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A Theoretical Framework for

Sequential Importance Sampling and

Resampling

Jun S� Liu�� Rong Chen� and Tanya Logvi�
nenko

Abstract

Sequential importance sampling �SIS� was �rst developed in ����s

for molecular simulation	 Although half a century has passed by


the SIS methodology remains one of the most versatile and power�

ful means for the simulation and optimization of chain polymers	 In

����s
 statisticians reinvented the same methodology in a more gen�

eral form
 brought forth a number of enhancements
 and applied it to

a much broader spectrum of problems	 In this article
 along with a

historical account of the methodology
 we present a theoretical frame�

work for the SIS with resampling	 We emphasize the basic concept

of a weighted sample
 the fundamental idea of sequential build�up
 the

important technique of reweighting and resampling
 and various other
methods
 e	g	
 the partial rejection control and marginalization
 for im�

proving a sequential importance sampler	 To illustrate
 we show how

to analyze a state�space model with SIS and how to treat the con�

ditional dynamic linear model with marginalization
 resampling
 and

rejection control techniques	 We report some simulation results for

two�dimensional target tracking in clutter	

� Introduction

Monte Carlo �lters �MCF� can be loosely de�ned as a set of methods that use
Monte Carlo simulation to solve on�line estimation and prediction problems
in a dynamic system� Compared with traditional �ltering methods� simple�
�exible� yet powerful MCF techniques provide e�ective means to overcome
computational di	culties in dealing with nonlinear dynamic models� One
of the key elements among all the MCF techniques is a recursive use of the
importance sampling principle� which leads to a more precise name� sequential
importance sampling �SIS�� for the techniques focused on by this article�

�Address for correspondence and reprints� Department of Statistics� Sequoia Hall� Stan�

ford University� Stanford� CA ����	���
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The earliest SIS method can be dated back to 
�
�s �Hammersley and
Morton 
�
�� Rosenbluth and Rosenbluth 
�

� when scientists were inter�
ested in the computer simulation of a long�chain polymer� The polymer
model analyzed by these pioneers was the self�avoid �random� walk �SAW�
on a d�dimensional lattice space �Kremer and Binder 
����� Figure 
 shows
the realization of a SAW of length N � 
�� �with 

� nodes�links�� on a ��D
lattice space� Each node on the chain represents the position of a monomer�

A Self-Avoiding Walk of Length N=150

Figure 
� A SAW of length 

� on a ��D lattice space� Without loss of
generality� we always let the chain start at ��� �� and take its �rst step to
��� 
��

For a given spatial con�guration of this polymer� say� xN � �x�� � � � � xN ��
where xj denotes the position of the jth monomer� one can compute the poten�
tial energy U�xN� of this polymer according to natural laws in chemistry and
physics� By the basic principle of statistical physics� the probability of seeing
such a con�guration �in nature� then follows the Boltzmann distribution

�N �xN� �



ZN
expf�U�xN��kTg�

where ZN is the normalizing constant �also called the partition function��
Temperature T and the Boltzmann constant k are assumed known� One is
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often interested in estimating ZN or some averages� e�g�� the mean squared
extension E�kxN � x�k�� regarding this polymer system�
The simple energy function used by �Hammersley and Morton 
�
�� Rosen�

bluth and Rosenbluth 
�

� in their polymer studies is U�xN� � �� i�e��
�N �xN � is uniform on all allowable �self�avoiding� con�gurations� However�
generating a long SAW uniformly is not as simple as it �rst appears� The
most straightforward approach� i�e�� the one that directly generates simple
random walks and accepts only those that do not self�cross� becomes ine�ec�
tive very rapidly �it will take about 
� million independently generated simple
random walks in order to get a self�avoiding one of length 
���� Another vi�
able approach is to use the Metropolis algorithm �Metropolis� Rosenbluth�
Rosenbluth� Teller and Teller 
�
��� but the result was not very satisfactory
for the SAW simulation because of the highly local�nature of the Metropolis
move �Kremer and Binder 
����� The most e�ective Markov chain based
Monte Carlo method is the �slithering snake� method �Kremer and Binder

���� which treats the SAW chain as a snake moving on the lattice space�
However� this approach can not be generalized to handle non�constant energy
function U�xN�� The growth Monte Carlo method of Hammersley and Mor�
ton �
�
�� and Rosenbluth and Rosenbluth �
�

� is rather simple� Instead
of treating the whole con�guration xN directly� they propose to sequentially
build up this con�guration by adding one monomer a time� just like growing
a molecule� To compensate for the bias induced by the growth Monte Carlo�
an �importance weight� is computed and attached to the resulting polymer�

Although it has been nearly half a century� the growth Monte Carlo to�
gether with its variations and improvements �Kremer and Binder 
���� Grass�
berger 
���� Wall and Erpenbeck 
�
�a� remains as the most attractive and
versatile method for polymer simulations� As we will explain in the next sec�
tion� the key component of this method is the sequential importance sampling
principle� which can be very generally and simply formulated and applied to
di�erent problems� Indeed� the MCF techniques emerged recently and inde�
pendently from the �elds of statistics and engineering follow exactly the same
principle� The applications of these techniques include computer vision �Isard
and Blake 
����� deconvolution of digital signals �Liu and Chen 
��
�� �nan�
cial data modeling �Pitt and Shephard 
����� genetic linkage analysis �Irwing�
Cox and Kong 
����� radar signal analysis �Gordon� Salmon and Smith 
�����
medical diagnosis �Berzuini� Best� Gilks and Larizza 
����� and the standard
Bayesian computations �Kong� Liu and Wong 
���� Liu 
���� MacEachern�
Clyde and Liu 
�����

This article is organized as follows� Section � introduces the basic concept
of weighted samples and the sequential importance sampling principle� Sec�
tion � describes some major improvements of the SIS including resampling�
rejection control and marginalization� Section � explains the Monte Carlo
�lters for state�space models� Section 
 shows a few applications of the tech�
niques described in Sections � and �� and Section � gives a brief discussion to
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conclude the article�

� Sequential importance sampling principle

��� Properly weighted sample

Suppose we are interested in Monte Carlo estimation of � � E�h�x� for some
arbitrary function h under the target distribution ��x��

De�nition � A set of weighted random samples f�x�j�� w�j��gmj�� is called
proper with respect to � if for any square integrable function h����

E�h�x�j��w�j�� � cE�h�x�� for j � 
� � � � � m�

where c is a normalizing constant common to all the m samples�

With this set of weighted samples� we can estimate � as

�� �



W

mX
j��

w�j�h�x�j��� ���
�

where W �
Pm

j��w
�j�� For example� if the x�j� are drawn from � directly� the

set of f�x�j�� 
�g is proper� In the context of importance sampling �Marshall

�
��� we draw x�j� from a trial distribution q�x� and give it a weight w�j� �
��x�j���q�x�j��� Then f�x�j�� w�j��g is proper with respect to �� A main
reason of using the renormalized estimator ���
� in an importance sampling
framework is that one does not need to know the normalizing constant for �
�in De�nition 
� the constant c does not need to be known��

A key concept in all Monte Carlo computations is that a probability dis�
tribution �� no matter how complicated it is� can always be represented by
a discrete �Monte Carlo� sample from it� By �representation� we mean that
any computation of expectations with respect to � can be replaced� to a ac�
ceptable degree of accuracy� by that with respect to the empirical distribution
resulting from the discrete sample� This viewpoint is also central to the mul�
tiple imputation �Rubin 
����� When dealing with importance sampling� we
see that � can be represented� at least conceptually� by any set of properly
weighted samples� An importance issue in real Monte Carlo applications�
however� is how to �nd a convenient and e	cient discrete representation �i�e��
the representation set can be easily generated and the estimation by using
the set is accurate��

��� Sequential build�up

Now we go back to the problem of estimating E�h�x� for a target distribution
�� For example� in the SAW case x is the con�guration �positions of each
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monomer� of the polymer of length N � � as the uniform distribution on all
SAWs of length N � and h�x� as the mean squared extension of the SAW� If x
has a �natural decomposition��� e�g�� x � �x�� � � � � xN� as in the SAW case �N
is suppressed from x�� we can imagine building up x sequentially by adding
one monomer a time� According to the �telescope��law of probability�

��x� � ��x����x� j x�� � � ���xN j x�� � � � � xN����

we should draw x� according to its marginal distribution under �� and then
add x� conditional on x� according to ��x�� x�� �with other components�
x�� � � � � xN � integrated out�� etc� However� this task is infeasible in most appli�
cations� although an interesting exception exists �Diaconis and Shahshahani

�����

An e�ective way of sequentially building up x is to follow the basic idea of
importance sampling� Instead of sampling x� from �� we may be able to draw
it from some other distribution q� which is reasonably close to �� and then
sample x� conditional on x� from q��x�jx��� and so on� Finally� we obtain a
sample of x � �x�� � � � � xN � according to the sampling distribution

q�x� � q��x��q��x� j x�� � � � qN �xN j x�� � � � � xN����

To make this sample proper with respect to �� we need to give it a weight
w � ��x��q�x�� This �idea� o�ers only one more insight beyond the standard
importance sampling �Marshall 
�
��� it is often fruitful to construct the trial
distribution sequentially� Indeed� in many real problems we do have a hint
on how to choose those q�s� More formally� this �hint� can be formulated as
a evolving probabilistic dynamic system �Liu and Chen 
�����

De�nition � A probabilistic dynamic system is a sequence of probability
distributions de�ned on spaces with increasing dimensions� �t�xt� for t �
�� 
� � � � � N � where xt � �x�� � � � � xt��

Suppose this system is so de�ned that �t�xt� is the �best� distribution �closest
to � in a certain sense� that we can come up with at time t and that the
end distribution �N is identical to the target distribution �� then we can let
qt�xtjxt��� be the same as or at least close to �t�xtjxt���� In this scenario�
we are able to update the importance weight recursively as

wt � wt��
�t�xt�

�t���xt���qt�xt j bxt��� � wt��
�t�xt���

�t���xt���

�t�xt j xt���

qt�xt j bxt��� � �����

In practice� we only need to know ����� up to a normalizing constant� which is
su	cient �and often more e	cient� for us to estimate the quantity of interest
�say� �� by using ���
�� In order for the sequential importance sampling �SIS�
method to work e	ciently� we require that �t evolves towards the target
distribution � smoothly as t increases�
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In simulating the SAWs� the growth Monte Carlo �Hammersley and Morton

�
�� Rosenbluth and Rosenbluth 
�

� chooses �t as the uniform distribution
on all the SAWs of length t and uses qt�xt j xt��� � �t�xt j xt���� If xt�� has
kt�� unoccupied neighbors �i�e�� those neighbors that have not been visited by
x�� � � � � xt���� then qt�xt j xt��� places the t�th monomer �i�e�� xt� uniformly at
one of the kt�� neighbors and that �t�xt��� di�ers from �t���xt��� by giving
more probability to those xt�� with more �open ends� �i�e�� bigger kt���� The
weight of the SAW such generated can be computed recursively as

wt � wt��kt��� �����

A byproduct of the SIS is that it gives an immediate estimate� i�e�� the sample
mean of all the unnormalized weights� of the normalizing constant �partition
function� ZN �Rosenbluth and Rosenbluth 
�

� Kong et al� 
����� As we
can easily see in the SAW simulation� the unnormalized weight ����� satis�es
the identity EwN � ZN �

� Operations for enhancing SIS

It has been noted early on by some researchers �Wall and Erpenbeck 
�
�a�
that the simple application of the sequential build�up strategy is still not good
enough to simulate very long SAWs� Speci�cally� the SAW simulated by the
growth Monte Carlo can run into �cages� �i�e�� the number of unoccupied
neighbors of xt is zero at a time t � N� more and more frequently as N
increases� An improvement strategy was introduced soon after �Wall and Er�
penbeck 
�
�a� Wall and Erpenbeck 
�
�b� in which one reuses those success�
fully simulated partial SAWs instead of restarting from scratch� Recently� one
extra trick is added �Grassberger 
���� to �prune� away those partial SAWs
that are associated with very small weights �i�e�� are �doomed��� This set
of strategies is� to a large extend� equivalent to the resampling approach em�
ployed either inexplicitly or explicitly by statisticians �Gordon et al� 
���� Liu
and Chen 
��
�� Other possibilities including marginalization and rejection
control for improving the performance of SIS has also been proposed �Doucet

���� Liu and Chen 
�����

��� Reweighting� Resampling� and Reallocation

Suppose at time t we have a set of random samples St � f�x�j�
t � w

�j�
t �gmj��

properly weighted with respect to �� By treating St as a discrete representa�
tion of �� we can generate another discrete representation as follows�

� For j � � 
� � � � � �m�
� let �x

�j��
t be x

�j�
t independently with probability proportional to a�j��
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� let the new weight associated with this sample be �w
�j��
t � w

�j�
t �a�j�

� Return the new representation �St � f��x�j��
t � �w

�j��
t �g �m

j����

The new set �St thus formed is also �approximately� proper with respect to
� �Rubin 
����� It is not obvious� however� why resampling is useful� In
fact� it does not help at all in a plain importance sampling framework� A
few huristic supports �Liu and Chen 
��
� are as follows� �a� resampling can
prune away those hopelessly bad samples �by giving them a small a�j�� and
�b� resampling can produce multiple copies of those good samples �by giving
them a big a�j�� to help generating better future samples in the SIS setting�
Consequently� in a probabilistic dynamic system with SIS� resampling helps
one steer towards the right direction� In light of these arguments� one should
choose a�j� as a monotone function of w

�j�
t �

If we let a�j� � w
�j�
t � then the foregoing scheme is exactly the same as

the one described earlier in the literature �Gordon et al� 
���� Liu and Chen

��
�� But having an additional �exibility in choosing the sampling weights
a�j� is rather intriguing and can be potentially very useful� For example� the
a�j� can be chosen to re�ect certain �future trend� �Pitt and Shephard 
����
or be chosen to balance between the need of diversity �i�e�� having multiple
distinct samples� and the need of focus �i�e�� giving more presence to those
samples with big weights�� A generic choice is

a�j� �
q
w
�j�
t � ���
�

as suggested by Professor W�H� Wong� More generally� we can let a�j� be
�w

�j�
t �

�� where � can vary according to the coe	cient of variation of the wt�

Another important point regarding the generation of �St is that the ex�
tra variation due to resampling is unnecessary and unwanted �Liu and Chen

��
�� Instead of resampling� a more e	cient approach is the partial deter�
ministic reallocation� For example� the following scheme can be implemented
for generating �St from St �we assume that Pm

j�� a
�j� � m��

� For j � 
� � � � � m�

� For a�j� � 
�

� Retain kj � ba�j�c copies of the sample x�j�
t �

� Assign weight �w�j��
t � w�j�

t �kj for each copy�

�� For a�j� � 
�

� Remove the sample with probability 
� a�j��

� Assign weight �w
�j��
t � w

�j�
t �a�j� to the survived sample�

� Return the set �St consisting of the new set of xt�s and �wt�s produced in
the foregoing procedures�
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The above scheme tends to slightly decrease the total sample size when ap�
plied� Alternatively� one can choose kj � ba�j�c 
� which will tend to slightly
increase the sample size� In order to maintain a �xed sample size� a residual�
resampling strategy �Liu and Chen 
��
� can be implemented�

��� Rejection control and partial rejection control

Another useful technique for rejuvenating a sequential importance sampler is
the rejection control �RC� method �Liu� Chen and Wong 
����� which can be
understood as a combination of the rejection method �von Neumann 
�

�
and importance sampling�

In the RC� one monitors the coe	cient of variation of the importance
weights for x

�j�
t � de�ned as cv

�
t � var�w

�j�
t ��E

��w
�j�
t �� This cv

� can be used to
derive a heuristic criterion� i�e�� the e
ective sample size�

ESSt �
m


  cv�t
�

which is heuristically understood as the equivalent number of iid samples at
time t �Liu� 
����� Once ESSt drops below a threshold� say ESSt � ��m
�� � �� � 
�� we name this time a �dynamic� �check�point�� The check�
point sequence can also be prescribed in advance� which will be called static
check�points�

When encountering a new check�point tk �where k indicates that it is the k�
th check�point�� we compute a control threshold ck� which may be a quantity

given in advance� or the median or a quantile of the w�j�
tk � Then we check

through every sample and decide whether to accept it according to probability
minf
� w�j�

tk �ckg� In other words� those samples with weights greater than or
equal to ck are automatically accepted� whereas those with weights � ck are
accepted with a probability� All accepted samples are given a new weight
w
�j��
tk � maxfck� w�j�

tk g� All those rejected ones are restarted from t � � and
re�checked at all previous check�points� It has been shown �Liu et al� 
����
that the RC operation is proper in the sense of Monte Carlo estimation and it
always increases the ESS� A problem with the RC is that its computation cost
increases rapidly as t increases� although the threshold ck can be adjusted by
the user to compromise between computation cost and the ESS�

To overcome computational di	culties associated with the RC� we can
implement the partial rejection control �PRC�� which combines the RC with
resampling and can be understood as a delayed resampling� More precisely�
if t is the k�th check�point �record as tk � t�� we do the following�

Partial Rejection Control

A� Compute the control threshold ck� It can be either the median or a
quantile �say� upper quartile� of the weights w

���
t � � � � � w

�m�
t �
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B� For j � 
� � � � � m� accept the j�th sample with probability

pj � min

��
�
� w

�j�
t

ck

��
� �

If accepted� its weight is updated to maxfw�j�
t � ckg�

C� For any rejected sample at time tk� we go back to the previous check�
point tk�� to draw a previous partial sample x

�j�
tk�� � This partial sample

is drawn from the set Stk�� with probability proportional to its weight
at time tk�� �i�e�� w

�j�
tk��� and given an initial weight of Wtk���m� where

Wtk�� �
Pm

j��w
�j�
tk�� � Apply the SIS recursion to this partial sample till

the current time tk� conduct the same rejection control steps A and B
as described above�

D� Repeat Step C until acceptance�

Remark �� There are two major di�erences between the PRC and RC�
�a� when rejection occurs� the PRC goes back to the previous check point�
whereas the RC goes all the way back to time �� �b� the PRC uses resampling
whereas the RC does not�

Remark 
� One of the bene�ts of using RC is that it simultaneously gener�
ates almost�independent samples �some slight dependence can be caused by
using an estimated threshold value ck� and controls the coe	cient of variation
in the weight distribution� The PRC does not produce independent samples
since it uses resampling to meet computational need� Both the RC and PRC
can be seen as methods to bring future information into the generation of the
current state variables� By giving a chance to go back �in time� to regenerate
samples� PRC is especially advantageous in dealing with sudden changes in
the dynamic system �such as outliers in the observation�� In contrast� a sim�
ple resampling may destroy most of the �good� samples if an outlier presents�
for the reason that it is not able to take advantage of future information�

��� Marginalization

By marginalization we mean that� whenever possible� one should analytically
integrate out as many components from the system as possible� although this
may sometimes introduce global dependency among the remaining variables�
For example� by conditioning on a latent discrete vector It that indicates
mixture component� one can easily integrate out the state variable xt in a
conditional Gaussian state�space model� but the remaining indicator vector It
no longer has the Markovian structure �Chen and Liu 
���� Doucet 
���� Liu
and Chen 
����� In the context of Markov chain Monte Carlo simulations�
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this operation has also been shown to improve a Gibbs sampling algorithm
�Carter and Kohn 
���� Liu� Wong and Kong 
�����

A general formulation of marginalization is as follows� Suppose each com�
ponent xs of xt can also be decomposed �horizontally� as xs � �	s� 
s�� then
we write xt � ��t��t�� If we can obtain the marginal distributions

�t��t� �
Z
�t�xt�d�t�

for the dynamic system� and have the corresponding marginalized sampling
distribution�

qt�	t j �t��� � �t�	t j �t���
for the sequential build�up� Then the marginalized SIS performs better than
the original one �MacEachern et al� 
����� This strategy is particularly use�
ful for handling the linear state�space model with a mixture Gaussian error
distribution and target tracking� Speci�cally� one can let 	t be the latent
indicator for the Gaussian component from which the error term comes from�
Thus� conditional on �t� the process is linear and Gaussian which can be dealt
with by the Kalman �lter �Kalman 
�����

� Monte Carlo �lter for state�space models

Monte Carlo methods for non�linear non�Gaussian �ltering for the state�space
models have received considerable attention recently� A key observation in
this article is the mathematical equivalence between the structure of these
MCF methods and the general SIS framework described in Section ��

��� The general state�space model

Consider the generalized state�space model

xt � ft�� j xt����

yt � gt�� j xt��
where xt�� � �x�� � � � � xt��� is a latent process� When this process is a Markov
chain� the model reduces to the ordinary state�space model �or hidden Markov
Model�� Let yt�� � �y�� � � � � yt��� be the observations available at time t� 
�
Suppose at time t � 
 we have the posterior distribution of xt�� as p�xt�� j
yt���� then the predictive distribution for xt is

p�xt j yt��� �
Z
ft�xt j xt���p�xt�� j yt���dxt���

If we have a further observation yt� the new posterior at time t becomes

p�xt j yt� � gt�yt j xt�ft�xt j xt���p�xt�� j yt����
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In many problems� of interest to researchers is the estimation of the �true
signal characteristics�� say h�xt�� on�line� Clearly� the optimal solution �under
the MSE criterion� of this estimation problem is the Bayes estimator� which
has the form

�ht � E�h�xt� j yt� �
Z
h�xt�p�xt j yt�dxt�

When the system is linear and Gaussian� this Bayes solution can be ob�
tained recursively through the Kalman �lter� when xt only takes on a few
discrete values� the solution can also be obtained by dynamic programming�
Otherwise� the Bayes estimator can only be obtained via costly numerical
approximations �often impractical for many real problems��

By denoting �t�xt� � p�xt j yt�� we notice that the posterior probability
system induced by the state�space model is just like the one we introduced
in Section �� If we forget about the special features of the state�space model
or long�chain polymers� the system of interest here is identical in form to
the polymer model� Therefore� the general SIS strategy� together with its
improvements� can be applied� More interestingly� we do not have to take the
dynamic system f�tg as the one directly suggested by the problem� Instead�
we may choose to form a dynamic system with those �t�xt� re�ecting more on
the future trend� For example� we can do delayed estimation or some other
forms of forward�looking when we simulate and estimate xt�

Under the SIS framework� we proceed from a discrete representation St�� �
f�x�j�

t��� w
�j�
t���gmj�� of the posterior distribution p�xt�� j yt��� to the discrete

representation St of p�xt j yt� as follows� draw a sample x�j�t from a qt�xt j
x
�j�
t��� to form x

�j�
t � �x

�j�
t��� x

�j�
t �� attach to it a weight computed recursively

according to ������

w
�j�
t � w

�j�
t�� 	

ft�x
�j�
t j x�j�

t��� gt�yt j x�j�t �

qt�x
�j�
t j x�j�

t���
�

Then St � f�x�j�
t � w

�j�
t �gmj�� is proper with respect to �t� If the weights are

too skewed �as measured by a low ESS�� we can do resampling or rejection
control or both as described in Section �� This de�nes the recursive procedure
of SIS with resampling for the state�space model�

��� Conditional dynamic linear model and the mixture

Kalman �lter

As a special state�space model� the conditional dynamic linear model �CDLM�
can be de�ned as�

State equation� xt � Gt�i�xt��  �t�i� � if It�� � i�� ���
�

Observation equation� yt � Ht�i�xt  et�i� � if It�� � i�� �����
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where �t�j� � N ��� Ai��� et�i� � N ��� Bi��� and the indicator vector It �
�It��� It��� is a discrete latent variable with a prior distribution �t�It�� It
is straightforward to generalize this prior to allow for Markov dependency
among the It� The CDLM is a direct generalization of the dynamic linear
model �DLM� �see West and Harrison� 
����� It possesses the simplicity of
the DLM and is more �exible in dealing with outliers� sudden jumps� clutters�
and other nonlinear features�

The SIS can be easily applied to directly treat the xt�s �who form a latent
Markov chain�� In fact� many previously available Monte Carlo �lters for
dealing with the CDLM model have been designed in this way �Avitzour

��
� Gordon et al� 
���� Kitagawa 
����� However� a more sophisticated
algorithm can be derived by making use of the conditional Gaussian structure�
That is� when conditioning on the values of I�� � � � � It� the CDLM de�ned by
���
� and ����� becomes a DLM� and all the xs� s � 
� � � � � t� can be integrated
out recursively by using a standard Kalman �lter� When the SIS is applied to
treat the marginal dynamic system for the indicators� we obtain the mixture
Kalman �lter �MKF� which is always more accurate than those Monte Carlo
�lters dealing with xt directly �Chen and Liu 
����� Detailed formulas are
given in the appendix�

Remark �� Several approaches on designing e	cient Markov chain Monte
Carlo algorithms for this type of models have been proposed �Carlin� Polson
and Sto�er 
���� Carter and Kohn 
����� Two key ideas employed in the
design are the �collapsing� and �grouping� ��Liu et al� 
������ In particular�
Carter and Kohn �
���� used a discrete variable to indicate the mixing com�
ponent for each observation and integrated out the state variable xt in their
MCMC iterations� Here we advocate a similar strategy� marginalization� for
conducting sequential importance sampling�

Remark �� Compared with those Monte Carlo �lters applied to xt� which
uses a discrete sample to approximate the posterior distribution of xt� MKF
uses a mixture Gaussian distribution instead� Note that� under CDLM� the
�true� target distribution is indeed a mixture Gaussian� although the number
of the mixture components increases exponentially along with t� The advan�
tage of the MKF can be easily seen as follows� Suppose the target distribution
� is a mixture Gaussian with k components� with known �i� 


�
i and mixing

probabilities pi� The particle �lter obtains m samples x�j� by �rst drawing an
I � i with probability pi� then draw x�j� fromN��i� 


�
i �� In contrast� the MKF

directly draws m samples of the indicator I� Using a Rao�Blackwellization
argument� we can easily see that the latter is more e	cient �MacEachern et
al� 
����� In simulations� we have seen results in which an MKF with m � 
�
provides a better estimation accuracy than a particle �lter with m � 
� ����
The downside of the MKF is that its implementation usually involves more
analytical manipulations and more careful programming�
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� Some examples

	�� A simple illustration

To illustrate how the method works� we consider the following simple state
space model

xt � aixt��  �t� with �t � N��� 
�i � for It � i�

yt � xt  �t with �t � N��� 
���

Finally� we assume that P �It � i j I t���xt��� � P �It � i� � �i� which can be
easily extended to deal with the Markovian case� For this example� we can
carry out the computation easily �see appendix��

We �rst simulated a system with ai��� �i�
���� 
���
� 
��
�
� ������ and

����� and applied the MKF for on�line estimation� The numerical result was
very satisfactory� the MKF estimated the state variable xt very accurately
even though several sudden jumps occurred in the system� With m�
� and
without using PRC� we already produced a result better than that in Kita�
gawa �
����� who routinely used m�
����� �particles�� We also applied a
PRC with � � ��� �i�e�� we conduct PRC whenever ESSt drops below ���M�
together with the MKF� The MKF�PRC algorithm outperformed the plain
MKF in terms of total mean�squared errors �MSE� �i�e��

PT
t�� k�xt � xtk��

where �xt 
 E�xtjyt�� of on�line estimation� Figure � �a� presents a plot of
the total MSE of the MKF estimates�small circles� versus those of the MKF�
PRC estimates �small dots� in 
�� repeated experiments� As we expected�
such a di�erence disappeared as m increased to 
����� For a total of 
��
repeated experiments� the plain MKF only took �� seconds of CPU time on
a Sun Ultra � workstation� and the MKF�PRC only took �� seconds�

To con�rm the above observations� we simulated another dataset from the
system with a di�erent setting� aj��� �j�
���� 
����� 
��
��� �� � P �J �

����� and 
����� In this system� the noise level in the observation equation
increased signi�cantly� We found a similar improvement �more signi�cant� of
the MKF�PRC over the MKF �detail omitted�� Figure � shows the compari�
son of the histograms of the logarithm of the importance weights under two
schemes� As expected� the MKF�PRC had less variable importance weights�

	�� Target tracking with MKF

Target tracking on a ��D plane can be modeled as follows� let st � �st��� st���
T

be position vector� and let vt � �vt��� vt���
T

be velocity vector� They are
supposed to evolve in the following way�

BBB	
st��
st��
vt��
vt��
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�
BBB	

 � 
 �
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 � 

� � 
 �
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Figure �� �a� The mean�squared�error of the estimates of xt for using the MKF
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Figure �� Histogram of the log�importance weights for MKF�PRC and the
simple MKF respectively�
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The state equation innovation �t � ��t��� �t���
T

is distributed asN ��� 
�aI�� and
the observation noise et � �et��� et���

T

follows N ��� 
�bI�� The maneuvering
variable 
 can change with time which is assumed unknown to the observer�
Thus� the state equation for this tracking system is assumed� instead� to follow

st � st��  vt��  



�
�t�

vt � vt��  �t�
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with �t � N ��� 
�aI�� More generally� by writing xt � �st��� st��� vt��� vt���T � we
use the relationship

xt � Gxt��  �t� �t � N ��� 
�aA�

for tracking� where

G �

�
BBB	

 � 
 �
� 
 � 

� � 
 �
� � � 




CCCA � and A �

�
BBB	

�
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� �

�
�

� �
�
� �

�
�
�
� 
 �

� �
�
� 




CCCA �

At a discrete time t� we observe a clutter of points� yt � fyt��� � � � � yt�ktg in a
��D detection region with area "� in which the number of false signals follow a
spatial Poisson process with rate �� The set yt includes the true measurement
zt � �zt��� zt���

T with probability pd� Other y�s are treated as uniform within
the detection range� A latent indicator variable It can be introduced� where
It � i � � indicates that yt�i corresponds to the true measurement zt� and
It � � means that zt is not included in yt�

Thus� we can write down the the joint distribution �approximately�

p�yt j xt� It � i� �
��
� kt���


�
b �

�� expf�kyt�i�Oxt�k�

���
b

g� if i � ��

�� if i � ��
�
�
�

where the observation matrix is

O �

�

 � � �
� 
 � �

�
�

Clearly� this tracking model has the form of a CDLM and the procedure
outlined in Section ��� can be applied to marginalize the state variable� Thus�
the resulting SIS only needs to operate on the indicator variable It �see the
Appendix for detailed formulas� and takes the form of a MKF�

We simulated this tracking system with the observation noise level 
a��
�
state innovation level 
b��
� and the maneuvering parameter 
 � 
� The clut�
ter of false signals is generated by a Poisson point process with rate �������
The total tracking time was set as T � 

�� One hundred independent repli�
cations of the above simulation were carried out and the MKF formulation
described in the Appendix was applied to track the target� Figure � shows
one of the simulated data �the line corresponds to the trace of the target
being tracked��

We applied four di�erent SIS algorithms to each of the 
�� simulated
system� For ease of notations� we name the plain SIS without resampling
as MKF� the one with systematic resampling every two steps as MKF�R��
the one with resampling every �ve steps as MKF�R
� and the MKF with
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Figure �� A simulation of the target tracking system� The dots connected by
the line represent the true positions of the target at each time step� the dots
elsewhere represent confusing objects�

partial rejection control a MKF�PRC� The MKF�PRC was operated with a
sequence of dynamic check points corresponding to �� � ����

Our main interest in this simulation study was to compare the perfor�
mances� in terms of both computing e	ciency and tracking accuracy� of the
four SIS strategies� For the �rst three methods� we let the number of �super�
particles� �so named because each particle corresponds to one Kalman �l�
ter� m�
�� and for MKF�PRC� we used m � ��� Since our algorithms
were implemented in MATLAB for illustration purposes� substantial improve�
ments in terms of computational e	ciency are expected if these methods
were programmed in more basic languages such as Fortran or C� In Table 
�
we record the total number of lost targets �de�ned as the ones for which
max k�st � stk � C� in 
�� replications and the total amount of computing
time �on SGI Challenge IRIX workstation� for each method� One of our
tracking results �the estimates of target positions� is shown in Figure 
�

The MKF�PRC and MKF�R out�performed the plain MKF not only in
terms of number of �lost� targets but also in the mean�squared errors �MSE�
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Methods # Particles �m� # Lost Targets Computing Time
MKF 
� �� out of 
�� �� min

MKF�R
 
� �� out of 
�� �� min
MKF�R� 
� 

 out of 
�� �� min

MKF�PRC �� 
� out of 
�� �
 min

Table 
� A comparison between di�erent sequential importance sampling
strategies for the target tracking problem�
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Figure 
� The true st versus its estimates from MKF�PRC� Dots ! true
signals �zt� �not necessarily observed�� line ! true value of st� dashed lines
! estimates �i�e�� E�st j yt��� The �rst coordinate is plotted in �a� and the
second in �b��

for those being correctly tracked �i�e��
PT

t�� k�st � stk�� where �st 
 E�stjyt��
of on�line estimation� Figure � presents the total MSEs of the three MKF
estimates� i�e�� the plain MKF� MKF�R�� and MKF�PRC� in 
�� repeated
experiments �m�
� for the plain MKF� and m��� for the MKF�PRC�� It is
seen that MKF�R and MSE�PRC performed better than the plain MKF even
among those tracked targets�

� Discussion

In this article� we provide a theoretical framework for the sequential im�
portance sampling with resampling� We emphasize on the general applica�
bility� which ranges from molecular simulation to signal processing� of SIS
and its enhancements� We have also demonstrated by examples how the
two strategies� namely� partial rejection control and marginalization� can be
used to improve an SIS algorithm for on�line estimation with conditional dy�
namic linear models� Although the marginalization operation may not be
applicable to all nonlinear dynamic models� it usually results in dramatic im�
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Figure �� Comparisons between the MSEs of the MKF� MKF�R�� and MKF�
PRC for the estimation of st in 
�� repeated simulations�

provements over the plain SIS or particle �lter whenever applicable� Various
resampling�reallocation schemes and the partial rejection control method can
be broadly applied to all dynamic systems under the SIS setting� They are
essential for designing good Monte Carlo �lters and are also useful for general
Monte Carlo computation �not necessarily for on�line estimation problems��
The main implication of our developments in this article is as follows� the SIS
is a general and powerful platform for researchers to design various e	cient
sequential Monte Carlo algorithms for a large class of optimization� estima�
tion� and prediction problems� We hope that our systematic account of the
SIS is of interest to researchers in di�erent �elds�

Appendix


�� Detailed formulas for the MKF recursion in Sec�

tion ���

Suppose the initial value x�� the coe	cients Gt�i� and Ht�i�� and the variances

�i and ��i are given� After observing y� at time t � 
� we have a posterior
distribution

p�I� � �i�� i��� x� j y�� x�� � p�y� j x�� I��� � i��p�x� j x�� I��� � i���

which gives us a marginal distribution

p�I� � �i�� i�� j y�� x�� �
Z
p�y� j x�� I��� � i��p�x� j x�� I��� � i��dx�� ���
�

Distribution ���
� can be computed exactly since it only involves manipulating
Gaussian density functions� Thus� we can draw m iid or correlated �if a
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Markov chain sampler is used� samples� I
���
� � � � � � I

�m�
� from ���
�� For each

I
�j�
� � we record the predictive mean �

�j�
� and variance V

�j�
� corresponding to

the distribution p�x� j y�� x�� I�m�
� �� which is clearly Gaussian� Consequently�

we have obtained a collection of m Kalman �lters� KF
���
� � � � � � KF

�m�
� � where

KF
�j�
� � ��

�j�
� � V

�j�
� � I

�j�
� �� at time t � 
� The weights w

�j�
� associated with

KF
�j�
� are equal to one�

Suppose we have a collection of m Kalman �lters� KF
���
t��� � � � � KF

�m�
t�� at

time t � 
� Each KF
�j�
t�� corresponds to ��

�j�
t��� V

�j�
t��� I

�j�
t���� where I

�j�
t�� �

�I
�j�
� � � � � � I

�j�
t��� is the imputed latent indicator vector up to time t � 
� The

�
�j�
t�� and V

�j�
t�� are the mean vector and covariance matrix for the j�th �lter�

Because the CDLM is reduced to a DLM when conditioning on I
�j�
t��� vector

��
�j�
t��� V

�j�
t��� is simply its su	cient statistics at time t � 
� an end�product

of a standard Kalman �lter� Each �lter is associated with a weight w
�j�
t���

The following algorithm gives rules on how to update these KF�s and their
associated weights at time t�

The MKF Recursion� For j � 
� � � � � m�


� Obtain the predictive density for the new observation�

u
�j�
t �

X
i

�t�It�
Z
p�yt j xt� It� KF

�j�
t���p�xt j KF

�j�
t��� It�dxt�

and update the weight for the jth �lter as

w
�j�
t � w

�j�
t�� 	 u

�j�
t � j � 
� � � � � m�

�� Impute the new indicator I
�j�
t from its a posteriori distribution

p�It j yt� KF
�j�
t��� � �t�It�

Z
p�yt j xt� It� KF

�j�
t���p�xt j KF

�j�
t��� It�dxt�

�� Update KF
�j�
t�� to KF

�j�
t by letting I

�j�
t � �I

�j�
t��� I

�j�
t � and computing

�
�j�
t � E�xt j KF

�j�
t��� yt� I

�j�
t �

V
�j�
t � var�xt j KF

�j�
t��� yt� I

�j�
t ��

At this time� an on�line estimate of the state�variable xt is

�xt �



Wt

MX
m��

w
�m�
t �

�m�
t �

where Wt � w
���
t  � � �  w

�M�
t � Alternatively� we can also conduct a lag�k

delayed estimate as

�xt�k �



Wt

MX
m��

w
�m�
t �

�m�
t�k
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A theory is given �Liu and Chen 
���� for this procedure is proper�

Detailed computations involved in a MKF approach is very closely re�
lated to those in a standard KF method� Take any �lter at time t � 
� say
KF

�j�
t�� � ��

�j�
t��� V

�m�
t�� � I

�j�
t���� For convenience� we omit the superscript �j� in

the following derivation� At time t� we de�ne

�	i� � Gt�i��t� V	i� � Gt�i�Ai�G
T

t�i�  Vt��

Then by standard calculation� we have

p�xt j It�� � i�� KFt��� � N �xt j �	i� � V	i��

p�yt� xt� It � �i�� i�� j KFt��� � N �yt j Ht�i�xt� Bi��	N �xt j �	i�� V	i��	 �t�i�� i���

where N �x j �� V � denotes a multivariate�Gaussian density� Hence� we can
work out an explicit form of the required posterior distribution

p�xt� It � �i�� i�� j yt� KFt��� � Ct�i�� i��N �xt j �t�i�� i��� Vt�i�� i���

where

�t�i�� i�� � Vt�i�� i���H
T

t�i�
B��
i�
yt  V ��

	i�
�	i��

Vt�i�� i�� � �Ht�i�B
��
i� H

T

t�i�  V ��
	i��

��

Ct�i�� i�� � �t�i�� i�� exp

��
��y

T

t B
��
i� yt  �

T

	i�V
��
	i��	i� � ��

T

t V
��
t �t�j�i��i��

�

��
�

Thus� to update the �lter� we �rst sample It��i�� i�� with probability propor�

tional to Ct�i�� i��� then update �
�m�
t as �t�i�� i�� and V

�m�
t as Vt�i�� i��� The

weight for this updated �lter is wt � wt�� 	Pi��i� Ct�i�� i���


�� Computational details for the example in Section 	��

Take any �lter KFt�� � ��t��� Vt��� It��� at time t� 
� We de�ne
�	i � ai�t��� V	i � a�iVt��  
�i �

Then before we observe yt� the distribution of xt� conditional on Jt � i� is
N��	i� V	i�� Thus� after seeing yt� the posterior distribution of �Jt� xt� is

p�Jt � i� Xt j KFt��� yt� � �i 	N�xt j �	i� V	i�	N�yt j xt
���
� Ct�i�	N�xt j �t�i�� Vt�i��

where

�t�i� �

�
�	i
V	i

 
yt

��

��



V	i
 




��

���

Vt�i� �

�



V	i
 




��

���

Ct�i� �
�ip
V	i

exp



� �yt � �	i�

�

��V	i  
���

�
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Thus� when yt is observed the �lter KFt���s weight is adjusted to wt �
wt��	ut� where ut �

P
iCt�i�� The indicator It � i is drawn with probability

proportional to Ct�i�� which� together with the new mean and variance �t�i�
and Vt�i�� forms the updated �lter KFt�


�� Computational detail for target tracking

Before observing yt� however� the distribution of xt can be written as

p�xt j KF
�m�
t�� � � N �xt j G��m�

t��� 

�
aA  GV

�m�
t�� G

T

� � N �xt j �	� V	�� �����

For simplicity� we omit the superscript �m� with an understanding that all
the following computations are conditioned on the m�th �lter KF �m��

Multiplying ����� with �
�
�� we obtain the joint posterior of �xt� It��

p�xt� It � i j KF
�m�
t�� � yt� �

������
�����

pd
����

b

exp



�kyt�i�Oxtk�

���
b

� �xt���
�
T
V ��

�
�xt���

�

�

�
if i � �

��
� pd� exp



� �xt���

�
T
V ��

�
�xt���

�

�

�
if i � ��

�����
By further simplifying ������ we obtain that

p�xt� It � i j KFt��� yt� � Ct�i�N �xt j ���i�� V ��i��

where Ct��� � ��
�pd�	�����jV	j���� ����� � �	� and V
���� � V	� whereas

for i � ��

Ct�i� � �����jV ��i�j��� 	 pd
��
�b

	 exp

�
�

�


kyt�ik�

�b

 �
T

	V
��
	 �	 � ���i�

T

V ��i������i�

��

���i� � V ��i�

�
O

T

yt�i

�b

 V ��
	 �	

�

V ��i� �

�
V ��
	  

O
T

O


�b

���

Therefore� the incremental weight of each KF �m� in the MKF is computed
as
Pkt

i�� Ct�i�� and the imputation step can be achieved by drawing p�I
�m�
t �

i� � Ct�i�� The m�th �lter is updated to KF
�m�
t � �I

�m�
t ��

�m�
t � V

�m�
t � with

I
�m�
t � �I

�m�
t��� I

�m�
t �� where �

�m�
t � ���i� and V

�m�
t � V ��i� for I

�m�
t � i� This

completes the MKF�
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