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1 Introduction

With the completion of the human genome and genomes of many other species, the task of orga-
nizing and understanding the generated sequence and structural data becomes more and more
pressing. These datasets also present great research opportunities to all quantitative researchers
interested in biological problems. In the past decade, computational approaches to molecular
and structural biology have attracted increasing attentions from both laboratory biologists and
mathematical scientists, e.g., computer scientists, mathematicians, and statisticians, and have
spawned the new field of bioinformatics. Among all available computational methods, those
that are developed based on explicit statistical models play an important role in the field and
will be the main focus of this chapter.

The use of probability theory and statistical principles in guarding against false optimism
has been well understood by most scientists. The concepts of confidence interval, p-value,
significance level, and the power of a statistical test routinely appear in scientific publications.
To most scientists, these concepts represent, to a large extent, what statistics is about and
what a statistician can contribute to a scientific problem. The invention of clever ideas, efficient
algorithms, and general methodologies seem to be the privilege of scientific geniuses and are
seldom attributed to a statistical methodology. In general, statistics or statistical thinking
is not regarded as very helpful in attacking a difficult scientific problem. What we want to
show here is that, quite in contrast to this “common wisdom,” formal statistical modeling
together with advanced statistical algorithms provide us a powerful “workbench” for developing
innovative computational strategies and for making proper inference to account for estimation
uncertainties.

In the past decade, we have witnessed the developments of the likelihood approach to pairwise
alignments (Bishop and Thompson, 1986; Thorne et al., 1991); the probabilistic models for RNA
secondary structure (Zuker, 1989; Lowe and Eddy, 1997); the expectation-maximization (EM)
algorithm for finding regulatory binding motifs (Reilly and Lawrence, 1992; Cardon and Stormo

1992); the Gibbs sampling strategies for detecting subtle similarities (Lawrence et al., 1993;



Liu 1994; Neuwald et al., 1997); and the hidden Markov models (HMM) for DNA composition
analysis and multiple alignments (Churchill, 1989; Baldi et al., 1994; Krogh et al., 1994); the
hidden semi-Markov model for gene prediction and protein secondary structure prediction (Burge
and Karlin, 1997; Schmidler et al., 2000). All these developments show that algorithms resulting
from statistical modeling efforts constitute a major part of today’s bioinformatics toolbox.

Our emphases in this chapter is on the applications of the Bayesian methodology and its
related algorithms in bioinformatics. We prefer a Bayesian approach mainly for the following
reasons: (a) its explicit use of probabilistic models to formulate scientific problems (i.e., a
quantitative story-telling); (b) its coherent way of incorporating all sources of information and
of treating nuisance parameters and missing data; and (c) its ability to quantify numerically
uncertainties in all unknowns. In Bayesian analysis, a comprehensive probabilistic model is
employed to describe relationships among various quantities under consideration: those that we
observe (data and knowledge), those about which we wish to learn (scientific hypotheses), and
those that are needed in order to construct a proper model (a scaffold). With this Bayesian
model, the basic probability theory can automatically lead us to an efficient use of the available
information when making predictions and to a numerical quantification of uncertainty in these
predictions (Gelman et al., 1995). To date, statistical approaches have been primarily used in
computational biology for deriving efficient algorithms. The utility of these methods to make
statistical inferences about unobserved variables has received less attention.

An important yet subtle issue in applying the Bayes approach is the choice of a prior dis-
tribution for the unknown parameters. Since it is inevitable to inject certain arbitrariness and
subjective judgements into the analysis when prescribing a prior distribution, the Bayes meth-
ods have long been regarded as less “objective” than its frequentist counterpart (Section 2),
and thus, disfavored. Indeed, it is often nontrivial to choose an appropriate prior distribution
when the parameter space is of high-dimensional. All researchers who intend to use Bayesian
methods for serious scientific studies need to put some thought into this issue. On the other
hand, however, any scientific investigation has to involve a substantial amount of assumptions

and personal judgements from the scientist(s) who conduct the investigation. These subjective



elements, if made explicit and treated with care, should not undermine the scientific results of
the investigation. More importantly, it should be regarded as a good scientific practice if the
investigators make their subjective inputs explicit. Similarly, we argue that an appropriate sub-
jective input in the form of a prior distribution should only enhance the relevance and accuracy
of the Bayesian inference. Being able to make an explicit use of subjective knowledge is a virtue,
instead of blemish, of Bayesian methods.

This chapter is organized as follows. Section 2 discusses the importance of formal statistical
modeling and gives an overview of two main approaches to statistical inference: the frequentist
and Bayesian. Section 3 outlines the Bayesian procedure for treating a statistical problem,
with an emphasis on using the missing data formulation to construct scientifically meaningful
models. Section 4 describes several popular algorithms for dealing with statistical computations:
the EM algorithm, the Metropolis algorithm, and the Gibbs sampler. Section 5 demonstrates
how the Bayesian method can be used to study a sequence composition problem. Section 6
gives a further example of using the Bayesian method to find subtle repetitive motifs in a DNA

sequence. Section 7 concludes the chapter with a brief discussion.

2 Statistical Modeling and Inference

2.1 Parametric statistical modeling

Statistical modeling and analysis, including the collection of data, the construction of a proba-
bilistic model, the quantification and incorporation of expert opinions, the interpretation of the
model and the results, and the prediction from the data, form an essential part of the scientific
method in diverse fields. The key focus of statistics is on making inferences, where the word
inference follows the dictionary definition as “the process of deriving a conclusion from fact
and/or premise.” In statistics, the facts are the observed data, the premise is represented by a
probabilistic model of the system of interest, and the conclusions concern unobserved quantities.
Statistical inference distinguishes itself from other forms of inferences by explicitly quantifying

uncertainties involved in the premise and the conclusions.



In nonparametric statistical inference, one does not assume any specific distributional form
for the probability law of the observed data, but only imposes on the data a dependence (or
independence) structure. For example, an often imposed assumption in nonparametric analyses
is that the observations are independent and identically distributed (iid). When the observed
data are continuous quantities, what one has to infer for this nonparametric model is the whole
density curve — an infinite dimensional parameter. A main advantage of nonparametric methods
is that the resulting inferential statements are relatively more robust than those from parametric
methods. A main disadvantage of the nonparametric approach is, however, that it is difficult,
and sometimes impossible, to build into the model more sophisticated structures (based on our
scientific knowledge), i.e., it does not facilitate “learning.”

Indeed, it would be ideal and preferable if we could derive what we want without having
to assume anything. On the other hand, however, the process of using simple models (with
a small number of adjustable parameters) to describe natural phenomena and then improving
upon them (e.g., Newton’s law of motion versus Einstein’s theory of relativity) is at the heart
of all scientific investigations. Parametric modeling, either analytically or qualitatively, either
explicitly or implicitly, is intrinsic to human intelligence, i.e., it is essentially the only way we
learn about the outside world. Analogously, statistical analysis based on parametric modeling
is also essential to our scientific understanding of the data.

At a conceptual level, probabilistic models in statistical analyses serve as a mechanism
through which one connects observed data with a scientific premise or hypothesis about real-
world phenomena. Since bioinformatics explicitly or implicitly concerns the analysis of biological
data that are intrinsically probabilistic, such models should be also at the core of bioinformatics.
No model can completely represent every detail of reality. The goal of modeling is to abstract the
key features of the underlying scientific problem into a workable mathematical form with which
the scientific premise may be examined. Families of probability distributions characterized by a
small number of parameters are most useful for this purpose.

Let y denote the observed data. In parametric inference, we assume that the observation

follows a probabilistic law that belongs to a given distribution family. That is, y is a realization



of a random process (i.e., a sample from a distribution) whose probability law has a particular
form (e.g., Gaussian, multinomial, Dirichlet etc.), f(y | @), which is completely known other
than 6. Here 0 is called a (population) parameter and it often corresponds to a scientific premise
for our understanding of a natural process. To be concrete, one can imagine that y is a genomic
segment of length n from a certain species, say, human. The simplest probabilistic model for a
genomic segment is the “iid model” in which every observed DNA base pair (bp) in the segment
is regarded as independent of others and produced randomly by nature based on a roll of a
4-sided die (maybe loaded). Although very simple and unrealistic, this model is the so-called
“null model” behind almost all theoretical analyses of popular biocomputing methods. That is,
if we want to assess whether a pattern we find can be regarded as a “surprise,” the most natural
analysis is to evaluate how likely this pattern occurs if an iid model is assumed.

Finding a value of @ that is most compatible with the observation y is termed as model
fitting or estimation. We make scientific progresses by iterating between fitting the data to the
posited model and proposing an improved model to accommodate important features of the data
that are not accounted for by the previous model. When the model is given, an efficient method
should be used to make inference on the parameters. Both the maximum likelihood estimation
method and the Bayes method use the likelihood function to extract information from data and

are efficient; these methods will be the main focus of the remaining part of this chapter.

2.2 Frequentist approach to statistical inference

The frequentist approach, or sometimes simply referred to as the classical statistics procedure,
arrives at its inferential statements by using a point estimate of the unknown parameter and
addressing the estimation uncertainty by the frequency behavior of the estimator. Among all
estimation methods, the method of mazimum likelihood estimate (MLE) is most popular.

The MLE of 0 is defined as an argument 6 that maximizes the likelihood function, i.e.,

~

0 = arg max L(0 ,
g max @1y)

where the likelihood function L(@ | y) is defined to be any function that is proportional to the



probability density f(y | €). Clearly, 6 is a function of y and its form is determined completely
by the parametric model f( ). Hence, we can write 8 as 6(y) to explicate this connection.
Any deterministic function of the data y, such as é(y), is called an estimator. For example,
if y = (y1,...,yn) are iid observations from N(#,1), a Normal distribution with mean 6 and
variance 1, then the MLE of 6 is é(y) = ¢, the sample mean of the y;, which is a linear
combination of the y. It can be shown that, under regularity conditions, the MLE é(y) is
asymptotically most efficient among all potential estimators. In other words, no other way of
using y can perform better asymptotically, in terms of estimating €, than the MLE procedure.
But some inferior methods, such as the method of moments (MOM), can be used as alternatives
when the MLE is difficult to obtain.

Uncertainty in estimation is addressed by the principle of repeated sampling. ITmagine that
the same stochastic process that “generates” our observation y can be repeated indefinitely
under identical conditions. A frequentist studies what the “typical” behavior of an estimator,
e.g., é(yrep), is. Here y¢, denotes a hypothetical dataset generated by a replication of the same
process that generates y and is, therefore, a random variable that has y’s characteristics. The
distribution of é(yrep) is called the frequency behavior of estimator 6. For the Normal example,
the frequency distribution of grep is N (6, 1/n). With this distribution available, we can calibrate
the observed A(y) with the “typical” behavior of é(yrep), e.g., N(6,1/n), to quantify uncertainty
in the estimation. As another example, suppose y = (y1,... ,¥,) is a genomic segment and let
ng be the number of “A”s in y. Then 0y = ng /n is an estimator of 6, the “true frequency of A”
under the iid die-rolling model. To understand the uncertainty in 0., we need to go back to the
iid model and ask ourselves: how would n, fluctuate in a segment like y that is generated by
the same die-rolling process? The answer is rather simple: n, follows distribution Binom(n, #,)
and has mean n#, and variance nf,(1 — 6,).

We want to emphasize that the concepts of an “estimator” and its uncertainty only make
sense if a generative model is contemplated. For example, the statement that “éa estimates
the true frequency of A” only makes sense if we imagine that an iid model (or another similar

model) was used to generate the data. If this model is not really what we have in mind, then



the meaning of 6, is no longer clear. A imaginary random process for the data generation is
crucial for deriving a valid statistical statement.

A (1-@)100% confidence interval (or region) for @, for instance, is of the form (8(yrep), @(Yrep)),
meaning that under repeated sampling, the probability that the interval (the interval is random
under repeated sampling) covers the true 6 is at least 1 — . In contrast to what most people
have hoped for, this interval statement does not mean that “@ is in (8(y), @(y)) with probability
1 — «.” With observed y, the true @ is either in or out of the interval and no meaningful direct
probability statement can be given unless @ can be treated as a random variable.

When finding the analytical form of the frequency distribution of an estimator 8 is difficult,
some modern techniques such as the jackknife or bootstrap method can be applied to numerically
simulate the “typical” behavior of an estimator (Efron, 1979). Suppose y = (y1,... ,y,) and
each y; follows an iid model. In the bootstrap method, one treats the empirical distribution of
y (the distribution that gives a probability mass of 1/n to each y; and 0 to all other points
in the space) as the “true underlying distribution” and repeatedly generates new datasets,
Yrep,1s--- »Yrep,8 from this distribution. Operationally, each y., 5 consists of n data points,
i.e., Yrep,b = (Ub,1s--- »Ybn), Where each yp; is a simple random sample (with replacement) from
the set of the observed data points {y1,... ,y,}. With the bootstrap samples, we can calculate
é(yrep,b), forb=1,..., B, whose histogram tells us how 0 varies from sample to sample assuming
that the true distribution of y is its observed empirical distribution.

In a sense, the classical inferential statements are pre-data statements because they are con-
cerned with the repeated sampling properties of a procedure and do not have to refer to the
actual observed data (except in the bootstrap method where the observed data is used in the
approximation of the “true underlying distribution”). A major difficulty in the frequentist ap-
proach, besides its awkwardness in quantifying estimation uncertainty, is its difficulty in dealing
with nuisance parameters. Suppose 6 = (61,62). In a problem where we are only interested
in one component, #; say, the other component 65 becomes a nuisance parameter. No clear
principles exist in classical statistics that enables us to eliminate #> in an optimal way. One

of the most popular practices in statistical analysis is the so-called profile likelihood method, in



which one treats the nuisance parameter #» as known and fixes it at its MLE. This method,
however, underestimates the involved uncertainty (because it treats unknown 65 as if it were
known) and can lead to incorrect inference when the distribution of 6, depends on 65, especially
the dimensionality of 8y is high. More sophisticated methods based on orthogonality, similar-
ity, and average likelihood have also been proposed, but they all have their own problems and

limitations.

2.3 Bayesian methodology

Bayesian statistics seeks a more ambitious goal by modeling all related information and uncer-
tainty, e.g., physical randomness, subjective opinions, prior knowledge from different sources,
etc., with a joint probability distribution and treating all quantities involved in the model, be
they observations, missing data, or unknown parameters, as random variables. It uses the cal-
culus of probability as the guiding principle in manipulating data and derives its inferential
statements based purely on an appropriate conditional distribution of unknown variables.
Instead of treating @ as an unknown constant as in a frequentist approach, Bayesian analysis
treats @ as a realized value of a random variable that follows a prior distribution fy(0), which
is typically regarded as known to the researcher independently of the data under analysis. The
Bayesian approach has at least two advantages. Firstly, through the prior distribution we can
inject prior knowledge and information about the value of @. This is especially important in
bioinformatics, since biologists often have substantial knowledge about the subject under study.
To the extent that this information is correct, it will sharpen the inference about 8. Secondly,
treating all the variables in the system as random variables greatly clarifies the methods of
analysis. It follows from the basic probability theory that information about the realized value
of any random variable, @, say, based on observation of related random variables, y, say, is
summarized in the conditional distribution of @ given y, the so-called posterior distribution.
Hence, if we are interested only in a component of @ = (01, 62), say 61, we have just to integrate
out the remaining components of @, i.e., nuisance parameters, from the posterior distribution.

Furthermore, if we are interested in the prediction of a future observation y™ depending on 6,



we can obtain the posterior distribution of y™ given y by completely integrating out 6.

The use of probability distributions to describe unknown quantities is also supported by the
fact that probability theory is the only known coherent system for quantifying objective and
subjective uncertainties. Furthermore, probabilistic models have been accepted as appropriate in
almost all information-based technologies including: information theory, control theory, system
science, communication and signal processing, and statistics. When the system under study is
modeled properly, the Bayesian approach is coherent, consistent, and efficient.

The theorem that combines the prior and the data to form the posterior distribution (Sec-
tion 3) is a simple mathematical result first given by Thomas Bayes in 1763. The statistical
procedure based on the systematic use of this theorem appears much later (some people believe
that Laplace was the first Bayesian) and is also named after Bayes. The adjective Bayesian
is often used for approaches in which subjective probabilities are emphasized. In this sense
Thomas Bayes was not really a Bayesian.

A main controversial aspect of the Bayesian approach is the use of the prior distribution,
to which three interpretations can be given: (a) as frequency distributions; (b) as objective
representations of a rational belief of the parameter, usually in a state of ignorance; and (c)
as a subjective measure of what a particular individual believes (Cox and Hinkley 1974). In-
terpretation (a) refers to the case when 6 indeed follows a stochastic process and, therefore, is
uncontroversial. But this scenario is of limited applicability. Interpretation (b) is theoretically
interesting but is often untenable in real applications. The emotive words “subjective” and
“objective” should not be taken too seriously. (Many people regard the frequentist approach as
a more “objective” one.) There are considerable subjective elements and personal judgements
injected into all phases of scientific investigations. Claiming that someone’s procedure is “more
objective” based on how the procedure is derived is nearly meaningless. A truly objective eval-
uation of any procedure is by how well it attains its stated goals. In bioinformatics, we are
fortunate to have a lot of known biological facts to serve as objective judges.

In most of our applications, we employ the Bayesian method mainly because of its internal

consistency in modeling and analysis and its capability to combine various sources of information.



Thus, we often take a combination of (a) and (c) for deriving a “reasonable” prior for our
data analysis. We advocate the use of a suitable sensitivity analysis, i.e., an analysis on how
our inferential statements are influenced by a change in the prior, to validate our statistical

conclusions.

2.4 Connection with some methods in bioinformatics

Nearly all bioinformatics methods employ score functions, which are often functions of likelihoods
or likelihood ratios, at least implicitly. The specification of priors required for Bayesian statistics
is less familiar in bioinformatics although not completely foreign. For example, the setting of
parameters for an alignment algorithm can be viewed as a special case of prior specification in
which the prior distribution is degenerate with probability one for the set value and zero for
all other values. The introduction of non-degenerate priors can typically give more flexibility in
modeling reality.

The use of formal statistical models in bioinformatics was relatively rare before the 1990s.
One reason is perhaps that computer scientists, statisticians, and other data analysts were not
comfortable with big models — it is hard to think about many unknowns simultaneously. Addi-
tionally, algorithms for dealing with complex statistical models were not sufficiently well known
and the computer hardware was not yet as powerful. Recently, an extensive use of probabilistic
models (e.g., the hidden Markov model and the missing data formalism) has contributed greatly
to the advance of computational biology.

Recursive algorithms for global optimization have been employed with great advantage in
bioinformatics as the basis of a number of dynamic programming algorithms. We show that

these algorithms have very similar counterparts in Bayesian and likelihood computations.
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3 Bayes Procedure

3.1 The joint and posterior distributions

The full process of a typical Bayesian analysis can be described as consisting of three main steps
(Gelman et al. 1995): (a) setting up a full probability model, the joint distribution, that captures
the relationship among all the variables (e.g., observed data, missing data, unknown parameters)
in consideration; (b) summarizing the findings for particular quantities of interest by appropriate
posterior distributions, which is typically a conditional distribution of the quantities of interest
given the observed data; and (c) evaluating the appropriateness of the model and suggesting
improvements (model criticism and selection).

A standard procedure for carrying out step (a) is to formulate the scientific question of
interest though the use of a probabilistic model, from which we can write down the likelihood
function of @. Then a prior distribution fo(@) is contemplated, which should be both mathe-
matically tractable and scientifically meaningful. The joint probability distribution can then be

represented as Joint = likelihood X prior, i.e.,

p(y,0) =p(y | 0)f0(8), (1)

For notational simplicity, we use p(y | @), hereafter, interchangeably with f(y | @) to denote the
likelihood. From a Bayesian’s point of view, this is simply a conditional distribution.
Step (b) is completed by obtaining the posterior distribution through the application of

Bayes theorem:

_p(y,0) _  p(y|0)fo(0)
PO1Y) =" = T 6 fo(@rds <P | 9Fo®) 2)

When 0 is discrete, the integral is replaced by summation. The denominator p(y), which is a

normalizing constant for the function, is sometimes called the marginal likelihood of the model
and can be used to conduct model selection (Kass and Raftery, 1995). Although evaluating p(y)
analytically is infeasible in many applications, Markov chain Monte Carlo methods (Section 4)

often can be employed for its estimation.
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In computational biology, because the data to be analyzed are usually categorical (e.g., DNA
sequences with a 4-letter alphabet or protein sequences with a 20-letter alphabet), the multino-
mial distribution is most commonly used. The parameter vector @ in this model corresponds to
the frequencies of each base type in the data. A mathematically convenient prior distribution
for the multinomial families is the Dirichlet distributions, of which the Beta distribution is a

special case for the binomial family. This distribution has the form

k
i1
fo(0) < T] 6 (3)
i=1
where £ is the size of the alphabet and «; > 0 for all j. Here @ = (a1,... , ) is often called

the hyper-parameter for the Dirichlet distribution and the sum o = a3 + - - - + oy, is often called
the “pseudo-counts,” which can be understood heuristically as the total “worth” (in comparison
with actual observations) of one’s prior opinion. When a simple iid model is imposed on an

observed sequence of letters, y = (y1,... ,yn), its likelihood function is

n k
=1 j=1

where n; is the number of counts of residual type j in y. If a Dirichlet (o) prior used for
its parameter @, the posterior distribution for @ is simply another Dirichlet distribution with
hyperparameter (o +n1,... ,ax +ny). The posterior mean of, say, 6;, is (n; + «;)/(n + ).
Suppose the parameter vector has more than one component, i.e., @ = (91,0[,1}), where
0/_1) denotes all but the first component. One may be interested only in one of components,
01, say. The other components that are not of immediate interest but are needed by the model,

nuisance parameters, can be removed by integration:

_ p(yael) _ fp(y | 0170[—1])f0(01,0[_1})d0[_1}
p(y)  []p(y | 61,0(_1)fo(61,0_1))d61dB_

Note that computations required for completing a Bayesian inference are the integrations (or

(6 |y)

(4)

summations for discrete parameters) over all unknowns in the joint distribution to obtain the
marginal likelihood and over all but those of interest to remove nuisance parameters. Despite

the deceptively simple-looking form of (4), the challenging aspects of Bayesian statistics are:
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(i) the development of a model, p(y | 8)fy(€), which must effectively capture the key features
of the underlying scientific problem; and (ii) the necessary computation for deriving the pos-
terior distribution. For aspect (i), the missing data formulation is an important tool to help
one formulate a scientific problem; for (ii), the recent advances in Markov chain Monte Carlo

techniques are essential.

3.2 The missing data framework

The missing data formulation is an important methodology for modeling complex data structures
and for designing computational strategies. This general framework was motivated in early 1970s
(and maybe earlier) by the need for a proper statistical analysis of certain survey data where
parts of the data were missing. For example, a large survey of families was conducted in 1967 in
which many socioeconomic variables were recorded. Then a follow-up study of the same families
were done in 1970. Naturally, the 1967 data had a large amount of missing values due to either
recording errors or some families’ refusal to answer certain questions. The 1970 data had an
even more severe kind of missing data caused by the fact that many families studied in 1967
could not be located in 1970.

The first important question for a missing data problem is under what conditions can ignore
the “missing mechanism” in the analysis. That is, does the fact that an observation is missing
tell us anything about the quantities we are interested in estimate? For example, the fact that
many families moved out of a particular region may indicate that the region’s economy was
having problem. Thus, if our interested estimand is a certain “consumer confidence” measure of
the region, the standard estimate resulting only from the observed families might be biased. Ru-
bin (1976)’s pioneering work provides general guidance on how to judge the ignorability. Since
everything in a Bayes model is a random variable, it is especially convenient and transparent in
dealing with these ignorability problems in a Bayesian framework. The second important ques-
tion is that how one should conduct computations, such as finding the MLE or the posterior
distribution of the estimands. This question has motivated statisticians to develop several im-

portant algorithms: the EM algorithm (Dempster, Laird, and Rubin, 1977), data augmentation

13



(Tanner and Wong, 1987), and the Gibbs sampler (Gelfand and Smith, 1990).

In late 1970s and early 1980s, people started to realize that many other problems can be
treated as a missing data problem. One typical example is the so-called latent-class model
which is most easily explained by the following example (Tanner and Wong, 1987). In the 1972-
74 General Social Surveys, a sample of 3,181 participants were asked to answer the following
questions. Question A: whether or not you think it should be possible for a pregnant woman
to obtain a legal abortion if she is married and does not want any more children. Question B:
the italicized phrase in A is replaced with “if she is not married and does not want to marry
the man.” A latent-class model assumes that a person’s answers to A and B are conditionally
independent given the value of a dichotomous latent variable Z (either 0 or 1). Intuitively,
this model asserts that the population consists of two “types” of persons (e.g., conservative
and liberal) and Z is the unobserved “label” of each person. If you know the person’s label,
then his/her answer to question A will not help you to predict his/her answer to question B.
Clearly, variable Z can be thought of as a “missing data” although it is not really “missing” in
a standard sense. For another example, in a multiple sequence alignment problem, alignment
variables that must be specified for each sequence (observation) can be regarded as missing
data. Residue frequencies or scoring matrices, which apply to all the sequences are population
parameters. This generalized view eventually made the missing data formulation one of the
most versatile and constructive workbenchs for sophisticated statistical analysis and advanced
statistical computing.

The importance of the missing data formulation stems from the following two main consider-
ations. Conceptually, this framework helps in making model assumptions explicit (e.g., ignorable
versus nonignorable missing mechanism), in defining precise estimands of interest, and in provid-
ing a logical framework for causal inference (Rubin, 1976). Computationally, the missing data
formulation inspired the invention of several important statistical algorithms. Mathematically,
however, the missing data formulation is not well defined. In real life what we can observe is
always partial (incomplete) information and there is no absolute distinction between parameters

and missing data (i.e., some unknown parameters can also be thought of as missing data and
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vice versa).

To a broader scientific audience, the concept of “missing data” is perhaps a little odd since
many scientists may not believe that they have any missing data. In the most general and
abstract form, the “missing data” can refer to any unobserved component of the probabilistic
system under consideration and the inclusion of this part in the system often results in a simpler
structure. This component, however, needs to be marginalized (integrated) out in the final
analysis. That is, when missing data ymis is present, a proper inference about the parameters
of interest can be achieved by using the “observed-data likelihood,” Lps(0;yobs) = p(Yobs | €),

which can be obtained by integration:

Lobs(0§ YObs) X /p(}’obSaYmis | a)d}’mis-

Since it is often difficult to compute this integral analytically, one needs advanced computational
methods such as the EM algorithm (Dempster et al., 1977) to compute the MLE.
Bayesian analysis for missing data problems can be achieved coherently through integration.

Let @ = (61, 0/_1)) and suppose we are interested only in 6;. Then

p(6’1 | YObs) X //p(}’obsa}’mis | 0130[—1})1)(0130[—1])deisd0[—1}'

Since all quantities in a Bayesian model are treated as random variables, the integration for
eliminating the missing data is no different than that for eliminating nuisance parameters.

Our main use of the missing data formulation is to construct proper statistical models for
bioinformatics problems. As will be shown in the later sections, this framework frees us from
being afraid of introducing meaningful but perhaps high-dimensional variables into our model,
which is often necessary for a satisfactory description of the underlying scientific knowledge.
The extra variables introduced this way, when treated as missing data, can be integrated out in
the analysis stage so as to result in a proper inference for the parameter of interest. Although
a conceptually simple procedure, the computation involved in integrating out missing data can

be very difficult. Section 4 introduces a few algorithms for this purpose.
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3.3 Model selection and Bayes evidence

At times biology may indicate that more than one model are plausible. Then we are interested in
assessing model fit and conducting model selection (Step (c) described in Section 2.1). Classical
hypothesis testing can be seen as a model selection method in which one chooses between the
null hypothesis and the alternative in light of data. Model selection can also be achieved by
a formal Bayes procedure. Firstly, all the candidate models are embedded into one unified
model. Then the “overall” posterior probability of each candidate model is computed and used
to discriminate among the models (Kass and Raftery, 1995).

To illustrate the Bayes procedure for model selection, we focus on the comparison of two
models: M = 0 indicates the “null” model, and M = 1 the alternative. The joint distribution

for the augmented model becomes
p(Yﬂ 0, M) = p(y | 0, M)p(oa M)

Under the assumption that the data depend on the models through their respective parameters,

the above equation is equal to

p(y,0, M) =p(y | 0)p(0m | M = m)p(M = m),

where p(60,, | M = m) is the prior for the parameters in model m, and p(M = m) is the prior
probability of model m. Note that the dimensionality of 8,, may be different for different m.

The posterior probability for model m is obtained as:
p(M =m|y) o ply|M=m)p(M =m)
= {01 000®, | M = )it (ot =)
The choice of p(M = m), which is our prior on different models, is assigned independently of
data in study. A frequent choice is p(M = 0) = p(M = 1) = 0.5 if we expect that both models
are equally likely a priori. But in other cases we might set p(M = 1) very small. For example,
in the context of database searching, the prior probability that the query sequence is related

to a sequence taken at random from the database is much smaller. In this case we might set

p(M = 1) inversely proportional to the number of sequences in the database.
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4 Advanced Computation in Statistical Analysis

In many practical problems, the required computation is the main obstacle for applying both
the Bayesian and the MLE methods. In fact, until recently these computations have often
been so difficult that sophisticated statistical modeling and Bayesian methods were largely for
theoreticians and philosophers. The introduction of the bootstrap method (Efron, 1979), the
expectation-maximization (EM) algorithm (Dempster et al., 1977), and the Markov chain Monte
Carlo (MCMC) methods (Gilks et al., 1998) has brought many powerful statistical models into
the mainstream of statistical analysis. As we illustrate in Section 5, by appealing to the rich
history of computation in bioinformatics, many required optimizations and integrations can
be done exactly, which gives rise to either an exact solution to the MLE and the posterior

distributions or an improved MCMC algorithm.

4.1 The EM algorithm

The EM algorithm is perhaps one of the most well-known statistical algorithms for finding the
mode of a marginal likelihood or posterior distribution function. That is, the EM algorithm

enables one to find the mode of

F(Q) = /f(}’mis,}’obs | o)d}’mis, (5)

where f(Ymis, Yobs | @) > 0 and F(8) < oo for all . When y ;s is discrete, we simply replace the
integral in (5) by summation. The EM algorithm starts with an initial guess 8(”) and iterates

the following two steps:

e E-step. Compute

Q(0|0(t)) = Et[l()g f(YmisaYObs | 0) | YObs]

= /10g f(}’misa Yobs | o)f(}’mis | Yobs; o(t))d}’misa
where f(¥mis | Yobss @) = f(¥mis, Yobs | @)/ F(0), the conditional distribution of ypis.
e M-step. Find 8¢ to maximize Q(0|60).
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The E-step is derived from an “imputation” heuristic. Since we assume that the log-
likelihood function is easy to compute once the missing data ymis is given, it is appealing
to simply “fill-in” a set of missing data and conduct a complete-data analysis. However, the
simple “fill-in” idea is incorrect because it underestimates the variability caused by the missing
information. The correct approach is to average the log-likelihood over all the missing data.
In general, the E-step considers all possible ways of filling in the missing data, computes the
corresponding complete-data log-likelihood function, and then obtains Q(0|0(t)) by averaging
these functions according to the current “predictive density” of the missing data. The M-step
then finds the maximum of the @ function.

It is instructive to consider the EM algorithm for the latent-class model of Section 3.2. The
observed values are yops = (Y1,... ,Un), where y; = (y1, yi2) and y;; is the ith person’s answer
to jth question. The missing data are ynis = (z1,... ,2,), where z; is the latent-class label of
person i. Let @ = (0g.1,01,1,00,2,01,2,7), where v is the frequency of z; = 1 in the population and
01 is the probability of a type-k person saying “yes” to the Ith question. Then the complete-data
likelihood is

n [ 2
F Yrmiss 0) = P(Yobs|Yimis: O)p(ymisl8) = [ [ [H {00810 = 0.0 7 h (1 - v)“i] .
i=1 Lk=1

The E-step requires us to average over all label imputations. Thus, Q(0|0(t)) is equal to

YObs] )

where the expectation sign means that we need to average out each z; according to its “current”

E,

n 2
> {Z {yik 1og 0, & + (1 — yix) og(1 — 0, 1)} + 2 log y + (1 — 2;) log(1 — 7)}

i=1 (k=1

predictive probability distribution

1)

_ 7Yy,

Ty = p(zz' =1 | yObSao(t)) = - :
Y00 + (1 — )65

Hence, in the E-step, we simply “fill-in” a probabilistic label for each person, which gives

1 2
QMO = Y M| Y A -m) " loglnk+ Y T — 1) 7™ log(L = O )

m=0k=1 \i: y;r=1 i Yir=0
+ (Z Ti> logy + (Z(l - Tl)> log(1 — 7).
=1 =1
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Although the above expression looks overwhelming, it is in fact quite simple and the M-step
simply updates the parameters as y**1) = 3" 7,/n and

gD _ Doy T (L= i)
ok Zz Yik=1 sz(l B Ti)lim + Zz Yir=0 sz(]' - Ti)lim

There are three main advantages of the EM algorithm: (a) it is numerically stable (no

inversion of a Hessian matrix); (b) each iteration of the algorithm strictly increases the value of
the objective function unless it has reached a local optima; (c) each step of the algorithm has
an appealing statistical interpretation. For example, the E-step can often be seen as “imputing”
the missing data and the M-step can be viewed as the estimation of the parameter value in lights
of the current imputation. The idea of iterating between “filling-in” missing data and updating
estimate of the parameter has been around much longer than the EM algorithm. But Dempster
et al. (1977) provided the first general and mathematically correct formulation of this intuitive
idea. See Meng and van Dyk (1997) and discussions therein for an overview of recent advances

of the EM algorithm.

4.2 Monte Carlo and Bayesian Analysis

As we have mentioned previously, the Bayesian analysis of a statistical problem can be made

based on the joint posterior distribution of e/l unknown variables:

_ p(YobsaYmis | 0)f0(0) ‘
ffp(}’obs,}’;nis | ol)fﬂ(el)dy;nisdol

Note that this joint distribution is almost completely known — except for the denominator,

p(oaymis | YObs) (6)

which is often called the normalizing constant (or the partition function in physics). Suppose,
for example, we are interested only in estimating the first component 6, of 8, say. We may need

to evaluate its posterior mean (and perhaps other characteristics):

ff olp(YObSaYmis | e)fﬂ(e)d}’misdo
S 2(Yobs Yinis | 0')fo(8")dy y;sd60"

Neither the numerator nor the denominator in (7) is easy to compute in practice.

E(Hl | Y) = // glp(oa}’mis | YObs)deisdo = (7)

If, however, we can generate a random sample (yfii)s,O(l)), e (yf:ils),o(m)), either inde-

pendently or dependently (as in a Markov chain), from the joint posterior distribution (6),
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then we can approximate the marginal posterior distribution of #; by the histogram of the first

()

component, 07", of each 0Y), and approximate (7) by the Monte Carlo sample average
i — L (o0 (m)
A (9 40 ) : 8
1=\ (8)

4.3 Simple Monte Carlo techniques

To begin with basic ideas, we describe two simple algorithms for generating random variables
from a given distribution. As a starting point, we assume that independent uniform (in region
[0,1]) random variables can be produced satisfactorily. Algorithms that serve this purpose are
called random number generators. In fact, this task is not as simple it looks and the interested

reader is encouraged to study further on this topic (Marsaglia and Zaman, 1993).

Inversion method. When we have available the cumulative distribution function (cdf) for

a one-dimensional target distribution 7(x), we can implement the following procedure.
e Draw U ~ Unif [0,1]
e Compute x = F~Y(U), where F~!(u) = inf{z; F(x) > u}.

Then x such produced must follow 7. The interested reader can try to prove this fact. However,
because many distributions (e.g., Gaussian) do not have a closed-form cdf, it is often difficult to
directly apply the inversion method. To overcome this difficulty, von Neumann (1951) invented
the ingenious rejection method which can be applied very generally.

Rejection method. Suppose [(x) = c¢m(x) is known (but ¢ may be unknown) and we can
find a sampling distribution g(x) together with a constant M such that the envelope property,

i.e.,, Mg(x) > I(x) for all x, is satisfied. Then we can apply the following procedure.
(a) Draw x ~ g(x) and compute the ratio r = [(x)/Mg(x) (which should always be < 1);

(b) Draw U ~ Unif[0,1]; accept and return x if U < r; reject x and go back to (a) if U > r.

20



To show that the accepted sample follows distribution 7, we let I be the indicator function

so that I =1 if sample X drawn from g( ) is accepted, and I = 0, otherwise. Thus,

em(x) c

P =1)= [ 31 = 11X = xgx)ix = [ Egx)ax = .

and

em(x)

Mg(x)

px|I=1)= 9(x)/p(I =1) = 7(x).

It is seen that the “success rate” for obtaining an accepted sample is ¢/M. Thus, the key to a
successful application of the algorithm is to find a good trial distribution g(x) which gives rise to
a small M. Since it is usually difficult to find a good g-function in high-dimensional problems,

the rejection method alone tends to be not very useful in difficult problems.

4.4 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) is a class of algorithms for simulating random variables
from a target distribution, 7(x), given up to a normalizing constant. A major advantage of these
algorithms is their ability to “divide-and-conquer” a high-dimensional and complex problem.
These algorithms serve our purpose well because in Bayesian analysis we want to draw random
samples from the joint posterior distribution (6) without having to know its denominator. The
basic idea behind MCMC algorithms is to design and simulate a Markov chain whose equilibrium
distribution is exactly 7(x). Here we describe two methods for constructing such chains — the
Metropolis algorithm and the Gibbs sampler — both being widely used in diverse fields. More

versatile algorithms and their analyses can be found in Liu (2001).

Metropolis-Hastings Algorithm. Let 7(x) = cexp{—h(x)} be the target distribution
with unknown constant c¢. Metropolis et al. (1953) introduced the fundamental idea of Markov
chain sampling and prescribed the first general construction of such a chain. Hastings (1970)
later provided an important generalization. Starting with any configuration x(©) the M-H

algorithm evolves from the current state x(Y) = x to the next state x(t1) as follows:
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e Propose a new state x’ which can be viewed as a small and random “perturbation” of the
current state. More precisely, x' is generated from a proposal function T(x(t) — x') (i.e.,

it is required that 7> 0 and }_,)) , T(x — y) =1 for all x) determined by the user.

e Compute the Metropolis ratio

n T(X)NT(x = x)
r(xx) = 7(x)T(x — x') (9)

e Generate a random number u ~ Unif[0,1];

— let x(HD = %' if u < r(x,x);

— let xt+TD) = x(®) otherwise.

A more well-known form of the Metropolis algorithm is described as iterating the following
steps: (a) a small random perturbation of the current configuration is made; (b) the “gain”
(or loss) in an objective function (i.e., —h(x)) resulting from this perturbation is computed;
(c) a random number U is generated independently; and (d) the new configuration is accepted
if log(U) is smaller than or equal to the “gain,” and is rejected otherwise. The well-known
simulated annealing algorithm (Kirkpatrick, Gelatt and Vecchi, 1983) is built upon this basic
Metropolis iteration by adding an adjustable exponential scaling parameter to the objective
function (i.e., w(x) is scaled to #*(x) and alpha — 0).

Metropolis et al. (1953) restricted their choices of the “perturbation” function to be the
symmetric ones. That is, the chance of proposing x’ from perturbing x is always equal to that
of proposing x from perturbing x’. Intuitively, this means that there is no “trend bias” at the
proposal stage. Mathematically, this symmetry can be expressed as T'(x — x') = T(x' — x).
Hastings (1970) generalized the choice of T' to all those that satisfies the property: T'(x — x') > 0
if and only if T'(x" — x) > 0. It is easy to see that the “actual” transition probability function

resulting from the M-H transition rule is, for x # y,

Ax —y) =T(x — y)min{l,r(x,y)},

22



where r(x,y) is the Metropolis ratio as in (9). It is easy to see that
T(x)A(x = y) = min{r(x)T'(x = y), (y)T(y = %)},
which is a symmetric function in x and y. Thus, the detailed balance condition
T(x)A(x = y) = 7(y)Aly — x)

is satisfied by A. This condition then implies that 7 is the invariant distribution for the

Metropolis-Hastings transition. That is,

/W(X)A(X = y)dx = 7(y).

Heuristically, = can be seen as a “fixed point” under the M-H operation in the space of all
distributions. It follows from the standard Markov chain theory that if the chain is irreducible
(i.e., it is possible to go from anywhere to anywhere else in a finite number of steps), aperiodic
(i.e., there is no parity problem), and not drifting away, then in the long run the chain will settle
at its invariant distribution (Neal, 1993). The random samples so obtained eventually are like
those drawn directly from 7.

The Metropolis algorithm has been extensively used in statistical physics over the past 40
years and is the cornerstone of all MCMC techniques recently adopted and generalized in the
statistics community. Another type of MCMC algorithm, the Gibbs sampler (Geman and Geman
1984), differs from the Metropolis algorithm in its extensive use of conditional distributions based

on m(x) for constructing Markov chain moves.

Gibbs sampler. Suppose x = (z1,... ,2z4). In the Gibbs sampler, one randomly or system-
atically chooses a coordinate, say x1, and then update its value with a new sample 2} drawn from
the conditional distribution 7(- | x[_1]), where x[_ 4 refers to {x;, j € A°}. Algorithmically, the

Gibbs sampler can be implemented as follows:

Random Scan Gibbs sampler. Suppose currently x(t) = (wgt), . x((it)). Then
e Randomly select i from {1,... ,d} according to a given probability vector (aq,... ,aq).
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t+1) t) (t+1) (t)

e Let :1:5 be drawn from the conditional distribution 7(- | xE_i]), and let Ty =Xy
Systematic Scan Gibbs sampler. Let the current state be x() = (:cht), e :Jc((it)).
e Fori=1,...,d, we draw $Et+1) from the conditional distribution
m(x; | x&tﬂ), . ,xgil),xz(-le, . ,x((it)).

It is easy to check that every individual conditional update leaves m invariant. Suppose currently

x(") ~ 7. Then xfi)i] follows its marginal distribution under 7. Thus,

r(ai | XEt—)i}) xm(xZy) = ”(xz(tﬂ)’xft_)i}),

implying that the joint distribution of (xEt_)i},xEtH)) is unchanged at 7 after one update.

The Gibbs sampler’s popularity in statistics community stems from its extensive use of
conditional distributions in each iteration. Tanner and Wong (1987)’s data augmentation first
linked the Gibbs sampling structure with missing data problems and the EM algorithm. Gelfand
and Smith (1990) further popularized the method by pointing out that the conditionals needed
in Gibbs iterations are commonly available in many Bayesian and likelihood computations.

Under regularity conditions, one can show that the Gibbs sampler chain converges geo-
metrically and its convergence rate is related to how the variables correlate with each other.
Therefore, grouping highly correlated variables together in the Gibbs update can greatly speed

up the sampler (Liu, 1994).

Other techniques. A main problem with all MCMC algorithms is that they may, for some
problems, move very slowly in the configuration space or may be trapped in the region of a local
mode. This phenomena is generally called slow-mizing of the chain. When chain is slow-mixing,
estimation based on the resulting Monte Carlo samples becomes very inaccurate. Some recent
techniques suitable for designing more efficient MCMC samplers in bioinformatics applications
include simulated tempering (Marinari and Parisi, 1992), parallel tempering (Geyer, 1991),

multicanonical sampling (Berg and Neuhaus, 1992), multiple-try method (Liu et al., 2000),
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and evolutionary Monte Carlo (Liang and Wong, 2000). These and some other techniques are

summarized in Liu (2001).

5 Compositional Analysis of a DNA Sequence

Suppose our observation is a DNA sequence, R = (r1,72,... ,7,), and we are interested in under-
standing various aspects of it, such as its general compositions, dependence between neighboring
base pairs, regions with different statistical characteristics (e.g., G-C rich regions), repeated short
sequence patterns, and so on. In this and the next sections we show how progressively complex
statistical models can be developed to address these scientific questions. Note that the problem
setting is very general since a dataset of multiple sequences can always be regarded as a single

“super-sequence” by joining all the individual sequences.

5.1 Multinomial modeling

The simplest statistical model for a DNA sequence is, as we discussed in Section 3.1, the iid
multinomial model in which each r; is assumed to be independently generated according to
probability vector @ = (6,,...,6;). The likelihood function of @ is then L(0 | R) = 6} --- 6},
where n = (ng,...,n;) is the vector of counts of the 4 types of nucleotides. Vector 6 =
(ng/n, ... ,ny/n) maximizes L(@ | R) and is the MLE of . The distribution of nf under
hypothetical replications is Multinom(n; ). Hence, for example, nBq ~Binom(n, ,). Inverting
this relationship gives us an approximate confidence interval for 6.

With a Dirichlet(e) prior (3), the posterior of € is Dirichlet(n + ) and

9oy

E(0|R):<na+aa nt—i-at)’

n—+ « n+ «

where @ = a; +- - - + 4. This result is not that much different from the MLE. If one is interested

in the posterior distribution of 6,, say, an easy calculation gives us

0o | R ~ Beta(ng + ag,n+ a —ng — ag).
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5.2 Homogeneous Markov model

A natural next-step model is the Markov model, in which one assumes that the observed sequence
follows a Markov chain with transition matrix P(r; — ri41) = 0, r,.,, where the parameter

vector is a 4 x 4 matrix

where each row sums to one. The MLE of each component, 84, say, in the parameter matrix
is ng¢/ng., where ng is the total count of neighboring AT pairs in the sequence and n, =
Nag + -+ + Mgt is the total count of A’s excluding the first bp ;. When a conjugate prior is
used, a similar procedure to that for the multinomial model gives us the posterior distribution

of @, which is a product of four (one for each row of @) independent Dirichlet distributions.

5.3 A hidden Markov model

Let us now consider a model that can accommodate compositional heterogeneity in DNA se-
quences. For this we can think of sequence R as consisting of different segments, and the
sequence composition are homogeneous within each segment. Based on this heuristics, Liu and
Lawrence (1999) proposed and analyzed a Bayesian segmentation model. Another model, as

first proposed by Churchill (1989), is based on the HMM structure shown in Figure 1.

L I fha h
BESS

n-1
Figure 1: A graphical illustration of the hidden Markov model.

I

n

In this HMM model, we assume that the hidden layer h = (hg, h1,... , hy) is a Markov chain

Each h;, for example, may have two possible states where h; = 0 implies that the corresponding

26



r; follows one compositional model, Multinom(6y), and h; = 1 indicates that r; ~ Multinom(8+).
Here 0 = (Oka,- .- ,0kt). A 2x2 transition matrix, 7 = (1), where 7y = P(h; = k — hjy1 = 1),
dictates the generation of h. A similar model has been developed by Krogh et al. (1994) to
predict protein coding regions in E. Coli genome.

Let @ = (6,601, 7). The likelihood function of @ under this HMM is

L(60,61,7 |R) = Y p(R|h,80,6,)ph|7),
h

= Zpo(ho)Hp(Ti | hi, @)p(hi | hi—1,T)
h -1

= Zpo(ho) H Ohiri Thi— 1 h;
h =1

where hg is assumed to follow a known distribution pg. For a given set of parameter values
we can find the exact value of this likelihood function via a recursive summation method as
described in (10) below.

However, finding the MLE of @ is still nontrivial. One possible approach is to maximize L
by a Newton-Raphson’s method in which the first and the second derivatives of L can all be
computed recursively. But this method may be unstable because 8’s dimensionality is a bit
too high (the Hessian is a 9 X 9 matrix). A more stable alternative is the EM algorithm which

involves iterations of the following two steps.

e F-step. Compute the Q-function:

QeoleY) = & Z 1og{On;r Thi_ini } | R, 00
i=1
= 33D {l0gbhr +logm_n} P (hi 1, hi)
i=1 | h; hi—1
1 t 1 1
= Z Z nlgty) log 0 + Z Zm,(:l) log 4.
k=0 j=a k=0 1=0

Here Pi(t)(hi,l, h;) = p(hi—1,h; | R, O(t)), the marginal posterior distribution of (h;_1, h;)

when the parameter takes value @), This quantity can be obtained by using the B-
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function defined in (16) and a procedure similar to the computation of (17). The Pi(t) can
be derived by a recursive procedure similar to (10). The n,(ct]) and the mgctl) are the sums of

the corresponding Pi(t) (k,1).
e M-step. Maximize the Q-function. It is obvious that the maximizer of Q(0]0") is
t+1 ), (t t+1 t t
A = a0 and L) = )

in which ng) = n,(:a) +- 4+ n;tt) and ’m»;:) = m% + mgctl) :

To avoid being trapped at a singular point corresponding to zero count of certain base type, we
may want to give a nonzero pseudo count to each type.

A Bayesian analysis of this problem is also feasible. With a prior distribution fy(@), which
may be a product of three independent Dirichlet distributions, we have the joint posterior of all

unknowns:
p(0,h | R) < p(R | h,8)p(h|8)fo(6).

In order to get the marginal posterior of 8, we may implement a special Gibbs sampler, data

augmentation, which iterates the following steps:
e Imputation: draw ht1) ~ p(h | R,0®));
e Posterior Sampling: draw o+l o p(0 | R, h(t-l—l))_

The imputation step needs to draw a path, h, from its posterior distribution with given
parameter value. Its implementation requires a recursive method for summing up all the con-
tributions from hg to h, and then sampling backward. Thus, this method is very similar to
dynamic programming and is sometimes called the forward-backward method. More precisely,
this distribution can be written as

p(h[R,0) = cph,R|6)=cp(R|h0)ph]|8)

n

= cpo(ho) [] {p(rilhi)p(hilhi—1)} = ¢ po(ho) [ | (Onirsmhizini) »

=1 =1
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where ¢ is the normalizing constant, i.e.,

= Z {po(ho) H (ohiT'iThilhi)} :

h =1

The key observation is that ¢, and also other required marginal distributions, can be computed

exactly by a recursive method. Define Fy(h) = po(h), and compute recursively

2

Fi(h) = Z {Fi—1(hi=1)Th;_nOnr;}, for b =0,1. (10)
hi_1=1

At the end of the recursion we obtain ¢=! = F},(0) + F,,(1) and

FE,(hy)

P | B.O) = 5 o)+ Fo()”

(11)

In order to sample h properly, we draw h,, from distribution (11) and then draw h; recursively

backward from distribution

E(hi)Thihi+l
Fi(0)ton,,, + Fi(L)Tin,,

p(hi | hi+17R70) = (12)

The posterior sampling step in the Gibbs sampler needs us to draw from the posterior
distribution of @ given h and R. This is a very simple task and only involves finding appropriate
counts and sampling from the corresponding Dirichlet distributions. For example, 8y should be
drawn from Dirichlet(ng, + g, - .. , nor + @), where, ngg, say, is the counts of the r; whose type

is A and whose hidden state h; is zero.

5.4 HMM with more than two hidden states

It is straightforward to extend the previous 2-state HMM to a k-state HMM so as to analyze
a sequence with regions of k different compositional types. In a k-state HMM, we will need a
k x k transition matrix (k(k — 1) free parameters) to describe the transitions between the hidden
Markov chain, and a probability vector @; for each compositional type (3% free parameters).
The total number of free parameters is thus k(k + 2).

It is a non-trivial problem, however, to determine what value of k is proper for a given

sequence R. A Bayesian model selection procedure as described in Section 3.3 can be applied
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to resolve this issue. More precisely, we introduce a model variable K. For given K = k, we can

fit a k-state HMM to the sequence and obtain the model likelihood

p(R|K = k) = / / pr(R | b, 0)py(h | 8) f(6)dhdd,

where subscript k indicates that the employed distributions correspond to a k-state model. With
a prior distribution py(k) on K, we can derive the posterior distribution of K given the sequence.
Although conceptually simple, this model selection procedure involves a difficult integral which
is difficult to solve analytically. One often has to resort to some special MCMC methods designed
for estimating the ratio of normalizing constants (Liu, 2001).

As an alternative to the HMM, Liu and Lawrence (1999) and Schmidler et al. (2000) describe
a segmentation model based on the so-called hidden semi-Markov model (HSMM). Sequence
segmentation models have been developed for many purposes in bioinformatics, including models
for protein sequence hydrophobicity (Kyte and Dolittle, 1982; Auger and Lawrence, 1989),
models for protein secondary structure (Schmidler et al., 2000), models for sequence complexity
(Wootton, 1994), and models for gene identification (Snyder and Stormo, 1995; Burge and
Karlin, 1997). What is common to all these methods is that a single sequence is characterized
by a series of models which only involve local properties. That is, we assume in this model that
the sequence can be segmented into m parts, where m is unknown, and each segment is described
by a “local” model. An advantage of this model is that a Bayesian method for determining the

number of segments m is relatively easy (Liu and Lawrence, 1999).

6 Find Repetitive Patterns in DNA Sequence

Similar to the objective of the previous section, our primary interest here is in the analysis
of a single “super-sequence.” Our focus, however, is one step further than the compositional
analysis: we want to find repetitive motif elements in the sequence. The main motivation for
this task is that repetitive patterns in biopolymer sequences often correspond to functionally or

structurally important part of these molecules. For example, repetitive patterns in noncoding
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regions of DNA sequences may correspond to a “regulatory motif” to which certain regulatory
protein binds so as to control gene expressions. The multiple occurrences of a regulatory motif
in R is thus analogous to the multiple occurrences of a word in a long sentence. It is of interest
to find out what this motif is and where it has occurred. What makes things worse, however, is
that although the motif occurs in the sequence multiple times, no two occurrences are exactly
identical. In other words, there are often some “typos” in each occurrence of the word. It is

therefore rather natural for us to employ probabilistic models to handle this problem.

6.1 Block-motif model with iid background

A simple model that conveys the basic idea of a motif that repeats itself with random variations
is the block-motif model as shown in Figure 2. It was first developed in Liu, Neuwald, and
Lawrence (1995) and has been employed to find subtle repetitive patterns, such as helix-turn-
helix structural motifs (Neuwald et al., 1995) or gene regulation motifs (Roth et al., 1998), in

both protein and DNA sequences.

w

Figure 2: A graphical illustration of the repetitive motif model.

This model says that at unknown locations A = (ay,... ,ax) there are repeated occurrences
of a motif. So the sequence segments at these locations should look similar to each other. In
other part of the sequence, called the background, the residues follow an independent multinomial
model. Suppose the motif’s width is w, we need w + 1 probability vectors to describe the motif
and the background: 8y = (fy,, ... ,00:) describe the base frequencies in the background; and
each @ describes the base frequency at position k of the motif. The matrix © = [61,...,0,]
is called the profile matrix for the motif. We again use the generic notation € to denote the
collection of all parameters, (6, 0).

With a Dirichlet prior Dirichlet(c), for all the 6;, we can obtain the Bayes estimates of
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the 0; very easily if we know the positions of the motif. To facilitate analysis, we introduce an
indicator vector I = (I,...,I,) and treat it as missing data. An I; = 1 means that position
1 is the start of a motif pattern, and I; = 0 means otherwise. We assume a priori each I; has
a small probability py to be equal to 1. With this setup, we can write down the joint posterior

distribution:
p(0, 1| R) xp(R[I,0)p(I|0)fo(0) (13)

where

n

p(I]6) o [y (1—po)'~".

i=1
If we do not allow overlapping motifs, we need to restrict that in I there are no pair I; = 1 and
I; = 1 with ¢ — j < w. Since the motif region is a very small fraction of the whole sequence, we
may estimate @y based on the whole sequence and treat it as known.

A simple Gibbs sampler algorithm can be designed to draw from this joint posterior distri-

bution (Liu et al. 1995). More specifically, we can iterate the following steps:

e For a current realization of 8, we update each I;, 2 =1,... ,n, by a random draw from its

conditional distribution, p(I; | I|_y}, R, @), where

p(li=1] I[—i}aRao) _ _bo ﬁ 01977'1‘+k—1 (14)
p(Il = 0 | I[—i}’R’ 0) 1 - pO k=1 éO’f‘i+k,1

Intuitively, this odds ratio is simply the “signal-to-noise” ratio.

e Based on the current value of I, we update the profile matrix © column-by-column. That
is, each 0, j = 1,... ,w, is drawn from an appropriate posterior Dirichlet distribution

determined by I and R.

After a burn-in period (until the Gibbs sampler stabilizes), we continue to run the sampler
for m iterations and use (8) to estimate the profile matrix ©. The estimated © can then be used

to scan the sequence to find the locations of the motif.
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6.2 Block-motif model with a Markovian background

Here the extra complication is that the motif can have a Markovian background. Thus, we
need a 4 x 4 transition matrix, By = (), to describe the background. We also assume that
the transition from the end of a motif to the next nonsite position follows the same Markov
law. Since the total number of bp’s that belong to a motif is a very small fraction of the total
number of base pairs in R, we may estimate By from the raw data directly, pretending that the
whole sequence of R is homogeneous and governed by the transition matrix By. In this way, the
transition probabilities can be estimated as lejz = nj,j,/Mj,, similar to that in Section 5.2. We
may then treat By as a known parameter. The joint posterior distribution of (@, I) in this case
differs from (13) only in the description of the residues in the background.

A Gibbs sampler very similar to the one described in Section 6.1 can be implemented. The
only difference is in the distribution p(I; | I|_;, R, @) which is needed in the conditional update
of I. That is, conditional on 6, R, we slide through the whole sequence position-by-position to

update I; according to a random draw from p(I; | I|_z, R, @), which satisfies

p(l;=1| I[—i]7R7 0) _ _bo ﬁ 01977'1‘+k—1
p(li=0|I_;,R,0) 1-po '

k=1 Bri+k72ri+k71

For given I, we update the profile matrix © in the same way as in Section 6.1.

6.3 Block-motif model with inhomogeneous background

It has long been noticed that DNA sequences contain regions of distinctive compositions. As
discussed in Sections 5.3 and 5.4, a HMM can be employed to delineate a sequence with & types of
regions. Suppose we decide to use a HMM to model sequence inhomogeneity. As we mentioned
before, since the total motif residues is a very small fraction of the whole sequence, we may
estimate the background model parameters directly by the methods in Section 5.3, pretending
that R does not contain any motifs. Then we treat these parameters as known at the estimated
values. After these, there are two strategies to modify the odds ratio formula (14).

In the first strategy, we treat each position in the sequence as a “probabilistic bp” (i.e.,

having probabilities to be one of the 4 letters) and derive the frequency model it. That is, we
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need to find 07; = p(r; = j | R) for a future r] and then treat residue r; in the background as

an independent observation from Multinom(8;), with 87 = (¢ ,07). But this computation

art

is nontrivial because

0 = plr} = §R) = Oo;p(hi = O|R) + 8jp(h; = 1|R), (15)

where p(h;) can be computed via a recursive procedure similar to (10). More precisely, in

addition to the series of forward functions Fj;, we can define the backward functions B;. Let

Bn(h) = Zhn Thhnghnrna and let

Bi(h) =Y {ThnOnr, Brar(br)}, for k=n—1,...,1, (16)
hi
Then we have
F;(1)B; 1
p(hi=1|R) = (W) Bi1 (1) (17)

Fi(1)Bi41(1) + F;(0)Bi1(0)
This is the marginal posterior distribution of h; and can be used to predict whether position i is
in state 1 or 0. Thus, in the Gibbs sampling algorithm we only need to modify the denominator
of the right hand side of (14) to [[}24 "6, .

In the second strategy, we seek to obtain the probability of the whole segment,

R[i:i+w—1] = (Tiye oo s Tidw—1),

conditional on the remaining part of the sequence, under the background HMM. Then we modify
(14) accordingly. Clearly, compared with the first strategy, the second one is more faithful to
the HMM assumption. The required probability evaluation can be achieved by a method similar

to that in the first strategy. More precisely,

p(R) _ p(R)
P(Ric1) Biivwn)) 20 P(B1:i—1]s Rjiywm); h)
_ Fu(0) + Fr(1) (18)
Dbt g Fi(B) Thihs *+ Thyy_ 1y Bistw (haw)

p(R[i:H»wfl} | R[l:ifl]aR[i+w:n}) =

where the denominator can also be obtained via recursions.
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6.4 Extension to multiple motifs

Previously, we have assumed that there is only one kind of motif in the sequence and the prior
probability for each I; = 1 is known as py. Both of these assumptions can be relaxed. Suppose
we want to detect and align m different types of motifs of lengths wq, ..., wy,, respectively,
and each occurring unknown number of times in R. We can similarly introduce the indicator
vector I, where I; = j indicates that an element from motif j starts at position ¢, and I; = 0
means that no elements start from position ¢. For simplicity, we only consider the independent
background model.

Let p(I; = j) = €j, where ¢y + - -- 4 €, = 1, be an unknown probability vector. Given what
is known about the biology of the sequences being analyzed, a crude guess k; for the number of
elements for motif j is usually possible. Let kg =n —ky —--- — ky,. We can represent this prior
opinion about the number of occurrences of each type of elements by a Dirichlet distribution on
€ = (€o,... ,€m), which has the form Dirichlet(by, ... ,by,,) with b; = J[]%, where Jy represents
the “weight” (or “pseudo-counts”) to be put on this prior belief. Then the same predictive
updating approach as illustrated in Section 6.1 can be applied. Precisely, the update formula

(14) for I is changed to

w(l,=j | I, R) ¢ 2 (08

kritr—1

k=1 90Ti+k— 1

where OU) = [0%‘7), e ,053}] is the profile matrix for the jth motif. Conditional on I, we can
then update € by a random sample from Dirichlet(by + no,... ,bm + 1), where nj (5 > 0) is

the number of motif type j found in the sequence, i.e., the total number of 7 such that I; = j,

and ng =n — ) n;. More details can be found in Neuwald, Liu and Lawrence (1995).

7 Discussion

As in classical statistics, optimization has been the primary tool in bioinformatics, in which
point estimates of very high-dimensional objects obtained by dynamic programming or other

clever computational methods are used. Characterizations of uncertainty in these estimates
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are mostly limited to simple significance test or completely ignored. The removal nuisance
parameters is also problematic, most frequently being the profile likelihood method in which
the nuisance parameters are fixed at their best estimates. In comparison, the Bayesian method
has no difficulties in these important aspects: the uncertainty in estimation is addressed by
posterior calculations and the nuisance parameters are removed by summation and integration.
When achievable, this class of principled approaches is particularly advantageous in treating
bioinformatics problems (Liu et al., 1999; Zhu et al., 1998). In exchange for these advantages,
however, one needs to set prior distributions and overcome computational hurdles, none of which
are trivial in practice.

The most important limitation on the Bayesian method is the need for additional compu-
tational resources. Recursion-based Bayesian algorithms generally have time and space require-
ments of the same order as their dynamic programming counterparts, although the constants are
generally much larger. With the availability of fast workstations with large memories, however,
this moderate increase in computing need is not a serious difficulty for most applications. For
those problems where there is no polynomial time solution, MCMC methods (and other Monte
Carlo methods) provides alternative means to implement a full Bayesian analysis. Although the
use of MCMC methods and recursive methods can ease some of the computational concerns,

difficulties remain for the specification of sensible prior distributions.
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