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1. Introduction

The Gibbs sampler is an iterative simulation scheme
for generating samples that converge to draws from
a target distribution π(X) of random variable X.
An iterative simulation scheme is used because di-
rect simulation from the target distribution can
not be easily implemented. To define the iterative
Gibbs sampler, partition the components of X as
X = (x1, . . . , xd) where xi is gi-dimensional, and

thus X is a g =
∑d

i=1 gi dimensional random vec-
tor. The Gibbs sampler is easy to implement when
the set of d conditional distributions,

π(xi | X[−i]) i = 1, 2, . . . , d, (1)

where X[−i] denotes {xj , j ̸= i}, are easy to draw
from. The basic idea of the scheme is to construct
a Markov chain with the target π(X) as its equi-
librium distribution. The chain is initiated by a
draw from some starting density p0(X) (or a fixed
point), then each variate xi is visited and updated
by a sample drawn from the conditional distribu-
tion π(xi | X[−i]). For example, the most widely
used visiting scheme is a systematic one that vis-
its each variate in turn. Detailed descriptions are
found in Geman and Geman (1984), Gelfand and
Smith (1990), and a variety of other recent refer-
ences. Under certain regularity conditions, as long
as each variate is visited infinitely often, the distri-
bution of X defined in such a manner will converge
to π(X), and the rate is usually geometric (Geman
and Geman 1984; Tanner and Wong 1987; Schervich
and Carlin 1991; Liu, Wong and Kong 1991).

However, despite the wealth of theoretical re-
sults on the rate of convergence given in previously
mentioned papers, no practically applicable crite-
ria for stopping the the sequence of iterations ap-
pear there. In practice, Tanner and Wong (1987),
Gelfand and Smith (1990) proposed some useful ex-
ploratory techniques to monitor the convergence vi-
sually by plotting marginal densities, and by observ-

ing the stability of certain summary variables like
the means or variances of components of X. How-
ever, their techniques are questionable for use with
high dimensional problems, which are common in
application. An interesting example in Gelman and
Rubin (1991a) indicates that we can be seriously
misled by such exploratory techniques.

One applicable proposal for monitoring conver-
gence is using independent multiple chains. Specifi-
cally, m Markov chains {X(j,t), j = 1, 2, . . . ,m; t =
0, 1, 2, . . .} are independently simulated with start-
ing points X(j,0) ∼ p0(X), j = 1, 2, . . . ,m, where
it is required that the starting distribution p0(X)
is overdispersed relative to the target one, and
that such “overdispersion” is preserved from iter-
ation to iteration. Let pt(X) be the distribution of
X(j,t), where for the same t, the parallel samples are
i.i.d. Gelman and Rubin (1991b), by using multiple
chains, propose a method based on a comparison,
for each scalar function of X about which inferences
are desired, of the “within” sample variance for each
parallel chain and the “between” sample variance of
different chains. It provides a “conservative” infer-
ence for the distribution of these components and
gives a factor by which this distribution might be-
come sharper if the simulations were continued in-
definitely.

Here, we define a scalar global control variable
based on samples drawn, and thereby reduce the as-
sessment of the convergence of a high dimensional
Gibbs sampling procedure to that of a one dimen-
sional random variable. The constructed control
variable incorporates information on the overall per-
formance of convergence of the full joint distribu-
tion of X so that the judgement made based on our
method is more encompassing than one based on
subcomponents. The proposed control variable can
be combined with the use of Gelman and Rubin’s
method to provide a stopping criteria. In Section
2, the control variable is constructed and justified
by simple theoretical arguments; Section 3 provides
an example to illustrate our method; Section 4 con-
cludes with a brief discussion.



2. Assessing the convergence by a vari-
ational control variable

At iteration t of the Gibbs sampler, we construct
a set of m(m − 1) values of the control variable U ,
each using two different parallel chains i and j,

U (i,j,t) =
π(X(j,t))

π(X(i,t))
· T (X

(i,t) | X(j,t−1))

T (X(j,t) | X(j,t−1))
(2)

where the ratio of target densities at X(j,t) and
X(i,t) can be obtained from knowing only the con-
ditional densities (Besag 1974),

π(X)

π(Y )
=

d∏
p=1

π(xp | x1, . . . , xp−1, yp+1, . . . , yd)

π(yp | x1, . . . , xp−1, yp+1, . . . , yd)
,

and T (X | Y ) represents the conditional probability
density for the transition from state Y to state X in
one step of the Gibbs sampler scheme such that

pn(X) =

∫
T (X | Y )pn−1(Y )dY.

Typically when a systematic visiting scheme for the
variables is used,

T (X | Y ) =

d∏
p=1

π(xp|x1, . . . , xp−1, yp+1, . . . , yd).

In the case of d = 2, (i.e., that special case of data
augmentation, Tanner and Wong 1987), (2) has a
simpler form

U (i,j,t) =
π(x

(j,t−1)
2 | x(i,t)

1 )

π(x
(j,t−1)
2 | x(j,t)

1 )
. (3)

When the transition function has the same sup-
port space as the target distribution for the Markov
chain, which is true for most of applications of the
Gibbs sampler, U (i,j,t) in (2) has the following prop-
erty which reveals information on convergence:

E0(U
(i,j,t)) = V arπ(

pt(X)

π(X)
) + 1. (4)

The expectation on the left hand side of (4) is taken
under the initial distribution and the variance on the
right hand side is taken under the target distribu-
tion. Therefore, the expectation of U (i,j,t) is an un-
biased estimates of a relative distance between dis-
tribution pt and the target distribution π. For fixed
t, the m(m−1) values of and i ̸= j, i, j = 1, 2, . . . ,m,
U (i,j,t) are identically distributed with cumulative
distribution function F (t)(u).

Proof of (4): Since (X(i,t−1), X(i,t)) and
(X(j,t−1), X(j,t)) are independent for i ̸= j, we have

E

{
π(X(j,t))T (X(i,t) | X(j,t−1))

π(X(i,t))T (X(j,t) | X(j,t−1))

}
=

∫ ∫ ∫
π(y)T (x|z)
π(x)T (y|z)

pt(x)T (y|z)pt−1(z)dxdydz

=

∫ ∫
pt(x)T (x|z)pn−1(z)

π(x)
dzdx =

∫
p2t (x)

π(x)
dx

= 1 +

∫
(
pt(x)

π(x)
− 1)2π(x)dx. 2

From the above argument one may be happy to
have such a wonderful thing as the control variable
U by estimating the expectation of which one can
tell the distance between the two distributions. It is
indeed wonderful when the variance of U is tolerable,
which includes the cases where distributions have
lower bounds larger than zero, and some other cases.
However in many real examples, the variance of U
can be exceedingly large, including possibly infinity.
Thus a direct use of the sample mean and variance
of U is usually avoided when one is not sure about
its variance level. Taking logarithm of U is not a
bad idea. It is observed that

E0{log(U (i,j,t))}

= E0

[
log{T (X

(i,t) | X(j,t−1))

T (X(j,t) | X(j,t−1))
}
]

= −2I(X(t), X(t−1)) (5)

in which I(X,Y ) for any pair of random variables
is a measure of the dependence called symmetrized
mutual information. It is generally defined as

I(X,Y ) =
1

2

[
EJ

(
log

f(X,Y )

fX(X)fY (Y )

)
+ EI

(
log

fX(X)fY (Y )

f(X,Y )

)]
≥ 0,

where fX(x) and fY (y) are marginal distributions of
X and Y respectively, “EJ” indicates the expecta-
tion taken under the joint distribution f(x, y), and
“EI” the expectation taken under independent mea-
sure fX(x)fY (y). The second equality of (5) can be
justified by that if (y, z) are consecutive draws from
one simulation chain, and x is from another inde-
pendent chain, then

E0

[
log

T (x | z)
T (y | z)

]
=

∫
log{T (x|z)}pt(x)pt−1(z) dxdz



−
∫

log{T (y|z)}pt(y, z)dydz

= −2I(X(t), X(t−1))

where pt(y, z) = T (y | z)pt−1(z), is the joint distri-
bution of t− 1 and tth draws from a chain.

For reasonable density functions, the variance
of log(U) is well bounded, which is a direct con-
sequence of the fact that∫

log2{f(x)}f(x)dx < ∞

for those densities with tails not fatter than a
Cauchy density. Typically, since E(U) exists as we
have shown, variance of log(U) is bounded. Our
second example in Section 3 indicates the useful-
ness of this transformed statistic. Another approach
might be the assessment of the convergence of the
estimated F (t)(u) through Smirnov test statistic
(Smirnov 1939) or by looking at the sequential plots
of the sample c.d.f. (cumulative distribution func-
tion). Another way is to take logarithmic transfor-
mation of the variable U so as to result a more stable
variance. A diagnosing procedure for assessing the
convergence based on above facts is proposed as the
following three steps.

First Calculate control samples {U (i,j,t) : i ̸=
j, i, j = 1, . . . ,m} or its subset at each iter-
ation t = 1, 2, . . . , 2n;

Second Plot the empirical distributions, i.e., sam-
ple cumulative distribution function of the vari-
ational control variable sequentially based on
samples from from later half of the iterations,
t = n+ 1, n+ 2, . . . , 2n.

Third Use the idea of Gelman and Rubin (1991b)
on the control variable U or its transformation
to judge its distributional convergence. The
simplest way is to compare the within and
between variances of U in m/2 independent
groups of paired series. More efficient methods
use all m(m − 1) values of U and take in ac-
count the dependence structure among the U ’s
that share sequences.

If there are any signs in above steps indicating
the non-stationarity of the variational control vari-
able, the Gibbs sampling iterations should not be
terminated. It is also noted that in steps 2, samples
from different iterations can be aggregated so as to
improve the power of detecting although we lose the
independence between samples by doing so.

3. Example: An Ising Model

As an illustration of our diagnosing procedure of the
Gibbs sampler, a three dimensional (N × N × N)
Ising model for N = 10 is investigated. The model
is used to describe a system of particles with each
occupying one grid point of a 10 × 10 × 10 cube.
Let u or v denote the vertices of the 3-dim lat-
tice, having form u = (i, j, k), i, j, k,= 1, . . . , N . A
random variable xu, taking values either +1 or −1,
is used to describe the spin of the particle located
at position u in the cube. To be a bit more real-
istic than assuming independence between X’s, a
nearest-neighbor dependence structure proposed by
the physicist Ising is employed. The full joint dis-
tribution of X = {xu; u are vertices} for the model
can be written as

π(X | β) ∝ exp{β
∑

neighbors

xuxv} (6)

The full conditional distribution of xu is rather sim-
ple and neglected here. In the model β, taken as
0.25 in this investigation, is usually referred as a
“temperature” parameter in statistical physics.

The value of the nearest-neighbor correlation
function defined as

ρ(β) = E{ 1

3N2(N − 1)

∑
neighbors

xuxv} (7)

is of special physical interests. However, since no
simple analytical function exists for our understand-
ing, a simulation study is desirable. The Gibbs sam-
pler can be employed because of the simple nearest-
neighbor dependence structure of the field.

Our Gibbs sampling scheme starts with m = 40
parallel chains in which the first 20 series start from
the distribution (6) with β = 0, that is, xi,j,k’s are
independently drawn from Bernoulli(0.5); and the
rest 20 start with all xi,j,k = 1. At each iteration
t of the Gibbs sampler, the sample means of ρ in
(7) based on the first 20 series and the last 20 are
computed respectively together with their estimated
variances. Then two series of means of the param-
eter of interests with estimated variances, denoted

by {ρ̄(t)i , s
(t)
i : t = n + 1, . . . , 2n} for i = 1, 2, are

obtained, and the mean series are plotted in Fig. 1.
Here the latter half of the simulated sequences are
used for inference. An adapted reduction coefficient
is produced for this “two sample problem” with esti-

mated variances for each data point ρ̄
(t)
i in the same

spirit of Gelman and Rubin (1991):

R̂2n = [
4n− 2

4n− 1
+

3B

(4n− 1)W
]1/2 (8)



where W = (1/2n)
∑

[s
(t)
1 + s

(t)
2 + (n− 1)(s21 + s22))

with 4n − 2 degrees of freedom, s21 and s22 are the

within sample variances of {ρ̄(t)1 : t = n+ 1, . . . , 2n}
and {ρ̄(t)2 : t = n + 1, . . . , 2n}, respectively; B/n =
(¯̄ρ1 − ¯̄ρ2)

2/2 with 1 degree of freedom, ¯̄ρ1 and ¯̄ρ2
are the sample means of {ρ̄(t)1 : t = n + 1, . . . , 2n}
and {ρ̄(t)2 : t = n + 1, . . . , 2n}, respectively. A fact
motivating the construction of such a “coefficient”,
under stationarity assumption, is that

E(
(n− 1)(s21 + s22)

2n
+

B

n
) = var(ρ̄i) =

var(ρ)

400
.

Thus R̂2n is typically larger than one when the cur-
rent distribution is “overdispersed” relative to the
target distribution, and will converge to one when
the number of iteration increases, and thus provides
an analytic indicator for convergence. Specially, B

2n
is used to take care of the variation of the esti-
mated means. The interested readers are referred
to Gelman and Rubin (1991) for detailed properties
of this statistic. The calculated R̂ for this exam-
ple is shown in Fig. 3, which indicates that about
100 iterations are sufficient for doing inference on
the nearest-neighbor correlation parameter ρ. This
finding is in accordance with the plot of ρ in Fig. 1.
However, are we sure that the whole distribution for
X is enough close to the target distribution?

An analysis on the control variable U , more spe-
cially the mean and variance of log(U), reveals a
surprising fact as being demonstrated in Fig. 2 and
3: at least 1000 iterations are needed to bring the
joint distribution of {xu, all u} reasonably close to
the target one. Our proposed method starts with
computations of two groups of log(U)’s for each it-
eration t, using the first 20 series and the last 20
series respectively so that each group is consists of
20× 19 samples of log(U). Then two sample means
of log(U) at iteration t for both groups are then
calculated with their variances estimated by an es-
timator

max{
s
(t)
U

(m/2)(m/2− 1)
[1 + (m/2− 2)(r̂I + r̂II)], 0},

where s
(t)
U is the sample variance in respective group;

r̂I is the sample estimate of correlation between
log(U (i,j,t)) and log(U (i,k,t)), while r̂II the estimate
of that between log(U (i,j,t)) and log(U (k,j,t))) for i ̸=
j ̸= k within each group. This estimator for vari-
ances is valid because within each group there are
only two types of dependence between log(U)’s as
being estimated by r̂I and r̂II . For different i, j, k, l,
U (i,j,t) is typically independent of U (k,l,t). Thus sim-

Figure 1: The series of the sample means of the
nearest-neighbor correlation coefficient ρ. The solid
line is the sample means of the first 20 series drawn
by the Gibbs sampler; the dotted line is the sample
means of the last 20 series.

ilar to the case of estimating nearest-neighbor corre-
lation ρ, we obtain two independent series of sample
means of log(U) from two groups at each iteration t
with estimated variances. Two series of such sample
means are plotted in Fig. 2, and the corresponding
reduction coefficient R̂ calculated by (8) is shown in
Fig 3. Both plots strikingly demonstrate that sub-
stantially more iterations are needed to attain over-
all convergence of the joint distribution than those
needed for inference on ρ.

4. Discussion

To be more conservative in judging the convergence
of the distribution of the control variable U , a simple
Smirnov statistic measuring the difference between
F (n)(u) and F (n′)(u) can be constructed by sepa-
rating the m parallel simulation series into 2 groups
with equal size. Thus at time t = n and t = n′

we have estimated sample c.d.f. F
(n)
1 (u), F

(n)
2 (u),

F
(n′)
1 (u) and F

(n′)
2 (u) using each group respectively.

F
(n)
1 (u) and F

(n)
2 (u) are identically distributed, so



Figure 2: The solid line is the sample means of all
the log(U)’s created by the first 20 series drawn by
the Gibbs sampler; the dotted line is the sample
means of those created by the last 20 series.

Figure 3: The reduction coefficients for ρ (the thick
line) and for log(U)’s (the thin line).



are F
(n′)
1 (u) and F

(n′)
2 (u). F

(n)
1 (u) and F

(n′)
2 (u) are

independent, so are F
(n′)
1 (u) and F

(n)
2 (u). The two

Smirnov statistics

D1(n, n
′) = max | F (n)

1 (u)− F
(n′)
2 (u) |

and

D2(n, n
′) = max | F (n)

2 (u)− F
(n′)
1 (u) |

have the same distribution and when F (n)(u) =
F (n′)(u) = F (u), the asymptotic distribution of
D1(n, n

′) (or D2(n, n
′)) can be found, for example,

in Lehmann (1975). However one may lose power
and is less efficient by doing so. Where possible the
graph of Fn(x) (the sample c.d.f.) should be plot-
ted and inspected since this will reveal in a graphic
way the nature of any substantial departure from
the hypothesis ( in our case, F (n)(u) = F (n′)(u) ).

It is not entirely clear how the quantitative differ-
ence between pn(X) and π(X) is related to the dis-
tributional variation of F (n)(u). The sample mean
of U (i,j,n) provides a quantitative measurement of
the difference between pn(x) and π(x). This sug-
gests that examining the empirical distribution or
the transformation of U are right ways to go. For
example, one may wish to do logarithm transforma-
tion to the control variable U so as to make it more
stable, and examine the distributional convergence
of log(U). Whereas, the nice expectation formula
(4) of U is substituted by the mutual information
(5) for log(U). In this situation, a more sophisti-
cated understanding is required.
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