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ensures good convergence for the expectation of any bounded function. Can the authors demonstrate
a similar result for their procedure? We believe that a requirement of asymptotic normality can be used
to clarify large subsections of the literature on Bayesian simulations. It can, for example, suggest situations
where the Gibbs sampler would converge within a practical time limit.

We congratulate the authors on some outstandingly novel ideas.

Jun S. Liu and Donald B. Rubin (Harvard University, Cambridge): Newton and Raftery’s examples
appear to provide striking evidence for the potential utility of the weighted likelihood bootstrap (WLB)
for simulating non-normal likelihoods or posterior distributions, but their arguments do not provide
explanations for this subasymptotic effect. Their implicit claim is that the WLB tracks the posited
likelihood of 6, whereas it approximately tracks the posterior distribution of 6 under a discrete
approximation to the model that generated the data, irrespective of the posited model!

Consider two likelihoods, normal(@, 1) and exponential(f), where 6 is the population mean, with fixed
data. For both posited likelihoods, the value of 6 being simulated is the weighted mean of the sample
values, where the weights are independent of the posited likelihood; hence, the WLB distribution of
0 is the same when the likelihood is normal as when it is exponential. Because the implied WLB
specification for the data is a discrete approximation to the model that generated the data, the WLB
distribution of 6 tends to follow the shape of the posited likelihood for # when the empirical distribution
of the data approximates the model underlying this likelihood. Thus, regardless of which likelihood
is posited, if the data look like a normal sample (or exponential sample), the WLB distribution of 6
will tend to look like the posterior distribution of 6 under a normal likelihood (or exponential likelihood)
with a diffuse prior on 6. For large n, both WLB distributions look normal but will only have the correct
scales if o« = 1, thus implying that the Bayesian bootstrap (BB) specification is the only asymptotically
acceptable weight distribution. Because this large sample restriction on the WLB holds in general, in
the following general argument we assume a BB weight distribution.

When doing the WLB, a distribution function P with point masses on the observed data points is
generated by the BB, denoted P~ [ P|X, BB]. Let M,={f;: 6€6} denote the posited model and &
the space of all distributions. The maximization step in the WLB is equivalent to finding a 6 such that
the distance from f; to P is minimized. The model assumption M, affects the WLB only by inducing
a particular mapping from & to the parameter space ©, i.e. =0(P). Conditional on a fixed data set,
and given a fixed function 6, the WLB distribution of 6 is the same for all posited models that induce
the same function 6. If the space & is partitioned into different classes of models indexed by M, then

[6(P)|X, BB] = | [0(P)|X, BB, M] [M|X, BB] am= | (0P |x, M1 [M|X, BB] dM,

because [6(P)|X, BB, M]=[0(P)|X, M] for all M with positive support for the observed X. Thus,
the WLB draws 6 from a posterior distribution that mixes over all possible models under a diffuse
prior. If models that are relatively well supported by the data under the BB specification, i.e. models
with relatively large values of [M|X, BB], yield posterior distributions [6(P)|X, M ] similar to [§(P) |X,
M,], then the WLB distribution of 8 will be close to [6(P)|X, M,], which is the targeted posterior
distribution of 6.

Albert Y. Lo (State University of New York, Buffalo): The paper demonstrates advantages of the
weighted likelihood bootstrap (WLB) for posterior inference in smooth parametric models. The choice
of non-Dirichlet weights, i.e. non-exponential Y;, affects the quality of the WLB approximations and
is particularly interesting. It turns out that the accuracy of the WLB depends on the weights only through
the coefficient of skewness of Y. (This is also found when using non-exponential weights in Rubin’s
(1981) Bayesian bootstrap; see Lo (1991, 1993).) In the WLB setting, the maximization of the weighted
likelihood amounts to finding the roots 6* of L Y;l/(f)=0, where I/ (6)=(3/80)log f(X;|6) and
Y,, ..., Y, are independent and identically distributed non-negative random variables. A Taylor
argument gives

o(Y) ' n2 L@ O* -0 =n""2 E{Y,/a(YD} I @) + R, (23)

Conditional on the data, the distribution of n~"2£{Y;/0(Y,)}//(®){n ' £ I/ ()*}~"2, and hence of
o(Y,)~'n'2I,(B)/2(0* — 6), has an expansion
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