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ABSTRACT An important role for statisticians in the age of the Human
Genome Project has developed in the emerging area of “structural bioin-
formatics”. Sequence analysis and structure prediction for biopolymers is
a crucial step on the path to turning newly sequenced genomic data into
biologically and pharmaceutically relevant information in support of molec-
ular medicine. We describe our work on Bayesian models for prediction of
protein structure from sequence, based on analysis of a database of ex-
perimentally determined protein structures. We have previously developed
segment-based models of protein secondary structure which capture funda-
mental aspects of the protein folding process. These models provide pre-
dictive performance at the level of the best available methods in the field
(Schmidler et al., 2000). Here we show that this Bayesian framework is nat-
urally generalized to incorporate information based on non-local sequence
interactions. We demonstrate this idea by presenting a simple model for
β-strand pairing and a Markov chain Monte Carlo (MCMC) algorithm for
inference. We apply the approach to prediction of 3-dimensional contacts
for two example proteins.

1 Introduction

The Human Genome Project estimates that sequencing of the entire com-
plement of human DNA will be completed in the year 2003, if not sooner
(Collins et al., 1998). At the same time a number of complete genomes
for pathogenic organisms are already available, with many more under
way. Widespread availability of this data promises to revolutionize areas of
biology and medicine, providing fundamental insights into the molecular
mechanisms of disease and pointing the way to the development of novel
therapeutic agents. Before this promise can be fulfilled however, a num-
ber of significant hurdles remain. Each individual gene must be located
within the 3 billion bases of the human genome, and the functional role of
its associated protein product identified. This process of functional charac-
terization, and subsequent development of pharmaceutical agents to affect
that function, is greatly aided by knowledge of the 3-dimensional structure
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into which the protein folds. While the sequence of a protein can be deter-
mined directly from the DNA of the gene which encodes it, prediction of
the 3-dimensional structure of the protein from that sequence remains one
of the great open problems of science. Moreover, the scale of the problem
(the human genome is projected to contain approximately 30,000-100,000
genes) necessitates the development of computational solutions which cap-
italize on the laboriously acquired experimental structure data. The field
of research which has sprung up in support of these efforts is coming to be
known as “structural bioinformatics”, and poses a number of scientifically
important and theoretically challenging problems involving data analysis
and prediction. Emerging efforts to develop and make publicly available a
large, structurally diverse set of experimental data as a structural analog
of the Human Genome Project (Burley et al., 1999; Montelione and An-
derson, 1999) promise to provide a multitude of statistical problems within
this emerging research area.

2 Protein Structure Prediction

2.1 Proteins and their structures

A protein sequence is a linear heteropolymer, meaning simply that it is
an unbranched chain of molecules with each “link” in the chain made up
by one of the twenty amino acids (see Figure 1). Proteins perform the
vast majority of the biochemistry required by living organisms, playing
various catalytic, structural, regulatory, and signaling roles required for
cellular development, differentiation, replication, and survival. The key to
the wide variety of functions exhibited by individual proteins is not the
linear sequence as shown in Figure 1 however, but the three dimensional
configuration adopted by this sequence in its native environment. In order
to understand protein function at the molecular level then, it is crucial
to study the structure adopted by a particular sequence. Unfortunately
the physical process by which a sequence achieves this structure, known
as protein folding, remains poorly understood despite decades of study.
In particular, serious difficulties present themselves when one attempts to
predict the folded structure of a given protein sequence.

2.2 Protein structure prediction

The basic problem of protein structure prediction is summarized in Fig-
ure 2. The goal is to take an amino acid sequence, represented as a se-
quence of letters as shown in Figure 1, and predict the three dimensional
conformation adopted by the protein in its native (folded) state. The dif-
ficulties in doing so are numerous, and significant effort has been directed
towards developing approximate methods based on reduced representations
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Alanine A Leucine L
Arginine R Lysine K
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FIGURE 1. The basic components of protein structure. Proteins are made up of
twenty naturally occurring amino acids linked by peptide bonds to form linear
polymers. Each amino acid is represented by a letter of the alphabet to produce
a protein sequence.

PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIG
PENPYNTPVFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLKK
KKSVTVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGW
KGSPAIFQSSMTKILEPFKKQNPDIVIYQYMDDLYVGSDLEIGQHRTKIEE
LRQHLLRWGLTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVN
DIQKLVGKLNWASQIYPGIKVRQLCKLLRGTKALTEVIPLTEEAELELAEN
REILKEPVHGVYYDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARM
RGAHTNDVKQLTEAVQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQA
TWIPEWEFVNTPPLVKLWYQLEKEPIVGAETFYVDGAANRETKLGKAGYVT
NKGRQKVVPLTNTTNQKTELQAIYLALQDSGLEVNIVTDSQYALGIIQAQP
DKSESELVNQIIEQLIKKEKVYLAWVPAHKGIGGNEQVDKLVSAGI
PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIG
PENPYNTPVFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLKK
KKSVTVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGW
KGSPAIFQSSMTKILEPFKKQNPDIVIYQYMDDLYVGSDLEIGQHRTKIEE
LRQHLLRWGLTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVN
DIQKLVGKLNWASQIYPGIKVKQLCKLLRGTKALTEVIPLTEEAELELAEN
REILKEPVHGVYYDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARM
RGAHTNDVKQLTEAVQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQA
TWIPEWEFVNTPPLVKLWYQ

Sequence of 984 amino acids:

3D coordinates 
of 7404 atoms:

HIV reverse transcriptase

FIGURE 2. The protein structure prediction problem: predicting the 3D coor-
dinates of a folded protein from the amino acid sequence. The example protein
shown is HIV reverse transcriptase, a DNA polymerase required for HIV replica-
tion and therefore a target for pharmaceutical development.
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C-a groups:

3D coords of all atoms: 3D coords of C-a backbone:

3D coords of secondary structure elements:

FIGURE 3. Successive abstraction of the problem: From atomic coordinates to
α-carbon backbone to segments of secondary structure.

of proteins (see Neumaier (1997) for a review from a mathematical perspec-
tive). Here we focus only on one such abstraction of the problem, which
characterizes a protein structure by short segments of regular repeated
conformation, known as secondary structure. Figure 3 shows the process
of successive abstraction leading to a representation of protein structure
in terms of secondary structure vectors in space. The secondary structure
elements of greatest interest are helical regions known as α-helices, and
extended regions known as β-strands, which join together to form β-sheets.
Figure 4 shows both an α-helix and a β-sheet. The secondary structure

prediction problem is the task of predicting the location of α-helices and β-
strands in an amino acid sequence, in the absence of any knowledge of the
tertiary structure of the protein. The task is thus to predict a 1-dimensional
summary of the 3-dimensional folded structure, as shown in Figure 4. This
1D summary is typically formulated as a 3-state problem, with all posi-
tions classified as being in either α-helix (H), extended β-strand (E), or
loop/coil (L) conformation. Accurate secondary structure predictions are
of considerable interest, because knowledge of the location of secondary
structure elements can be used for approximate folding algorithms (Monge
et al., 1994; Eyrich et al., 1999) or to improve fold recognition algorithms
(Fischer and Eisenberg, 1996; Russell et al., 1996), which can in many
cases yield low-resolution 3D structures for the folded protein. Because
of this, secondary structure prediction has received a great deal of atten-
tion over several decades, but remains a difficult problem (see (Barton,
1995) or references in (King and Sternberg, 1996; Schmidler et al., 2000)
for a review). Standard approaches predict each sequence position inde-
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a-helix and anti-parallel b-sheet:

Residue Sequence: NWVLSTAADMQGVVTDGMASFLDKD
     ... . . .

Secondary Structure: LLEEEELLLLHHHHHHHHHHLHHHL

Fig. 1: Syntactic formulation of secondary structure problem

Residue Sequence: NWVLSTAADMQGVVTDGMASFLDKD
     ... . . .

Secondary Structure: LLEEEELLLLHHHHHHHHHHLHHHL

Fig. 1: Syntactic formulation of secondary structure problem

FIGURE 4. The secondary structure of a protein is defined by the local back-
bone conformation at each position. Secondary structure elements of greatest
interest include α-helices (dark) and extended β-strands which come together to
form β-sheets (light). These are represented as H and E respectively in the 1D
summary. Remaining positions are represented by L for loop/coil.

pendently based on a local surrounding subsequence. The most accurate
such “window-based” methods currently use neural-networks or nearest-
neighbor classifiers. A widely recognized drawback of these approaches is
lack of interpretability of model parameters, yielding little insight into the
important factors in protein folding.

2.3 Non-local effects

One of the difficulties in predicting secondary structure at high accuracy
is the importance of non-local contacts in protein folding. Amino acids
which are sequentially distant in the primary structure may be in close
physical proximity in the tertiary structure, as the sequence folds back
on itself in three dimensions. The relative importance of local vs. non-
local effects in determining protein folds is still under debate (Baldwin and
Rose, 1999; Dill, 1999), but it is clear that non-local effects can be impor-
tant. For example, identical 5- and 6- amino acid subsequences have been
located which take on different local conformations in different proteins
(Kabsch and Sander, 1984; Cohen et al., 1993). Moreover, an 11 amino
acid “chameleon” sequence has been designed which folds into an α-helical
conformation when placed at one position in a particular protein, and a
β-strand conformation when placed at a different position of the same pro-
tein (Minor and Kim, 1996). A possible explanation for such observations
is the effect of non-local contacts in determining local structure.

Regardless of their importance for driving the physical folding process,
non-local interactions induce correlations in the sequence which can provide
useful information for protein structure prediction. For example, the side
chains of adjacent β-strands in a β-sheet will experience a similar chemi-
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cal environment, and therefore acceptable mutations in these strands will
exhibit correlations (Lifson and Sander, 1980; Hutchinson et al., 1998). In
general, positions which are in close physical proximity in the tertiary struc-
ture may be expected to exhibit correlated mutations, irrespective of their
relative positions in sequence. In Section 4, we show how such information
can be captured formally for use in prediction.

3 Bayesian Sequence Segmentation

We have developed a Bayesian framework for prediction of protein sec-
ondary structure from sequence. Our approach is based on the param-
eterization of protein sequence/structure relationships in terms of struc-
tural segments. An overview of the class of models developed is provided
here; more details and relations to other statistical models can be found in
(Schmidler, 2000).

Let R = (R1, R2, . . . , Rn) be a sequence of n amino acid residues, S =
{i | Struct(Ri) 6= Struct(Ri+1)} be the positions denoting the ends of m

structural segments, and T = (T1, T2, . . . , Tm) be the secondary structure
types for the segments. We refer to the set (m, S, T ) as a segmentation of the
sequence R. A segmentation defines an assignment of secondary structure
to the sequence R, and we wish to infer the unobserved structure (m, S, T )
for an observed sequence R.

We define a joint distribution over (R, m, S, T ) of the form:

P (R, m, S, T ) ∝ P (m, S, T )

m∏

j=1

P (R[Sj−1+1:Sj ] | m, S, T ) (3.1)

which factors the joint likelihood P (R | m, S, T ) by conditional indepen-
dence of segments given their locations and structural types. Note that
marginalization over latent variables (S, T ) yields a complex dependency
structure among the observed sequence. A special case of (3.1) is a hidden
Markov model (HMM).

The segment likelihoods P (R[Sj−1+1:Sj ] | m, S, T ) may be of general
form. Detailed segment models have been developed to account for exper-
imentally and statistically observed properties of α-helices and β-strands
(Schmidler et al., 2000). These models generalize existing stochastic models
for secondary structure prediction based on HMMs (Asai et al., 1993; Stultz
et al., 1993) in several important ways. The factorization in terms of seg-
ments allows modeling of non-independence and non-identity of amino acid
distributions at varying positions in the segment. Both position-specific dis-
tributions and dependency among positions capture important structural
signals such as helix-capping (Aurora and Rose, 1998) and side chain cor-
relations (Klingler and Brutlag, 1994), and these advantages have been
explored in detail in previous work.
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Given a set of segment likelihoods, we wish to predict the secondary
structure for a newly observed protein sequence R. Taking a Bayesian ap-
proach, we assign a prior P (m, S, T ) and base our predictions on P (m, S, T |
R), the posterior distribution over secondary structure assignments given
the observed sequence. Choice of priors is discussed in Schmidler (2000);
one possible approach is to factor P (m, S, T ) as a semi-Markov process:

P (m, S, T ) = P (m)

m∏

j=1

P (Tj | Tj−1)P (Sj | Sj−1, Tj), (3.2)

which accounts for empirically observed differences in segment length dis-
tributions among structural types.

Under the model defined by (3.1) and (3.2), we consider two possible
predictors of interest:

StructMAP = arg max
(m,S,T )

P (m, S, T | R, θ) (3.3)

StructMode = {argmax
T

P (TR[i]
| R, θ)}n

i=1 (3.4)

where StructX is a segmentation of R, θ denotes the model parameters,
and P (TR[i]

| R, θ) is the marginal posterior distribution over structural
types at a single position i in the sequence:

P (TR[i]
| R, θ) =

∑

(m,S,T )

P (m, S, T | R, θ)1{TRi
=t}

(3.3) provides the maximum a posteriori segmentation of a sequence, while
(3.4) provides the sequence of marginal posterior modes. Note that (3.4) in-
volves marginalization over all possible segmentations. Efficient algorithms
have been developed for computation of these estimators under the model
defined by (3.1, 3.2) (Schmidler et al., 2000).

4 Incorporation of Inter-Segment Interactions

A fundamental assumption of the class of models described by (3.1) is the
conditional independence of amino acids which occur in distinct segments.
This assumption enables the exact calculation posterior quantities as men-
tioned above. However, this assumption is clearly violated in the case of
protein sequences, due to the non-local forces involved in protein folding de-
scribed in Section 2.3. For example, β-sheets consist of β-strands linked by
backbone hydrogen bonds (Figure 4). β-sheets are thus a major structural
motif which involves interactions of sequentially distant segments to form
a stable native fold. Other examples include disulfide bonds and helical
bundles. The presence of correlated mutations in such motifs is well known
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(see Section 2.3). It is often suggested that the inability of window-based
prediction algorithms to capture such non-local patterns is responsible for
the low accuracy typically achieved in β-strand prediction.

In this section, we extend the framework of Section 3 by introducing
joint segment models to account for such inter-segment residue correlations.
We describe a MCMC algorithm for inference in this class of models, and
demonstrate this approach with a simple model for β-strand pairing in
β-sheets.

4.1 Joint segment likelihoods

Modeling of segment interactions may be achieved by definition of joint

segment likelihoods. For two interacting segments j and k, we replace the
terms

P (R[Sj−1+1:Sj ] | Sj−1, Sj , Tj) and P (R[Sk−1+1:Sk] | Sk−1, Sk, Tk)

in the product of (3.1) above with a joint term:

P (R[Sj−1+1:Sj ], R[Sk−1+1:Sk] | Sj−1, Sj , Tj , Sk−1, Sk, Tk) (4.1)

Hence we may include arbitrary joint segment distributions for segment
pairs into the model. The extension to three or more segments (as may
be required for 4-helix bundles or β-sheets, for example) is obvious. Such
models contain pair potentials as a special case; see Schmidler (2000) for a
more formal development of this class of models.

Inclusion of terms such as (4.1) leads to a joint distribution of the form:

P (R, m, S, T,P) ∝ P (m, S, T,P)
∏

j 6∈P

P (R[Sj−1+1:Sj ] | S, T, m,P)× (4.2)

∏

(j,k)∈P

P (R[Sj−1+1:Sj ], R[Sk−1+1:Sk] | S, T, m,P)

where P is the set of pairs of interacting segments. For example, P might be
the set of β-sheets, with each p ∈ P a set of β-strand segments participating
in the sheet. Clearly elements p ∈ P may include > 2 segments, in which
case (4.1) must be defined appropriately. It is also necessary to extend the
prior P (m, S, T ) to include interactions P (m, S, T,P). For the remainder
of this paper we will take P (m, S, T ) as defined in (3.2) above, and take
P (P | m, S, T ) ∝ 1. This extends the previous semi-Markov prior by a
conditionally uniform prior on segment interactions. More realistic priors
for (m, S, T,P) are developed in Schmidler (2000).

This joint distribution (4.2) is easily evaluated for any fixed segmenta-
tion (m, S, T,P) of a sequence R. However computation of posterior quan-
tities such as (3.3) and (3.4) in the context of (4.2) involves maximiza-
tion/marginalization over all possible segment interactions, an intractable
computation.
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4.2 Markov chain Monte Carlo segmentation

Despite the difficulty in exact calculation of posterior probabilities, approx-
imate inference in models such as described by (4.2) is feasible using MCMC
methods, now a standard tool in the Bayesian statistics community (Gilks
et al., 1996). Because the problem has varying dimensionality (m and P
are random variables), we use the reversible jump approach described by
(Green, 1995).

To construct a Markov chain on the space of sequence segmentations, we
define the following set of Metropolis proposals:

• Type switching:
Given a segmentation (m, S, T ), propose a move to segmentation
(m, S, T ∗) where T ∗

j = Tj , j 6= k for some k chosen uniformly at
random or by systematic scan, and T ∗

k ∼ U [{H, E, L}].

• Position change:
Given (m, S, T ), propose (m, S∗, T ) with S∗j = Sj , j 6= k for some k

and S∗k ∼ U [Sk−1 + 1, Sk+1 − 1].

• Segment split:
Given (m, S, T ), propose (m∗, S∗, T ∗) with m∗ = m + 1 segments
by splitting segment 1 ≤ k ≤ m into two new segments (k∗, k∗ + 1)
where k ∼ U [1, m], S∗k∗+1 = Sk, and S∗k∗ ∼ U [Sk−1 + 1, Sk − 1].

With probability 1
2 , we set Tk∗ = Tk and Tk∗+1 = Tnew with Tnew

chosen uniformly, and with probability 1
2 do the reverse.

• Segment merge:
Similar to segment split, but a randomly chosen segment is merged
into a neighbor and m∗ = m− 1.

All moves are accepted or rejected based on a reversible jump Metropolis
criteria (Hastings, 1970; Green, 1995). Together, these steps are sufficient to
guarantee ergodicity for models of the form (3.1). The factorization of (3.1)
allows Metropolis ratios to be evaluated locally with respect to the affected
segments. Often the above proposals can be replaced by Gibbs sampling
steps which draw from the exact conditional distribution, although it may
still be more efficient to Metropolize such moves (Liu, 1996).

For joint segment models such as (4.2), additional proposal moves must
be added involving interacting segments:

• Segment join:
Proposes a replacement of two non-interacting segments (Sj , Tj) and
(Sk, Tk), (j, k) 6∈ P with an interaction (Sj , Sk, Tj , Tk), (j, k) ∈ P .
In Section 5 below, this corresponds to replacing two independent
β-strands with a β-sheet consisting of the two strands joined.
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• Segment separate:
Reverse of segment join. For example, splits a 2-strand sheet into two
independent strands.

Some care must be taken to realize these proposals for a particular set of
joint models, such as those provided in Section 5, especially when interac-
tions may involve more than 2 segments. This is discussed in greater detail
by Schmidler (2000), who also provides additional Metropolis moves not
required for ergodicity but helpful in improving mixing of the underlying
Markov chain.

By defining (4.1) as a product of independent terms and choosing the
prior appropriately, we can recover model (3.1) and hence compare this
MCMC approach to exact calculations. Figure 5a shows that in this case
convergence is quite rapid.

5 Application to Prediction of β-Sheets

As mentioned in Section 2.3, the existence of correlated mutations in β-
sheets has been well studied in the protein structure literature. Some at-
tempts have been made to incorporate such long-range sequence corre-
lations into the prediction of protein structure (Hubbard and Park, 1995;
Krogh and Riis, 1996; Frishman and Argos, 1996). Here, we show how these
interactions are naturally modeled in the Bayesian framework provided by
Sections 3 and 4, allowing the information to be formally included in the
predictive model.

To demonstrate the application of (4.1) in this case, we define the follow-
ing joint model for adjacent β-strands to incorporate pairwise side chain
correlations:

P (R[Sj−1+1:Sj ], R[Sk−1+1:Sk] | S, T, m,P) =
∏

(hj ,hk)∈H

P (R[Sj−1+hj ], R[Sk−1+hk] | S, T, m,P)× (5.1)

∏

hj 6∈H

P (R[Sj−1+hj ] | S, T, m,P)
∏

hk 6∈H

P (R[Sk−1+hk] | S, T, m,P)

where H is the set of (ordered) cross-strand neighboring pairs. This model
is simply a product distribution over pairs of neighboring amino acids,
the simplest possible model which captures some notion of inter-strand
correlation. More detailed models are currently being developed.

This approach has been applied to the prediction of contacts for two test
proteins, bovine pancreatic trypsin inhibitor (BPTI) shown in Figure 5b
and flavodoxin (not shown). Results for BPTI are shown in Figure 5c,d,
where strand pairing is well predicted. Results for flavodoxin are shown
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in Figure 5e,f, where it is seen that strands are well identified but their
interaction pattern has high uncertainty. More accurate interaction models
and priors may help resolve this uncertainty. In each case the simulations
shown restrict the orientation (parallel vs. anti-parallel) of the interactions
to be correct, eliminating a further source of variability. A more extensive
evaluation of this approach on a large database is underway, and will be
reported elsewhere.

6 Discussion

We have discussed the problem of protein structure prediction, and pre-
sented a Bayesian formulation. Models based on factorization of the joint
distribution in terms of structural segments naturally capture important
properties of proteins, permit efficient algorithms, and produce accurate
predictions. Moreover, we have shown here that the Bayesian framework is
naturally generalized to model non-local interactions in protein folding. As
an example, we have presented a simple model for β-strand pairing, and a
Markov chain Monte Carlo algorithm for inference, and have demonstrated
this approach on example sequences. Further work on modeling and evalu-
ation for this problem is underway (Schmidler, 2000). The ability to predict
tertiary contacts between β-sheets represents a potentially important step
in going beyond traditional secondary structure prediction towards the goal
of full 3D structure prediction.
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FIGURE 5. (a) Convergence of MCMC simulation to exact calculations.
Plot is mean Kullback-Leibler (KL) divergence between marginal distribu-
tions P (TR[i]

| R, θ) obtained from exact and MCMC calculations for a
protein sequence, against number iterations (each iteration 1 full scan).
KL divergence between two probability distributions p and q is defined as
KL(p,q) =

∑
i
pi log( pi

qi
). (b) True structure of bovine pancreatic trypsin in-

hibitor (BPTI). (c) Predicted and (d) true β-strand contacts for BPTI. Axes
are sequence position, and shading of (x, y) is proportional to predicted prob-
ability of contact for positions x, y. The β-hairpin contacts are predicted with
high probability. The maximum a posteriori sheet topology correctly identifies
β-strand locations and register (not shown). Pairings representing register shifts
are also observed with lower probability. (e) Predicted and (f) true contacts for
flavodoxin, showing significant uncertainty in correct pairing of strand segments.
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