aspect of the alignment task.
Improvements on the model and generalizations of Lawrence et al.’s algorithm can be found in
Liu, Neuwald, and Lawrence (1995).

Let the sequence data be R � �ri�k, i=�� � � � � n, k=�� � � � � lk). The alignment vector
A � fa�� � � � � ang indicates the starting position of the conserved segment in each sequence.
The notation R��A� refers to the set of all residues excluding those in the conserved segments,
i.e., R��A� � �ri�j� j � ai or � ai 
 w�. We use h���, whose value is a 20-dim vector, as the
function that counts the numbers of different amino acid types in a given set. When any scalar-
operation is applied to vectors, it is done component-wise. For example, if x � �x�� � � � � x���,
then 	xj �

Q��
k�� 	

xk
k�j , and �x� �

Q��
k�� �xk�. With these notations, the model likelihood can

be expressed as

P �R j 	�� � � � � 	w� 	�� A� � 	
h
R��A��

�

wY
j��

	
h
ri�ai	j��� i�������n�

j �

The prior for A is taken to be uniform, and the prior for 	j be a common Dirichlet(�) with
� � ���� � � � � ����. Let k�k �

P��
k�� �k, we have

P �R�A� �

Qw
j�� �h�ri�ai	j�� � i � �� � � � � n� 
 ��

�n
 k�k�w

�

�
�k�k�

���

	w	�

�
�h�R��A�� 
 ��

�klk � nw 
 k�k�
�

�

��A	
�

where ��A	 is the total number of possible alignments. A Gibbs sampler can be applied to
draw from P �A j R� (see Liu et al. 1995 for more details).

It is often the case, however, that the sequences in consideration fall into two classes
and each class has its own motif. To account for this complication, we introduce variable
M : M � � stands for the one-class model and M � � for the two-class model, and assume
P �M=�� � P �M=�� a priori. One of our goals is to compute P �M j R�. When M=2,
we introduce the class indicator vector C � �c�� � � � � cn�, with ci � � or 2, and use a prior
P �C j M � �� � �, with the restriction that the minimal class size has to be 3. We let n�
be the size for class one and n� � n � n� for class two. When M=1, we let ci=� for all i.
Assuming that A is independent of M a priori, we have

P �R�C�A jM � �� �

Qw
j����h�ri�ai	j�� � ci � �� 
 ���h�ri�ai	j�� � ci � �� 
 ��	

�n� 
 k�k�w�n� 
 k�k�w

�

�
�k�k�

���

	�w	�

�
�h�R��A�� 
 ��

�klk � nw 
 k�k�
�

�

��A	
�

�

�n�� � n�	n
� � �

�

Our sampling scheme consists of the following steps

Align: For given C, we can use the predictive updating rule (Lawrence et al. 1993) to update the
alignment vector A. Namely, for � i, we update ai based on P �ai jC�A�i� R�M�.
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Fragment: Let A � � fa�  �� � � � � an  �g; propose a move from A to A� � or A
 � with equal
probability and accept or reject the move based on the Metropolis ratio forP �A j C�R�M�.
This can be seen as a step of group move.

Classify: When M � �, we update C by cycling through draws from P �ci j C�i� A�R�M � ��,
conditional on A.

Jump: Conditional A, we jump between M � � and M � � based on the Metropolis ratio for
P �M�C j A�R�. The proposal distribution from M � � to �M � �� C� is uniform on all
allowable configuration of C. We use dynamic weighting to help the jump.

In our algorithm, a ‘‘cycle" consists of 8 rounds of alignment iterations followed by one
step of fragmentation and 2 rounds of classification iterations. The fragmentation step is a
group move with the use of a translation group. This step greatly helps the convergence of
alignment (Liu, 1994). After every cycle, a model jump step is conducted, with the help of a
Q-type dynamic weighting (Wong and Liang, 1997).

We applied our algorithm to the helix-turn-helix (HTH) data set of Lawrence et al. (1993),
which consists of 30 protein sequences with lengths ranging from 91 to 524. This set represents
a large class of sequence-specific DNA binding structures involved in gene regulation. The
correct locations of the motif in all the sequences were known from x-ray and NMR structures
or other experiments. The length of the motif was also determined as 	20. With w=��, our
algorithm (with 2,500 cycles) correctly identified all the motif locations. It provided a weighted
estimate (after truncation at 95%) of the posterior probability of M=� as �p �0.001.

We also applied the algorithm to another dataset consisting of the first 20 sequences in the
HTH dataset and 10 new randomly shuffled sequences. In each of the 10 random sequences,
we inserted a conserved motif of length 15. The motif segment is produced from the pattern
‘‘ANHLPEQYTRGIVAK" with each position having probability 0.3 to be randomly altered.
For this new data set, the weighted estimate (after truncation at 95%) of the posterior probability
of M=� is 0.94, consistent with the simulation. Conditional on M � �, the algorithm (with
5000 cycles) correctly classified the sequences and correctly identified the locations of the
conserved segments accordingly. Without using dynamic weighting, the sampler induces a
virtually reducible Markov chain. Acceptance probability for the reversible jump between
M � � and M � � is in the range of �����.

6. INFERENCE WITH MULTIVARIATE T-DISTRIBUTION
Iterative methods for inference with t-distribution has been considered by C. Liu et al.

(1997) and van Dyke and Meng (1998). We show how their procedure corresponds to one step
of the group move introduced in Section 2.3.

Let yi, i � �� � � � � n, be iid observations from a d-dimensional t������ distribution, with
� and � unknown. The model can be reformulated to a missing data problem in which qi 	 ��

�
can be regarded as missing data and �yi j qi	 	 N ��� q��

i �� the observed data. The joint
posterior distribution of ����� q� is

������ q� � j�j�
�
�

nY
i��

q
�	d
� ��

i expf�
�

�

nX
i��

qi�� 
 �yi � �������yi � ���g�

and a Gibbs sampler can be easily applied. Consider the group of scale transformation  in
which

���� q�� � � � � qn� � ���� �q�� � � � � �qn�� for � � �

The required Haar measure is H�d��=d�� and the Jacobian is J���� q�=�d
d	��	�	n. Using
formula (1), we find that the conditional distribution of � is ��

n���
Pn

i�� qi�. Thus, in
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addition to the regular Gibbs sampling, we can add a step of sampling � from this conditional
distribution and updating the q and � to �q and ��. This step corresponds to the parameter
expansion scheme discussed in C. Liu et al. (1997), van Dyke and Meng (1998), and Liu and
Wu (1997).

We have experimented with different dimensional problems (d=1, 4, 10), different numbers
of observations, and different degrees of freedom (� � �� � � � � �). The rescaling step was helpful
for moderate values of �; but we did not observe a significant increase in efficiency for large
�’s, which is consistent with our understanding, for the reason that the target is almost a
Gaussian likelihood when � is large. Applications of the group move to other examples such
as inferences in generalized linear models, hierarchical models, and the state space models are
considered in Liu and Sabatti (1998).

7. DISCUSSION

We have presented two forms of simulated sintering for designing improved MCMC
algorithms and discussed the use of dynamic weighting for jumping across low-probability
barriers. The comparison between the two types of sintering resembles that between Gibbs
sampling and the Metropolis algorithm. If the problems of interest possess appropriate
structures, conditional sintering can be very effective, as all the moves are based on appropriate
conditional distributions and no rejection is incurred. In addition, all the samples (after burn-in)
in conditional sintering can be used in the final estimation. In contrast, only those samples
conditional on I � � in marginal sintering follow �. On the other hand, marginal sintering is
more flexible and can accommodate a much larger class of problems. With the aid of dynamic
weighting, its efficiency can be greatly improved.

What we have outlined in this article are a few guiding principles for a general methodology.
A great deal of effort from the user is still required for successfully applying simulated sintering
to a particular problem. A good distribution family � and a set of effective MCMC moves
are the keys to a good sintering method. Although our numerical results obtained to date are
favorable, we are still far from a complete understanding of the potential and subtleties of the
method.

We have only used a single group move in the alignment and t-distribution examples. The
multi-level construction of conditional sintering for statistical problems has not been studied.
Marginal sintering/dynamic weighting has only been applied to a simple graphical model
example and the alignment example in which the distribution family � is naturally induced by
the problem. A similar algorithm for mixture models and Bayesian CART seems to be feasible
but has not yet been implemented. Marginal sintering can also be constructed purely from
computational concerns. More precisely, a complicated problem can often be ‘‘built up’’ from
a sequence of simpler structures which are easier to study (Wong and Liang, 1997). A marginal
sintering procedure that takes advantage of these simpler structures should be desirable.
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