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Chapter 1

— Classical Symmetries

The concept of symmetry will play a crucial role in nearly all aspects of our discussion of weak
interactions. At the level of the dynamics, the fundamental interactions (or at least that subset of
the fundamental interactions that we understand) are associated with “gauge symmetries”. But
more than that, the underlying mathematical language of relativistic quantum mechanics — quan-
tum field theory — is much easier to understand if you make use of all the symmetry information
that is available. In this course, we will make extensive use of symmetry as a mathematical tool to
help us understand the physics. In particular, we make use of the language of representations of
Lie algebras.

1.1 Noether’s Theorem – Classical

At the classical level, symmetries of an action which is an integral of a local Lagrangian density are
associated with conserved currents. Consider a set of fields, φj(x) where j = 1 to N , and an action

S[φ] =
∫
L(φ(x), ∂µφ(x)) d4x (1.1.1)

where L is the local Lagrangian density. The index, j, is what particle physicists call a “flavor”
index. Different values of j label different types, or “flavors”, of the field φ. Think of the field,
φ, without any explicit index, as a column vector in flavor space. Assume, for simplicity, that the
Lagrangian depends only on the fields, φ, and their first derivatives, ∂µφ. The equations of motion
are

∂µ
δL

δ(∂µφ)
=
δL
δφ

. (1.1.2)

Note that (1.1.2) is a vector equation in flavor space. Each side is a row vector, carrying the flavor
index, j.

A symmetry of the action is some infinitesimal change in the fields, δφ, such that

S[φ+ δφ] = S[φ] , (1.1.3)

or
L(φ+ δφ, ∂µφ+ δ∂µφ) = L(φ, ∂µφ) + ∂µ V

µ(φ, ∂µφ, δφ) , (1.1.4)

where V µ is some vector function of the order of the infinitesimal, δφ. We assume here that we can
throw away surface terms in the d4x integral so that the V µ terms makes no contribution to the
action. But

L(φ+ δφ, ∂µφ+ δ∂µφ)− L(φ, ∂µφ) =
δL
δφ

δφ+
δL

δ(∂µφ)
∂µδφ , (1.1.5)

2
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because δ∂µφ = ∂µδφ. Note that (1.1.5) is a single equation with no j index. The terms on the
right hand side involve a matrix multiplication in flavor space of a row vector on the left with a
column vector on the right. From (1.1.2), (1.1.4) and (1.1.5), we have

∂µN
µ = 0 , (1.1.6)

where
Nµ =

δL
δ(∂µφ)

δφ− V µ . (1.1.7)

Often, we will be interested in symmetries that are symmetries of the Lagrangian, not just
the action, in which case V µ = 0. In particular, our favorite symmetry will be linear unitary
transformations on the fields, for which

δφ = iεaT
aφ , (1.1.8)

where the T a for a = 1 to m are a set of N ×N hermitian matrices acting on the flavor space, and
the εa are a set of infinitesimal parameters. We can (and sometimes will) exponentiate (1.1.8) to
get a finite transformation:

φ→ φ′ = eiεaT
a
φ , (1.1.9)

which reduces to (1.1.8) for small εa. The T a’s are then said to be the “generators” of the trans-
formations, (1.1.9)

We will be using the T a’s so much that it is worth pausing to consider their properties system-
atically. The fundamental property of the generators is their commutation relation,

[T a, T b] = i fabc T
c , (1.1.10)

where fabc are the structure constants of the Lie algebra, defined in any nontrivial representation (a
trivial representation is one in which T a = 0, for which (1.1.10) is trivially satisfied). The generators
can then be classified into sets, called simple subalgebras, that have nonzero commutators among
themselves, but that commute with everything else. For example, there may be three generators,
T a for a = 1 to 3 with the commutation relations of SU(2),

[T a, T b] = i εabc T
c , (1.1.11)

and which commute with all the other generators. Then this is an SU(2) factor of the algebra. The
algebra can always be decomposed into factors like this, called “simple” subalgebras, and a set of
generators which commute with everything, called U(1)’s.

The normalization of the U(1) generators must be set by some arbitrary convention. However,
the normalization of the generators of each simple subgroup is related to the normalization of the
structure constants. It is important to normalize them so that in each simple subalgebra,∑

c,d

facd fbcd = k δab . (1.1.12)

Then for every representation,
tr (T aT b) ∝ δab . (1.1.13)

The mathematician’s convention is to grant a special status to the structure constants and choose
k = 1 in (1.1.12). However, we physicists are more flexible (or less systematic). For SU(n), for
example, we usually choose k so that

tr (T aT b) =
1
2
δab . (1.1.14)
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for the n dimensional representation. Then k = n.
A symmetry of the form of (1.1.8) or (1.1.9) which acts only on the flavor space and not on

the space-time dependence of the fields is called an “internal” symmetry. The familiar Poincare
symmetry of relativistic actions is not an internal symmetry.

In this book we will distinguish two kinds of internal symmetry. If the parameters, εa, are
independent of space and time, the symmetry is called a “global” symmetry. Global symmetries
involve the rotation of φ in flavor space in the same way at all points in space and at all times.
This is not a very physically appealing idea, because it is hard to imagine doing it, but we will
see that the concept of global symmetry is enormously useful in organizing our knowledge of field
theory and physics.

Later on, we will study what happens if the εa depend on x. Then the symmetry is a “local”
or “gauge” symmetry. As we will see, a local symmetry is not just an organizing principle, but is
intimately related to dynamics.

For now, consider (1.1.7) for a global internal symmetry of L. Because the symmetry is a
symmetry of L, the second term, V µ is zero.

Thus we can write the conserved current as

Nµ =
δL

δ(∂µφ)
iεaT

aφ . (1.1.15)

Because the infinitesimal parameters are arbitrary, (1.1.15) actually defines m conserved currents,

Jµa = −i δL
δ(∂µφ)

T aφ for a = 1 to m. (1.1.16)

I stress again that this discussion is all at the level of the classical action and Lagrangian. We
will discuss later what happens in quantum field theory.

1.2 Examples

Example 1

Let Φj , for j = 1 to N , be a set of real scalar boson fields. The most general possible real quadratic
term in the derivatives of Φ in the Lagrangian is

LKE(Φ) =
1
2
∂µΦT S ∂µΦ . (1.2.1)

where S is a real symmetric matrix. Note the matrix notation, in which, the Φj are arranged
into an N -component column vector. In physical applications, we want S to be a strictly positive
matrix. Negative eigenvalues would give rise to a Hamiltonian that is not bounded below and zero
eigenvalues to scalars that do not propagate at all. If S is positive, then we can define a new set of
fields by a linear transformation

Lφ ≡ Φ , (1.2.2)

such that
LT S L = I . (1.2.3)

In terms of φ, the Lagrangian becomes

LKE(φ) =
1
2
∂µφ

T ∂µφ . (1.2.4)
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This is the canonical form for the Lagrangian for a set of N massless free scalar fields. Under an
infinitesimal linear transformation,

δφ = Gφ , (1.2.5)

where G is an N ×N matrix, the change in LKE is

δLKE(φ) =
1
2
∂µφ

T (G+GT ) ∂µφ . (1.2.6)

If G is antisymmetric, the Lagrangian is unchanged! We must also choose G real to preserve the
reality of the fields. Thus the Lagrangian is invariant under a group of SO(N) transformations,

δφ = iεaT
aφ , (1.2.7)

where the T a, for a = 1 to N(N − 1)/2 are the N(N − 1)/2 independent, antisymmetric imaginary
matrices. These matrices are a representation of the SO(N) algebra.1 When exponentiated, (1.2.7)
produces an orthogonal transformation, a representation of the group SO(N)

φ→ φ′ = Oφ , (1.2.8)

where
OT = O−1 . (1.2.9)

This is a rotation in a real N -dimensional space.
Notice that we have not had to do anything to impose this SO(N) symmetry ex-

cept to put the Lagrangian into canonical form. It was an automatic consequence of
the physical starting point, the existence of N free massless scalar fields. The canon-
ical form of the derivative term in the kinetic energy automatically has the SO(N)
symmetry.

The corresponding Noether currents are

Jµa = −i(∂µφT )T aφ . (1.2.10)

The symmetry, (1.2.8), is the largest internal rotation symmetry that a set of N real spinless
bosons can have, because the kinetic energy term, (1.2.4), must always be there. However, the
symmetry may be broken down to some subgroup of SO(N). This can happen trivially because of
the mass term if the scalars are not all degenerate. The mass term has the general form:

Lmass(φ) = −1
2
φT M2 φ , (1.2.11)

where M2 is a real symmetric matrix called the mass matrix. Its eigenvalues (if all are positive)
are the squared masses of the scalar particles. The mass term is invariant under an orthogonal
transformation, O, if

OT M2O = M2 or equivalently [O,M2] = 0 . (1.2.12)

If M2 is proportional to the identity matrix, then the entire SO(N) is unbroken. In general,
the transformations satisfying (1.2.12) form a representation of some subgroup of SO(N). The
subgroup is generated by the subset of the generators, T a, which commute with M2.

1Usually, I will not be careful to distinguish an algebra or group from its representation, because it is almost
always the explicit representation that we care about.
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The mass matrix can be diagonalized by an orthogonal transformation that leaves the deriva-
tive term, (1.2.4), unchanged. Then the remaining symmetry is an SO(`) for each ` degenerate
eigenvalues. For example, if K of the fields have mass m1 and the other N −K have mass m2, the
diagonal mass matrix can be taken to have to form

M2 =



m2
1

. . . 0
m2

1

m2
2

0
. . .

m2
2


. (1.2.13)

The symmetry is an SO(K)× SO(N −K) which rotates the degenerate subsets, of the form

O =
(
O1 0
0 O2

)
, (1.2.14)

where O1 and O2 act on the fields with mass m1 and m2 respectively. The finite group elements,
(1.2.14), are generated by exponentiation of the K(K − 1)/2 + (N −K)(N −K − 1)/2 generators(

S1 0
0 0

)
and

(
0 0
0 S2

)
, (1.2.15)

where S1 and S2 are antisymmetric imaginary matrices.
If the mass matrix is non-degenerate, that is with no pair of eigenvalues equal, the SO(N)

symmetry is completely broken and there is no continuous symmetry that remains, although the
Lagrangian is still invariant under the discrete symmetry under which any component of φ changes
sign.

The symmetry can also be broken down by interaction terms in the Lagrangian. With cubic and
quartic terms in φ, the symmetry can be broken in more interesting ways. Consider, as a simple
example that will be of use later, a Lagrangian with N = 8 scalars, with K = 4 with mass m1 (the
φj for j = 1 to 4) and the rest with mass m2 (the φj for j = 5 to 8). The kinetic energy and mass
terms then have the symmetry, SO(4)×SO(4). Arrange the 8 real fields into two complex doublet
fields as follows:

ξ1 ≡
(

(φ1 + iφ2)/
√

2
(φ3 + iφ4)/

√
2

)
, ξ2 ≡

(
(φ5 + iφ6)/

√
2

(φ7 + iφ8)/
√

2

)
. (1.2.16)

Now consider an interaction term of the form

Lint = λ ξ†1ξ2 ξ
†
2ξ1 . (1.2.17)

This interaction term is not invariant under the SO(4) × SO(4), but it is invariant under an
SU(2)× U(1) symmetry under which

ξj → U ξj for j = 1 to 2, (1.2.18)

where the 2×2 matrix, U , is unitary. The U can written as a phase (the U(1) part) times a special
unitary matrix V (detV = 1), so it is a representation of SU(2) × U(1). This is the subgroup of
SO(4)× SO(4) left invariant by the interaction term, (1.2.17).

The symmetry structure of a field theory is a descending hierarchy of symmetry,
from the kinetic energy term down through the interaction terms. The kinetic energy
term has the largest possible symmetry. This is broken down to some subgroup by the
mass term and the interaction terms. This way of looking at the symmetry structure is
particularly useful when some of the interactions terms are weak, so that their effects
can be treated in perturbation theory.
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Example 2

Let ψj for j = 1 to N be free, massless, spin-1
2 , four-component Dirac fermion fields with Lagrangian

L(ψ) = i ψ /∂ψ . (1.2.19)

The Dirac fermion fields are complex, thus (1.2.19) has an obvious SU(N)×U(1) symmetry under
which, for infinitesimal changes,

δψ = iεaT
aψ , (1.2.20)

where the T a are the N2 hermitian N ×N matrices, which generate the defining (or N) represen-
tation of SU(N)× U(1). When exponentiated this gives

ψ → U ψ , (1.2.21)

where U is a unitary N ×N matrix
U = eiεaT

a
. (1.2.22)

The SU(N) part of U is generated by the N2− 1 traceless hermitian matrices, while the generator
of the U(1) part, which commutes with everything, is proportional to the identity. The U(1) is just
fermion number.

In (1.2.19),
δL

δ(∂µψ)
= iψγµ , (1.2.23)

hence the Noether current is
Jµa = ψγµT aψ . (1.2.24)

With T a = 1, the conserved Noether current associated with the U(1) is just the fermion number
current.

The transformation, (1.2.21), is by no means the largest internal symmetry of (1.2.19). To
see the rest of the symmetry, and for many other reasons later on, we will make extensive use of
two-component, Weyl fermion fields, which are related to ordinary spin-1

2 , four-component fermion
fields, ψ, by projection with the projection operators

P± ≡ (1± γ5)/2 . (1.2.25)

Define the left-handed (L) and right-handed (R) fields as

ψL ≡ P+ψ , ψR ≡ P−ψ . (1.2.26)

Then
ψL = ψP− , ψR = ψP+ . (1.2.27)

But then because
P+γ

µ = γµP− , (1.2.28)

we can write
L(ψ) = i ψ /∂ψ = i ψL /∂ψL + i ψR /∂ψR . (1.2.29)

Evidently, we have the freedom to make separate SU(N)× U(1) transformations on the L and R
fermions:

δψL = iεLaT
aψL , δψR = iεRa T

aψR , (1.2.30)
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or
ψL → ULψL , ψR → URψR . (1.2.31)

The physical interpretation of the L andR states is that they are helicity eigenstates for on-mass-
shell fermions. Consider a plane wave moving in the 3 direction. The fermions are massless, thus
p0 = p3 while p1 = p2 = 0. The Dirac equation in momentum space is /pψ = 0, or p0(γ0− γ3)ψ = 0,
or

γ0ψ = γ3ψ . (1.2.32)

The spin angular momentum in the 3 direction is

J3 =
σ12

2
=
iγ1γ2

2
. (1.2.33)

Then

J3ψL = i
2 γ

1γ2ψL = i
2 γ

0γ0γ1γ2ψL

= i
2 γ

0γ1γ2γ0ψL = i
2 γ

0γ1γ2γ3ψL

= −1
2 γ5ψL = −1

2ψL .

(1.2.34)

Thus ψL describes a particle with helicity −1
2 , that is a left handed particle, while ψR describes a

particle with helicity 1
2 , that is a right handed particle.

The symmetry, (1.2.30), under which the L and R fields transform differently, is called a chiral
symmetry. Note that the generators of the chiral symmetry all commute with the fermion number.

The chiral symmetry is still not the largest internal symmetry of (1.2.19). To identify the largest
symmetry, we must introduce the idea of charge conjugate fields. Define

ψc = Cψ∗, (1.2.35)

and
ψcL = P+ψc , ψcR = P−ψc , (1.2.36)

where C is the charge conjugation matrix acting on the Dirac indices, satisfying

C2 = 1 , C† = C , C γµ∗C = −γµ . (1.2.37)

We will sometimes take C to be nontrivial in flavor space as well, but for now, we will assume that
it acts in the space of the Dirac indices. The form of C depends on the representation of the γ
matrices. For example, in the so-called Majorana representation in which all the γ’s are imaginary,
C = 1, while in the standard representation of Bjorken and Drell, C = iγ2.

The name “charge conjugation” comes originally from the effect of the transformation (1.2.35)
on the Dirac equation for a particle in an electromagnetic field. Such a particle, with mass m and
charge e, satisfies

i /∂ψ − e /Aψ −mψ = 0 , (1.2.38)

where Aµ is the (hermitian) electromagnetic field. Taking the complex conjugate, multiplying by
C and using (1.2.35) gives

i /∂ψc + e /Aψc −mψc = 0 . (1.2.39)

The C operation changes the particle of charge e to its antiparticle, with the same mass but charge
−e.
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The interesting thing about charge conjugation from our present point of view is that it changes
L to R,

Cψ∗R = C (P−)∗ ψ∗ = C
(

1−γ∗5
2

)
ψ∗

= C
(

1−γ∗5
2

)
C C ψ∗ = P+ψc = ψcL ,

(1.2.40)

where we have used Cγ∗5C = −γ5. This is what we need to find a larger symmetry of (1.2.19).
The point is that with a purely internal symmetry, we cannot mix up the ψL with the ψR. A
transformation such as

δψL = iεaT
aψR (1.2.41)

makes no sense at all. You can see this trivially by acting on both sides with P−.
But if we first change the ψR into ψcL with charge conjugation, then we can mix them with the

ψL. Such a transformation will not commute with the U(1) of fermion number, because ψ and ψc
have opposite fermion number, but at this point, we do not care.

We can use (1.2.40) to show that

L(ψ) = i ψL /∂ψL + i ψcL /∂ψcL + total derivative. (1.2.42)

We drop the total derivative, which does not effect the action, and then combine the L fields into
a 2N component column vector:

ΨL =
(
ψL
ψcL

)
. (1.2.43)

In terms of Ψ, the Lagrangian is
L(Ψ) = iΨ /∂Ψ . (1.2.44)

Clearly, the Lagrangian, (1.2.44), is invariant under SU(2N)×U(1) transformations, generated by
hermitian 2N × 2N matrices acting on the extended flavor space of (1.2.43). Note that if fermion
number is not conserved, there is not even any reason that there should be an even number of L
fields! For example, in the standard model, we seem to have 3 approximately massless left-handed
neutrinos, each described by a two-component Weyl field.

Most of the Lagrangians that we actually deal with will have interactions that distinguish
between particles and their antiparticles, thus breaking the symmetries that mix fermions with
antifermions. For example, if the fermions have a charge, as in QED, the symmetry is broken
down to a chiral symmetry, (1.2.30), because the fact that the charge changes sign under charge
conjugation breaks the larger symmetry.

Fermion Masses

The most general fermion mass term that preserves fermion number has the form,

Lmass = −ψLM ψR + ψRM
† ψL , (1.2.45)

where
ψL = (ψL)†γ0 , ψR = (ψR)†γ0 , (1.2.46)

and the mass matrix, M , is an arbitrary complex matrix. Note that the two terms in (1.2.45)
are hermitian conjugates of one another. Because the ψL and ψR terms are coupled together, the
Lagrangian is not invariant under the chiral symmetry, (1.2.30). A chiral transformation changes
M

M → U †LMUR . (1.2.47)
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However, that means that we can use the chiral symmetry to put the mass matrix, M , into a
canonical form. We can diagonalize it and make each of the eigenvalues real and positive!2

The symmetry of the mass term that commutes with fermion number is then determined by
the degeneracy of the diagonal mass matrix. If all the masses are different, then the only symmetry
that remains is a U(1)N symmetry, separate conservation of each of the fermion flavors. If ` flavors
have the same mass, there is a non-Abelian SU(`) symmetry. For example, if all N fermions are
degenerate, the mass matrix is proportional to

Lmass = ψψ , (1.2.48)

This breaks the chiral symmetry, (1.2.30), but it is still invariant under the SU(N)×U(1) symmetry,
(1.2.20), in which the L and R fields rotate together.

If fermion number is not conserved, so that the fermions are most appropriately described by
N left-handed Weyl fields, ΨL, the most general mass term has the form

ΨcRMΨL , (1.2.49)

where M is a complex, symmetric matrix. The kinetic energy term is invariant under an SU(N)×
U(1) symmetry:

ΨL → UΨL . (1.2.50)

Under (1.2.50), the mass matrix, M changes to

M →M ′ = UT M U , (1.2.51)

This can be used to make M diagonal and positive.

Problems

1.1. The Lagrangian for a set of N massless free scalar fields, (1.2.4), has a rather peculiar
symmetry under which

φ→ φ+ a ,

for any constant a. What is the Noether current? Note that this “symmetry” really is peculiar.
While it is a symmetry of the classical Lagrangian, it is not a symmetry of the corresponding quan-
tum theory. This is one of the simplest examples of a continuous symmetry that is spontaneously
broken. Spontaneous symmetry breaking is a subject to which we will return many times.

1-2. Find a basis for the γµ matrices in which the charge conjugation matrix, C, is the identity.
This is called a Majorana representation. In this representation, we can define real 4-component
fields

ψ1 = (ψ + ψc)/
√

2 = (ψ + ψ∗)/
√

2 ,

ψ2 = i (ψ − ψ∗)/
√

2 .

Rewrite the mass term for N degenerate Dirac fermions, (1.2.48), in terms of these real fields,
and identify the symmetry of this term. What’s the symmetry group? Show that this is also a
symmetry of the kinetic energy term for free Dirac fermions.

1-3. Show that C in (1.2.37) is essentially unique in any given representation of the γ matrices.
2This is all at the classical level — we will come back to the question of real masses later on when we discuss the

strong CP puzzle.



Chapter 1a

— Quantum Field Theory

Many of the results of the previous chapter can be carried over immediately to quantum field
theory. However, the necessity of regularization and renormalization sometimes makes things more
interesting. In this chapter, we discuss an approach to quantum field theory that is particularly
useful for the discussion of weak interactions and the Standard model in general. We will assume
that the reader is familiar with quantum field theory, and has available an encyclopedic text such as
[Itzykson]. Here we will not pretend to anything like completeness, but will concentrate instead on
explaining what is really going on. The detail of our regularization and renormalization scheme will
seldom matter, but when it does, we will use dimensional regularization and minimal subtraction.
A brief review will be included in an appendix to this book.

1a.1 Local Quantum Field Theory

Local field theory is a useful idealization. The only way we know to describe the quantum me-
chanical interactions of a finite number of types of particles in ordinary space-time is in a local
quantum field theory characterized by a local Lagrangian density, with the interactions described
by products of fields at the same space-time point.1

We strongly suspect that this picture is only approximate. It would be astonishing if our naive
picture of the space-time continuum, or quantum mechanics, or anything else that the human mind
can imagine, continued to make sense down to arbitrarily small distances. However, relativistic
quantum mechanics appears to be an excellent approximation at the distance we can probe today.
It is hard to see how deviations from the rules of relativistic quantum mechanics could have failed
to show up in any of the myriad of experiments at high energy accelerators around the world,
unless they are hidden because they are associated with physics at very tiny distances. Thus we
are justified in adopting local quantum field theory as a provisional description of physics at the
distances we can probe for the foreseeable future.

The fact that unknown physics may be lurking at very small distances is related to the necessity
for regularization and renormalization of quantum field theory. A local Lagrangian in a quantum
field theory is not a priori well-defined precisely because interactions that involve products of fields
at a single space-time point specify the physics down to arbitrarily small distances. In mathematical
language, the fields are distributions rather than functions, and multiplying them together at the
same space-time point is a dangerous act. In regularization and renormalization, the physics at

1String theory may be a consistent description of the relativistic quantum mechanics of an infinite number of
types of particles. However, because in a typical string theory, only a finite number of particles have masses small
compared to the Planck scale, we can describe the low energy physics by a field theory.

11
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small distances is modified in some way to make the theory well-defined. Then the dependence on
the short distance physics is incorporated into a set of parameters that can be related to physical
quantities at measurable distances. A renormalizable theory is one in which only a finite number
of parameters are required to absorb all the dependence on short distance physics.

We will have much more to say about these issues as we develop the idea of effective field
theory. Eventually, we will make the idea of hiding unknown physics at small distances into one of
our principle tools. For now, we simply discuss renormalizable, local quantum field theory as if it
were a God-given truth.

Let us begin by discussing a simple massless scalar field theory, defined by

L(φ) =
1
2
∂µφ∂µφ−

λ

4!
φ4 + sφφ . (1a.1.1)

In addition to the quantum field, φ, with mass dimension 1, we have included a c-number source,
sφ, with mass dimension 3 for the scalar field φ. This is convenient, because it gives us a handle
with which to tweak the theory to see how it responds. All the Green functions are implicitly
present in the structure of the “vacuum” as a function of the source,

Z(s) = eiW (s) = 〈0 | 0〉s . (1a.1.2)

W (s) is the generating function for the connected Green functions. Actually, as we will discuss
later, it is not so easy to define this so-called λφ4 theory beyond perturbation theory, because the
theory is sick at short distances, but for now, we will be happy with a perturbative definition.

Without the source term, the action derived from (1a.1.1) is classically scale invariant. This
means that it is invariant under the following transformation:

φ(x)→ φ′(x′) (1a.1.3)

where
x′ = eλ x φ′(x′) = e−λ φ(x) (1a.1.4)

The classical scale invariance would be broken if we put in a mass term. We will leave the mass
term out so that we have only one parameter to talk about — the coupling λ.

The first interesting feature that we encounter when we look at a quantum field theory defined
by dimensional regularization and minimal subtraction (DRMS) is that scale invariance is broken.
All the parameters in the theory depend on the renormalization scale, µ, used to define their
dimensional extensions. The appearance of the parameter µ has an important physical consequence,
which is easy to understand in perturbation theory. Quantities calculated in DRMS depend on
lnµ. If all the other relevant dimensional parameters in the calculation are of the same order as
µ, these logs cause no problems. However, if some dimensional parameters are very different from
µ, perturbation theory will break down before it should. Thus calculations should be organized so
that, as much as possible, all relevant dimensional parameters are of order µ. Fortunately, µ can
be chosen at our convenience, and given the parameters for one value of µ, we can calculate the set
of parameters for a different value of µ that lead to the same physics.

The Renormalization Group

The process of changing µ while keeping the physics unchanged is associated with the name “the
renormalization group”. This is unfortunate, because it makes it sound as if something nontrivial
is going on, when in fact the process is quite simple. The only “group” structure involved is the
group of one dimensional translations. The important (and extremely trivial) fact is that a large
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translation can be built up by putting small ones together! Consider the parameter λ in (1a.1.1).
If we know λ at µ1, then we can compute it at µ2 using perturbation theory:

λ(µ2) = L(λ(µ1), ln(µ2/µ1)) , (1a.1.5)

for some function L. If both λ(µ1) and ln(µ2/µ1) are small, we can reliably compute L in per-
turbation theory. However, so long as both λ(µ1) and λ(µ2) are small, we can dispense with the
restriction that ln(µ2/µ1) is small. Instead of using (1a.1.5) directly, we can get from µ1 to µ2 in
a series of small steps. The lowest order perturbative result is

λ(µ2) = λ(µ1) +B λ(µ1)2 ln
(
µ2

µ1

)
+O(λ3) , (1a.1.6)

for some constant B.
Let

∆ = ∆(ln(µ)) ≡ 1
N

ln
(
µ2

µ1

)
. (1a.1.7)

Then

λ(µ1e
∆) = λ(µ1) +B λ(µ1)2 ∆ +O(λ3) ,

λ(µ1e
2∆) = λ(µ1e

∆) +B λ(µ1e
∆)2 ∆ +O(λ3) ,

λ(µ1e
3∆) = λ(µ1e

2∆) +B λ(µ1e
2∆)2 ∆ +O(λ3) ,

· · ·

(1a.1.8)

Putting these all together, we get

λ(µ2) = λ(µ1) +
N−1∑
j=0

B λ(µ1e
j∆)2 ∆ +O(λ3) , (1a.1.9)

or in the limit as N →∞,

λ(µ2) = λ(µ1) +
∫ µ2

µ1

B λ(µ)2 dµ

µ
+O(λ3) , (1a.1.10)

We have arrived, by a rather backwards route, at the lowest order integral equation for the “running”
coupling, λ(µ). Note that we have not done anything at all except to build up a large change in
µ out of infinitesimal changes. If we differentiate with respect to µ2 and set µ2 = µ, we get the
standard differential equation for the running coupling:

µ
∂

∂µ
λ(µ) = βλ(λ(µ)) , (1a.1.11)

where
βλ(λ) = B λ2 +O(λ3) (1a.1.12)

is the β-function. We will see below that B > 0, so that λ is an increasing function of µ for small
λ.

Ignoring the terms of order λ3, we can solve (1a.1.12) to obtain

λ(µ) =
λ(µ0)

1 +B λ(µ0) ln(µ0/µ)
=

1
B ln(Λ/µ)

. (1a.1.13)
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This solution exhibits the most interesting feature of the running coupling, dimensional transmuta-
tion[Coleman 73]. Because the dimensionless quantity, λ, is a calculable function of the dimensional
quantity, µ, the parameter that actually characterizes the physics is a dimensional one, Λ. (1a.1.13)
also shows the difficulty with this theory. The scale µ cannot be taken arbitrarily large. Above
µ ≈ Λ, the coupling is large and the theory is not defined perturbatively. There are good reasons
to believe that this difficulty persists beyond perturbation theory and that the λφ4 theory does not
make sense at short distances.

This is sometimes discussed in terms of the rather ridiculous word, “triviality”. The word is a
holdover from an old fashioned way of looking at field theory. All it means is that the λφ4 theory is
not a useful description of the physics at arbitrarily short distances. If you try to define the theory
in isolation, by cutting the physics off at some small distance, renormalizing, and then letting the
distance go to zero, the theory is “trivial” because the renormalized coupling is driven to zero. This
is simply the flip side of (1a.1.13) in which a finite renormalized coupling leads to a disaster at a
finite small distance. In practice, this means that the physics has to change at some momentum
scale smaller than the Λ in (1a.1.13). However, as we will see in more detail later on, this does not
prevent us from making sense of the theory at scales at which λ(µ) is small.

The Renormalization Group Equation

We will begin by considering one particle irreducible (1PI) graphs. These are easy to calculate and
useful. Later we will also discuss connected Green functions and their generating functional, W (s).
Call a 1PI function with n external φ lines, Γn(pi, λ, µ), where we have indicated the dependence
on the external momenta, pi for i = 1 to n, on the parameter λ, and on the scale µ. If we change
µ, we must change the wave function renormalization of each of the external lines and also the
coupling to maintain the same physics. This is the conveniently summarized in the renormalization
group equation: (

µ
∂

∂µ
+ βλ

∂

∂λ
− nγφ

)
Γn = 0 . (1a.1.14)

In addition to βλ, (1a.1.14) depends on an “anomalous dimension”, γφ, for the φ field. Both of
these are functions of λ.

Let us now actually calculate βλ and γφ to one-loop order. The simplest way to do this, is to
calculate the 1PI functions for small n, and demand that (1a.1.14) be satisfied.

To one loop, the Feynman graphs that contribute to the 2-point function, Γ2, are

+ ��
��

(1a.1.15)

This vanishes in DRMS for a massless scalar (and in any sensible scheme, it does not depend on
the external momentum) and thus the wave function renormalization is 1 in one loop and γφ = 0
to order λ.

The Feynman graphs that contribute the Γ4 to one loop are

�
�
�@

@
@

+
�
�

@
@��

��
�
�

@
@

+ crossed
graphs

(1a.1.16)
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The result is (with all momenta going in)

Γ4(pi, λ, µ) = λ+
λ2

32π2

[
ln

(
−(p1 + p2)2

µ2

)
+ ln

(
−(p1 + p3)2

µ2

)

+ ln

(
−(p1 + p4)2

µ2

)]
+ · · · ,

(1a.1.17)

where the · · · are non-logarithmic terms.
Now when (1a.1.17) is inserted into (1a.1.14), we find

βλ −
3λ2

16π2
+O(λ3) = 0 , (1a.1.18)

or

βλ =
3λ2

16π2
+O(λ3) . (1a.1.19)

It is worth commenting on some minus signs that frequently cause confusion. Note that the µ
dependence of λ(µ) is opposite to that of Γ4. Because the wave function renormalization vanishes,
Γ4 is a directly physical scattering amplitude, to this order. Thus when µ changes, Γ4 remains
constant. That is a direct translation of (1a.1.14), with γφ = 0.

On the other hand, the “solution”, to the renormalization group equation, is

Γ4(pi, λ(µ), µ) = Γ4(pi, λ(µ0), µ0) , (1a.1.20)

for λ(µ) satisfying (1a.1.13). Since λ(µ0) can be regarded as a function of λ(µ) and µ, (1a.1.20)
says that Γ4 is not a function of λ(µ) and µ separately, but only of the combination, λ(µ0). The
µ dependence of λ is then related, in the absence of wave function renormalization, not to the µ
dependence of Γ4, but to its dependence on the scale of p, because it is when p ≈ µ, that Γ4 ≈ λ(µ).

Sources and Parameters

The form, (1a.1.14), obscures a connection between the anomalous dimension, γφ, and the function,
βλ. First of all, the sign in front of the anomalous dimension term depends on the fact we are
studying 1PI functions, Γn, rather than connected Green functions, Gn, which satisfy(

µ
∂

∂µ
+ βλ

∂

∂λ
+ nγφ

)
Gn = 0 . (1a.1.21)

Secondly, because W (s) is the generating function for the connected Green functions, we can obtain
(1a.1.21) for all n from the single equation(

µ
∂

∂µ
+ βλ

∂

∂λ
+
∫
βs(x)

∂

∂s(x)
d4x

)
W (λ, s) = 0 . (1a.1.22)

We can get back to (1a.1.21) by functionally differentiating with respect to s. Thus

βs(x) = s(x) γφ . (1a.1.23)
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The General Case — Mixing

In general, there are many couplings, λi, many fields, φα, and corresponding sources, sα. The nice
thing about the form, (1a.1.22), is that it generalizes trivially to the general case. The parameters,
λi, may include mass terms, terms of dimension 3, whatever is around. In fact, as we will see,
this even makes sense in nonrenormalizable theories, properly defined. The β’s depend on the λ
parameters and the sources, sα. In a mass independent renormalization scheme such as DRMS,
there is no µ dependence in any of these functions, and thus the dependence on the parameters is
strongly constrained by dimensional analysis. In perturbation theory, each β is a sum of products
of λ’s and s’s (derivatives acting on the s’s are also possible, although they do not appear in this
simple example). Dimensional consistency implies that the product in each term of βλi has the
same dimension as λi, and that the product in each term of βsα(x) has the same dimension as sα(x).
The generalization is(

µ
∂

∂µ
+
∑
i

βλi
∂

∂λi
+
∑
α

∫
βsα(x)

∂

∂sα(x)
d4x

)
W (λ, s) = 0 . (1a.1.24)

In words, (1a.1.24) means that a change in µ can always be compensated by suitable changes in all
the parameters and the fields.

Of course this assumes, as usual, that we have included all the parameters required to absorb
the dependence on the physics at very short distances. Once all the relevant parameters have been
included, then µ is arbitrary, and (1a.1.24) is almost a tautology.

In the simple example, (1a.1.1), the field, φ, is multiplicatively renormalized, because it is the
only field around. In our renormalization group language, that statement is equivalent to (1a.1.23).
Note, in fact, that (1a.1.12) is the most general thing we can write down consistent with dimensional
analysis. However, in general, the situation is more complicated.

Suppose, for example, that your theory depends on several real scalar fields, φα, for α = 1 to
K, with Lagrangian

L(φ) =
1
2

∑
α

(∂µφα∂µφα + sαφα)

−
∑

α1α2α3α4

λα1α2α3α4

4!
φα1φα2φα3φα4 ,

(1a.1.25)

where λα1α2α3α4 is some symmetric tensor in the α’s. If all (K+3)!
4!(K−1)! of the independent α’s are

nonzero, then there are no symmetries that distinguish one φ from another. In this case, each of
the βλ-functions depends on all of the λ’s, and the most general form for βs is

βsα(x) =
∑
α′

sα′(x) γα′α(λ) . (1a.1.26)

This exhibits the phenomenon of operator mixing. Of course, all of the γ’s are zero in one loop in
the scalar field theory, but in higher order, a change in µ requires not just a rescaling of each of the
φα’s, but a rotation in the flavor space, to get the theory back into a canonical form. The fields
are not multiplicatively renormalized.

The failure of multiplicative renormalization in (1a.1.26) is an example of the general principle
that whatever can happen will happen. This is particularly true in quantum field theory, where if
you fail to write down an appropriately general expression, the theory is likely to blow up in your
face, in the sense that you will not be able to absorb the dependence on short distance physics.
However, as long as you are careful to include everything (consistent, as we will emphasize time
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and time again, with all the symmetries of the system), the situation is really no more difficult
to understand than in a simple theory with multiplicative renormalization. You just have to keep
track of some indices.

As an example of operator mixing in action, we will show how to go back and forth from 1PI
2-point functions to connected 2-point functions. Consider the connected 2-point function

Gα1α2(x1, x2) = − δ2

δsα1(x1)δsα2(x2)
W (s)

= 〈0 | T φα1(x1)φα2(x2) | 0〉 .
(1a.1.27)

Because W (s) satisfies, (1a.1.24), we can differentiate twice and use (1a.1.26) to obtain with(
µ
∂

∂µ
+ βλ

∂

∂λ

)
≡ D , (1a.1.28)

∑
α′1α

′
2

[
D δα1α′1

δα2α′2
+ γα1α′1

+ γα2α′2

]
Gα′1α′2(x1, x2) = 0 . (1a.1.29)

Let G̃(p) be the Fourier transform of G(x, 0). To avoid getting lost in indices, it will be useful
to write (1a.1.29) for G̃ (Fourier transforming commutes with applying D) in an obvious matrix
notation,

D G̃+ γ G̃+ G̃ γT = 0 . (1a.1.30)

The 1PI two point function is the inverse of G̃ — symbolically

Γ G̃ = G̃Γ = I . (1a.1.31)

Now apply D to (1a.1.31).

(D Γ) G̃+ Γ (D G̃) = 0

= (D Γ) G̃− Γ γ G̃− Γ G̃ γT

= (D Γ) G̃− Γ γ G̃− γT

. (1a.1.32)

Multiplying by Γ on the right and using (1a.1.31) gives the renormalization group equation for the
1PI 2-point function:

D Γ− Γ γ − γT Γ = 0 . (1a.1.33)

Note not only the sign change, compared to (1a.1.30), but the change from γ to γT as well.

Γ(Φ) and 1PI Graphs

We can get directly from (1a.1.22) to a similarly general expression for Γ(Φ), the generating func-
tional for 1PI graphs. Γ(Φ) is obtained by making a Legendre transformation on W (s),

Γ(Φ) = W (s)−
∑
α

∫
sα(x) Φα(x) d4x , (1a.1.34)

where
Φα(x) =

δW

δsα(x)
, (1a.1.35)
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is the “classical field” corresponding to the quantum field, φα.
Now (

µ
∂

∂µ
+ βλ

∂

∂λ

)
Γ(Φ) =

(
µ
∂

∂µ
+ βλ

∂

∂λ

)
W (s) , (1a.1.36)

for fixed Φ. We don’t have to worry about any implicit dependence of s on µ or λ, because the
contribution from the two terms on the right hand side cancel anyway — the Legendre transform
guarantees that Γ(Φ) doesn’t depend on s. But the right hand side of (1a.1.36) is (from (1a.1.24))

−
∑
α

∫
βsα(x)

∂

∂sα(x)
W (λ, s) d4x . (1a.1.37)

But
s(x) = − δΓ

δΦ
, (1a.1.38)

which follows from (1a.1.34). Putting this into (1a.1.23) and using (1a.1.35), we findµ ∂

∂µ
+ βλ

∂

∂λ
−
∑
α,α′

Φα γα′α
∂

∂Φα′

Γ(Φ)

=

µ ∂

∂µ
+ βλ

∂

∂λ
−
∑
α,α′

Φα γ
T
αα′

∂

∂Φα′

Γ(Φ) = 0 .

(1a.1.39)

From this, (1a.1.33) follows immediately by differentiation twice with respect to Φα.

An Example with Fermions

Consider the following Lagrangian, describing K pseudoscalar fields, and a massless Dirac fermion:

L(φ, ψ) = i ψ /∂ ψ + ηψ + ψη +
∑
α

(
1
2
∂µφα∂µφα + sφαφα

)
−

∑
α1α2α3α4

λα1α2α3α4

4!
φα1φα2φα3φα4 −

∑
α

gα ψ iγ5φα ψ ,

(1a.1.40)

The quantum fermion fields, ψ, have dimension 3/2. Their sources, η, have dimension 5/2. Both
are anticommuting.

The Lagrangian, (1a.1.40), is the most general Lagrangian we can write down for massless fields
with these dimensions, consistent with a parity symmetry under which the φα fields are odd. Thus,
(1a.1.24) will be satisfied, where the couplings now include the gα’s as well as the λ’s, and the
sources include the η and η, as well as the sα’s. A feature of this theory that makes it a nice
pedagogical example, is that all β-functions are nonzero at the one loop level. You will find all of
these for yourselves in problem (1a-3).

1a.2 Composite Operators

In local field theory, it is useful to discuss new local objects that are built out of the local fields
themselves. These things are called “composite operators”. One reason for considering them, of
course, is that the Lagrangian itself is built out of such things, but many other reasons will occur
to us as we go along. The question is, what do we mean by multiplying the fields together at the
same space time point. This is the same problem we faced in defining the theory in the first place.
It is most sensible to deal with it in precisely the same way.
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1. Couple a source, t, to each composite operator in the Lagrangian. We will find that if we
include an operator of a given dimension, we will be forced to include sources for all the other
operators with the same dimension and the same quantum numbers under all the symmetries
of the theory. When masses are present, we may have to include others as well, but the theory
will complain if we do not have the right sources.

2. Renormalize the theory as usual. To do this, you will have to include extra parameters for
the new “interactions” that you can build with your new sources, one for each new dimension
4 object you can build. These will be required to absorb dependence on the unknown short
distance physics.

3. Once this is done, the generating functional, W , depends on the new sources, and we can
find the effect of an insertion of a composite operator in any Green function simply by
differentiating with respect to the appropriate source.

As a fairly simple example, but one which exhibits many of the interesting features of composite
operators, consider the fermion example, (1a.1.40), with K = 1 (dropping the unneeded subscripts),
and include a source for the operator ψ ψ. This is the only dimension 3 operator that is a scalar
under parity, so we do not need any other sources. The Lagrangian, constructed according to the
above rules, is

L(φ, ψ) = i ψ /∂ ψ + ηψ + ψη +
1
2
∂µφ∂µφ+ sφφ

− λ
4!
φ4 − g ψ iγ5 φψ + tψ ψ − κ1

2
∂µt∂µt−

κ2

4!
t4 − κ3

4
t2 φ2 ,

(1a.2.1)

The point of the extra terms in (1a.2.1) is that they are require for the calculation of graphs
involving more than one insertion of the new operator. For example, consider the graph

��
��
× ×

(1a.2.2)

where the × indicates the insertion of the operator ψ ψ. When computed using DRMS, the graph
is µ-dependent. This means that it depends on the details of how we constructed the ψ ψ operator
at short distances, so we have no right to calculate it. Thus we need a new, a priori unknown
parameter in the theory. This is κ1.

The κ parameters have β-functions just like the other coupling constants. The µ-dependence
of (1a.2.2) produces µ-dependence in κ1, which is just its β-function in the renormalization group.
If, somehow, we manage to discover the values of this and the other κ parameters at some µ (this
requires somehow specifying the physics — we will see some examples later on), then we can use
the renormalization group to find its value at any other µ.

The κ parameters are the translation into our language of so-called “subtractions” which must be
made to define the Green functions of composite operators. We now see that they are something that
we already understand. The sources for the composite fields differ from the sources for elementary
fields in that their dimensions are smaller. This is what allows us to build the nontrivial κ terms.
We will see many examples of composite operators as we explore the standard model. The thing
to remember is that in this way of looking at things, they are not so different from other fields and
sources.
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Problems

1a-1. Find the one-loop β-functions for (1a.1.25). If you use (1a.1.19), no calculation should
be required, beyond drawing the graphs and keeping track of the indices.

1a-2. Show that (1a.1.21) follows from (1a.1.22).

1a-3. Find all the β-functions, both for the couplings and for the sources, for the theory
described by (1a.1.40), for K = 2.



Chapter 1b

— Gauge Symmetries

In this section, we will discuss theories with local or gauge symmetry. First, we will use gauge
symmetry as a device to define the Noether currents in a quantum field theory. Then we will go
on the discuss dynamical gauge symmetry.

Given a symmetry of a classical Lagrangian without sources, we can always extend it to a
symmetry of the Lagrangian including sources, by requiring the sources to transform appropriately.
The interesting question is, can we always define a corresponding quantum theory that exhibits
the symmetry.

The answer is — sometimes! When it is possible to find a regularization and renormalization
scheme that preserves the symmetry, then the symmetry can be extended into the quantum theory,
but sometimes this is not possible. We will discuss important examples of the “anomalies” that can
occur in quantum field theory to prevent the realization of a classical symmetry later. For now we
will ignore this subtlety, and discuss symmetry in the language we have developed to discuss field
theory, without asking whether any particular symmetry is consistent with our DRMS scheme.

1b.1 Noether’s Theorem – Field Theory

Consider, then, a quantum field theory with N real scalar fields, φ, and real sources s and with K
fermion fields, ψ, and sources, η, and Lagrangian1

L0(φ, ∂µφ, ψ, ∂µψ) + sT φ+ η ψ + ψ η , (1b.1.1)

Suppose that L0 is invariant under a global internal symmetry group, G, as follows:

φ → Dφ(g−1)φ ,

ψL → DL(g−1)ψL ,

ψR → DR(g−1)ψR ,

(1b.1.2)

where g is and element of G and the D’s are unitary representations of the symmetry group. Note
that because the φ fields are real, the representation Dφ must be a “real” representation. That is,
the matrices, Dφ, must be real. Such a symmetry can then be extended to include the sources as

1We use L0 for the Lagrangian without any sources.

21
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well, as follows:

s → Dφ(g−1) s ,

ηR → DL(g−1) ηR ,

ηL → DR(g−1) ηL .

(1b.1.3)

Note the switching of L ↔ R for the fermion sources, because the fermions source terms are like
mass terms that couple fields of opposite chirality. Now if the regularization and renormalization
respect the symmetry, the vacuum amplitude, Z(s, η, η) will also be invariant under (1b.1.3).

Generators — T a

It is often convenient to use the infinitesimal version of (1b.1.2) and (1b.1.3), in terms of the
generators, T a,

δφ = iεaT
a
φ φ ,

δψL = iεaT
a
L ψL ,

δψR = iεaT
a
R ψR ,

δs = iεaT
a
φ s ,

δηR = iεaT
a
L ηR ,

δηL = iεaT
a
R ηL .

(1b.1.4)

The T aj for j = φ, L and R, are generators of the representation of the Lie algebra of G, corre-
sponding to the representations,

Dj(g−1) = eiεaT
a
j . (1b.1.5)

A sum over repeated a indices is assumed. Often we will drop the subscript, and let the reader
figure out from the context which representation we are discussing.

Gauge Symmetry

In order to discuss the conserved Noether currents associated with a symmetry of the quantum
field theory as composite operators, it is useful to convert the global symmetry, (1b.1.4), into a
gauge symmetry, that is a symmetry in which the parameters can depend on space-time,

εa → εa(x) . (1b.1.6)

To do this, we must introduce a set of “gauge fields”, which in this case will be classical fields, like
the other sources. Call these fields, hµa . Under the symmetry, (1b.1.4), they transform as follows:

δhµa = −fabcεbhµc + ∂µεa . (1b.1.7)

Now we modify the Lagrangian, (1b.1.1), by replacing the derivatives by “covariant” derivatives,

Dµ ≡ ∂µ − i hµa T a , (1b.1.8)
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where the T a are the generators of the representation of the object on which the derivative acts.
Thus,

Dµφ ≡
(
∂µ − i hµa T aφ

)
φ ,

Dµψ ≡ (∂µ − iP+ h
µ
a T

a
L − iP− hµa T aR) ψ .

(1b.1.9)

The resulting Lagrangian is now invariant under (1b.1.4) and (1b.1.7), for space-time dependent
parameters, εa.

Furthermore, the classical gauge fields, hµa , act as sources for composite fields in the quan-
tum field theory. These are the classical Noether currents corresponding to the global symmetry,
(1b.1.2). To see this, note that

δ Dµφ

δhνa
= −i δµν T aφ φ (1b.1.10)

Suppose that the Lagrangian depended only on the φs. Then using (1b.1.10), the chain rule for
functional differentiation and the fact that φ doesn’t depend on hµa , we could write

δL
δ hµa

=
δL

δ Dνφ

δ Dνφ

δ hµa
= −i δL

δ Dµφ
T aφ φ (1b.1.11)

which is the classical Noether current.
This works in general, because for any field ξ,

δ Dµξ

δhνa
= −i δµν T aξ ξ (1b.1.12)

where T aξ are the generators of the symmetry acting on the field ξ. Thus

δL
δ hµa

=
∑
ξ

δL
δ Dνξ

δ Dνξ

δ hµa
= −i

∑
ξ

δL
δ Dµξ

T aξ ξ (1b.1.13)

which is the general form of the classical Noether current.
We will find that this definition of the Noether currents as the composite fields coupled to

external gauge fields is very convenient because gauge invariance is such a strong constraint. The
conservation of the Noether currents implies a set of relations for the Green functions known as Ward
identities. All of these follow from the gauge invariance of the vacuum functional, Z(φ, η, η, hµa).

Note that because the field hµa has dimension 1, like a derivative, there is one kind of term of
dimension 4 that we can write, consistent with all the symmetries, that depends only on hµa . It is

κab
4
hµνa hbµν , (1b.1.14)

where hµνa is the “gauge field strength”,

hµνa = ∂µhνa − ∂νhµa + fabc h
µ
b h

ν
c . (1b.1.15)

Thus we expect such terms to be required by renormalization. With our convenient normalization,
(1.1.12), the parameter κab is

κab = δab κa (1b.1.16)

where κa is independent of a within each simple subalgebra.2

2For U(1) factors of the symmetry algebra, there is no normalization picked out by the algebra, and no constraint
of the form (1b.1.16).
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Some Useful Notation

It is often useful to get rid of the indices on the gauge field and replace the set by a matrix field

hµ ≡ T a hµa . (1b.1.17)

The covariant derivative is
Dµ ≡ ∂µ − i hµ . (1b.1.18)

The field strength is
hµν ≡ T a hµνa = ∂µhν − ∂νhµ − i [hµ, hν ] . (1b.1.19)

The field strength can be obtained by commuting the covariant derivatives,

[Dµ, Dν ] = −i hµν . (1b.1.20)

In this notation, the gauge transformation, (1b.1.7), becomes

δhµ = i[ε, hµ] + ∂µε , (1b.1.21)

where ε = εaTa. In this form, the gauge transformation can be integrated to give the finite form

hµ → ΩhµΩ−1 + iΩ∂µΩ−1 , (1b.1.22)

where
Ω = eiε . (1b.1.23)

1b.2 Gauge Theories

In this section, we consider what happens when we let the classical gauge field, hµν , become a
quantum field,

hµ → Gµ ,

hµν → Gµν

= ∂µGν − ∂νGµ − i [Gµ, Gν ] .

(1b.2.1)

The κ term of (1b.1.14) becomes the kinetic energy term for the gauge fields,

−
∑
a

1
4g2
a

GaµνG
µν
a . (1b.2.2)

Again, the normalization, that we have here called 1/4g2
a, is equal for a in each simple component

of the gauge group. The constant, ga, is the gauge coupling constant. We can rescale the fields
to make the coefficient of the kinetic energy term the canonical 1/4 if we choose. Then the gauge
transformation law has ga dependence. Often, we will keep the form of the gauge transformations
fixed and let the gauge coupling constant appear as the normalization of the kinetic energy term.
This is particularly convenient for the study of the symmetry structure of the theory.
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Gauge Fixing

The field theory treatment of gauge theories is more complicated than that of theories without
dynamical gauge symmetry because the gauge symmetry must be broken in order to define the
theory, at least perturbatively. The kinetic energy term, (1b.2.2), does not involve the longitudinal
components of the gauge fields, and is not invertible in momentum space. Thus the propagator is
not well defined.

In the functional integral formulation of field theory, one tries to write the Green functions as
functional integrals:

〈0 | T g(G,φ) | 0〉 =
〈g̃〉
〈1̃〉

, (1b.2.3)

where
〈g̃〉 =

∫
g(G,φ) eiS(G,φ) [dG][dφ] . (1b.2.4)

In the functional integral description, the difficulty with gauge invariance shows up in the indepen-
dence of the action on gauge transformation,

Gµ → ΩGµΩ−1 + iΩ∂µΩ−1 . (1b.2.5)

This defines an “orbit” in the space of gauge field configurations on which the action is constant. The
part of the gauge field functional integral over the gauge transformations is completely unregulated,
and gives rise to infinities that are the translation into the functional integral language of the
problem with the gauge field propagator. Thus 〈g̃〉 has spurious infinities, and is not well defined.

Having formulated the problem in this language, Faddeev and Popov suggested a general pro-
cedure for solving it. They introduced 1 into (1b.2.3), in the following form:

1 = ∆(G,φ)
∫
f(GΩ, φΩ) [dΩ] , (1b.2.6)

where f is a functional that is not gauge invariant and [dΩ] is the invariant measure over the gauge
transformations, satisfying

[dΩ] = [d(Ω′Ω)] = [d(ΩΩ′)] , (1b.2.7)

for fixed Ω′. The functional, ∆, called the Faddeev-Popov determinant, is gauge invariant. This
can be seen as follows (using (1b.2.7)):

∆(GΩ, φΩ) =
1∫

f(GΩΩ′ , φΩΩ′) [dΩ′]
(1b.2.8)

1∫
f(GΩΩ′ , φΩΩ′) [d(ΩΩ′)]

=
1∫

f(GΩ, φΩ) [dΩ]
= ∆(G,φ) . (1b.2.9)

Inserting (1b.2.6), we can write

〈g̃〉 =
∫
eiS(G,φ) g(G,φ) ∆(G,φ) f(GΩ, φΩ) [dG][dφ][dΩ] . (1b.2.10)

If g(G,φ) is gauge invariant, then (1b.2.10) can be written with the integral over the gauge trans-
formations factored out, as

〈g̃〉 =
{∫

eiS(G,φ) g(G,φ) ∆(G,φ) f(G,φ) [dG][dφ]
}∫

[dΩ] . (1b.2.11)
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The Faddeev-Popov suggestion is then to drop the factor of
∫

[dΩ], and define

〈g〉 =
∫
eiS(G,φ) g(G,φ) ∆(G,φ) f(G,φ) [dG][dφ] . (1b.2.12)

This process is called “choosing a gauge”. The gauge is defined by the choice of the fixing function,
f . The important point to notice is that 〈g〉 should be completely independent of the gauge fixing
function, f(G,φ), so long as the Green function, g(G,φ), is gauge invariant. Because it is the gauge
invariant physical matrix elements that we actually want, this is a perfectly reasonable definition.

Of course, this means that in general, Green functions are not invariant for a given gauge fixing
function, f . That means that the consequences of gauge symmetry are not as obvious as those of
a global symmetry. However, it is possible to organize the calculations in gauge theory in a way
that makes gauge invariance manifest, by using what is called “background field gauge”. This is
discussed in Appendix B.

1b.3 Global Symmetries of Gauge Theories

Let us look again at the Lagrangian for a general gauge theory,

L0(φ,Dµφ, ψ,Dµψ)−
∑
a

1
4g2
a

GaµνG
µν
a , (1b.3.1)

and study its global symmetries. Of course, the gauge symmetry itself defines a global symmetry,
but the theory may have additional symmetry. We will reserve the term “flavor symmetry” to refer
only to those internal symmetries of the theory that are not gauged. The first important comment
is that any such symmetry must map the gauge fields into themselves. Because the gauge fields are
associated with the generators of the gauge symmetry, this implies that the gauge symmetry is a
normal subgroup of the full symmetry group. For continuous flavor symmetries, the constraint is
even stronger. The generators of continuous flavor symmetries must commute with all the gauge
generators.3 This, in turn, implies that the flavor generators are constant within each irreducible
representation of the gauge group, and also that if two fields are rotated into one another by the
flavor symmetry, they must belong to the same irreducible representation of the gauge group. If
we choose a canonical form for the gauge generators in each irreducible representation of the gauge
symmetry,4 then we can regard the ψ and φ fields as having two sets of indices: gauge indices, on
which the gauge symmetries act; and flavor indices, on which the flavor symmetries act.

First consider the fermion kinetic energy term. In the basis in which all the fermions are left
handed, this has the general form

i
∑
r

ψrL /DψrL , (1b.3.2)

where the sums run over the different irreducible representations of the gauge group, and where,
for each r, the fermions field is a vector in a flavor space with dimension dr. Each of these flavor
vectors can be rotated without changing (1b.3.2). Thus, at least classically, (1b.3.2) has a separate
SU(dr)× U(1) flavor symmetry for each irreducible representation that appears in the sum (with
non-zero dr).5

If we charge conjugate some of the left handed fermion fields to write them as right handed
fields, we must remember that the charged conjugate fields may transform differently under the

3Discrete symmetries, like parity, may induce nontrivial automorphisms on the gauge generators.
4See problem (3-2) for an example of what happens when you do not do this.
5As we will see later, some of the U(1)s are broken by quantum mechanical effect, “anomalies”.
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gauge transformations. If
δψL = iεaT

aψL , (1b.3.3)

then
δψcR = iεa(−T a∗)ψcR , (1b.3.4)

In a “real” representation, the generators can be taken to be imaginary, antisymmetric matrices, so
that −T a∗ = T a, and the right handed fields transform the same way. However, if the representation
is “complex”, then −T a∗ is a different representation. Finally, the representation may be “pseudo-
real”, in which case the representation generated by −T a∗ is equivalent to that generated by T a,

− T a∗ = S T a S−1 , (1b.3.5)

but the matrix S is antisymmetric, so the generators can not be made entirely real. In this case, one
can include the matrix S into the definition of charge conjugation to make the right handed fields
transform like the left handed fields. The most familiar example of a pseudo-real representation is
the Pauli matrices, generating the spin 1/2 representation of SU(2).

The situation with scalar fields is somewhat more subtle, because the global symmetry asso-
ciated with a given representation of the gauge group depends on whether it is real, complex, or
pseudo-real.

For d sets of scalars in a real irreducible representation, rR, of the gauge group, the flavor
symmetry is SO(d). Here the kinetic energy term looks like

DµΦT DµΦ , (1b.3.6)

where Φ is a vector in flavor space (as well as the space of the gauge group representation).
If, instead, the scalar field representation, rC , is complex, then because the elementary scalar

fields are real, both the rC representation and its complex conjugate, rC , appear in the theory.
Suppose that there are d copies of the representation, rC , which we can organize into a vector in
flavor space, as usual. We can write the kinetic energy term as

Dµφ†Dµφ . (1b.3.7)

However, (1b.3.7) describes the rC representation as well, because we could just as well have used
the field φ∗, which transforms under the rC representation. If the representation, rC (and rC) is
n dimensional, then there are actually 2nd real fields described by (1b.3.7), because each of the
components of φ is complex. The flavor symmetry of (1b.3.7) is an SU(d) acting on the flavor
indices of φ.

The most bizarre situation occurs for pseudo-real representations. It turns out that a pseudo-real
representation has an SU(2) structure built into it. The generators of a 2n dimensional irreducible
pseudo-real representation can be taken to have the form6

Ta = Aa + ~τ · ~Sa , (1b.3.8)

where ~τ are the Pauli matrices, and the n×n matrix A is antisymmetric while the n×n ~S matrices
are symmetric. Then

τ2T
∗
a τ2 = −Ta . (1b.3.9)

6Note that all pseudo-real representations have even dimensionality.
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The flavor structure of the theory involves the ~τ matrices in a non-trivial way. If there are d
identical representations, we can describe them by a 2n× 2d matrix field of the following form:Σ11 · · · Σ1d

...
. . .

...
Σn1 · · · Σnd

 , (1b.3.10)

where Σij is a 2× 2 matrix in the Pauli space, of the special form

Σij = σij + i~τ · ~πij , (1b.3.11)

for real σij and ~πij . The gauge generators act on Σ on the left. Now the kinetic energy term has
the form

tr
(
DµΣ†DµΣ

)
. (1b.3.12)

This is invariant under an Sp(2d) flavor symmetry, generated by acting on Σ on the right with
matrices of the form

Tx = Ax + ~τ · ~Sx , (1b.3.13)

where the A and ~S are d× d matrices, antisymmetric and symmetric, respectively. Like the gauge
transformation, (1b.3.13) preserves the special form of Σ.

Thus the largest possible flavor symmetry of a set of d pseudo-real representations of scalars is
Sp(2d). This apparently arcane fact will be important when we discuss the standard model with a
fundamental Higgs boson.

Problems

1b-1. In the theory described by (1b.1.1) modified by the replacement of ∂µ with the covariant
derivative (1b.1.8), find the µ dependence of κab defined in (1b.1.14) in the one loop approximation.
This does not involve any of the unspecified interactions, because it arises from one loops diagrams
like (1a.2.2). It will depend on the representation matrices, T af .

1b-2. Consider the Lagrangian

iψ1 /D1ψ1 + iψ2 /D2ψ2

where
Dµ
j = ∂µ − iGaT aj

with
T a1 =

1
2
τa

where τa are the Pauli matrices, but

T 1
2 =

1
2
τ2 , T 2

2 =
1
2
τ3 , T 3

2 =
1
2
τ1 .

This theory has an SU(2) gauge symmetry, and also an SU(2) global flavor symmetry, because ψ1

and ψ2 transform under equivalent representations of the gauge symmetry which we have chosen,
perversely, to write in different forms. Find the generators of the SU(2) flavor symmetry.



Chapter 2

— Weinberg’s Model of Leptons

2.1 The electron

Quantum electrodynamics (QED) is the quantum field theory of electrons and photons. It gives
a spectacularly accurate description of the electron’s properties in terms of only two parameters,
the electron mass, me, and the fine structure constant, α. The success of QED derives from two
special characteristics of the electron:

1. that it is the lightest charged particle, by a large factor;

2. it does not carry color and therefore does not participate directly in the strong interactions.

This second property is a defining characteristic of the class of spin 1/2 particles called “leptons”
comprising the electron e− and its neutrino νe; the muon µ− and its neutrino νµ and the tau
τ− and its neutrino ντ — and their antiparticles. So far as we know today, the µ− and the τ−

seem to be heavier copies of the electron, distinguished only by their larger masses. As far as
we can tell, the weak and electromagnetic interactions act on the µ and τ exactly as they act
on the electron. Because they are heavier, they decay, by weak interactions. The electron, the
lightest charged particle, must be absolutely stable unless electromagnetic gauge invariance and
global charge conservation are violated.

The SU(2)× U(1) theory of the weak and electromagnetic interactions was first written down
as a model of leptons, simply because at the time the strong interactions and the weak interactions
of the hadrons were not completely understood.

2.2 SU(2)× U(1)

In its simplest and original version, the SU(2)×U(1) model describes the weak interactions of the
leptons. Nine fields are needed to describe the e, µ, and τ and their neutrinos.

νeL , e−L , e−R (2.2.1)

νµL , µ−L , µ−R (2.2.2)

ντL , τ−L , τ−R (2.2.3)

There is no compelling evidence for right-handed ν’s or left-handed ν’s, so we do not need a νR
field.

29
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The neutrinos are known to be very light. They may be massless, but there are some (still
confusing) indications that they may have small masses. If the neutrinos are massless, the weak
interactions conserve electron number, µ number and τ number separately. Formally, this means
that the theory has global symmetries:

νeL → eiθeνeL , e−L → eiθee−L , e−R → eiθee−R ;

νµL → eiθµνµL , µ−L → eiθµµ−L , µ−R → eiθµµ−R ;

ντL → eiθτ ντL , τ−L → eiθτ τ−L , τ−R → eiθτ τ−R .

(2.2.4)

We will come back in later chapters to the lepton number violating effects that can occur if the
neutrino masses are non-zero. For now, we will ignore neutrino masses. Then the symmetries,
(2.2.4), simplify the construction of the model because the different families do not mix with one
another.

Further, the interactions of the µ and τ are exact copies of those of the electron, so we can
discuss only the fields in the electron family (2.2.1).

The gauge group is SU(2)×U(1), which means that there are four vector fields, three of which
are associated with the SU(2) group that we will call Wµ

a , where a = 1, 2 or 3, and one Xµ

associated with the U(1).
The structure of the gauge theory is determined by the form of the covariant derivative:

Dµ = ∂µ + igWµ
a Ta + ig′XµS (2.2.5)

where Ta and S are matrices acting on the fields, called the generators of SU(2) and U(1), respec-
tively. Notice that the coupling constants fall into two groups: there is one g for all of the SU(2)
couplings but a different one for the U(1) couplings. The SU(2) couplings must all be the same
(if the Ta’s are normalized in the same way κ tr(TaTb) = δab) because they mix with one another
under global SU(2) rotations. But the U(1) coupling g′ can be different because the generator S
never appears as a commutator of SU(2) generators. Even if we did start with equal g and g′,
we would be unable to maintain the equality in the quantum theory in any natural way. The two
couplings are renormalized differently and so require different infinite redefinitions in each order of
perturbation theory. Since we need different counterterms, it would be rather silly to relate the
couplings.

To specify the gauge structure completely, we must define the action of Ta and S on the fermion
fields. Define the doublet

ψL ≡
(
νeL
e−L

)
(2.2.6)

Then the Ta’s are defined as
TaψL =

τa
2
ψL , Tae

−
R = 0 (2.2.7)

where τa are the Pauli matrices. Both of these sets of T ’s satisfy the SU(2) commutation relation

[Ta , Tb] = iεabcTc (2.2.8)

although for the e−R field, which is called an SU(2) singlet, (2.2.8) is satisfied in a rather trivial way.
In order to incorporate QED into the theory we are building, we must make certain that some

linear combination of the generators is the electric-charge matrix Q. The matrix T3 is clearly related
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to the charge because the difference between the T3 values of each multiplet (the doublet ψL and,
trivially, the singlet e−R) is the same as the charge difference. Thus, we define

Q = T3 + S (2.2.9)

which defines S. We have done this very carefully so that S will be proportional to the unit matrix
on each multiplet.

QνeL = 0 ; Qe−L = −e−L ; SψL = −1
2
ψL ; Qe−R = Se−R = −e−R . (2.2.10)

We defined S this way so it satisfies the SU(2)× U(1) commutation relations

[Ta , S] = 0 . (2.2.11)

(2.2.5)-(2.2.11) completely define the gauge couplings to the leptons. To see just what these
gauge couplings do, we will look first at the interactions that change particle identity, the couplings
of Wµ

1 and Wµ
2 . If we write out the coupling of Wµ

1 and Wµ
2 to the fermions just by inserting the

standard forms of the Pauli matrices into (2.2.5)-(2.2.7), we find the interaction terms

− g

2

{
νeL( /W1 − i /W2)e−L + e−L ( /W1 + i /W2)νeL

}
(2.2.12)

plus an analogous term for muons. The “charged” fields defined by

Wµ
± =

Wµ
1 ∓ iW

µ
2√

2
(2.2.13)

create and annihilate charged intermediate vector bosons. Wµ
± annihilates (creates) W± (W∓)

particles. (2.2.10) can give rise to µ decay as shown in Figure 2-1.
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Figure 2-1:

There are two things wrong with Figure 2-1 as a picture of the weak interactions. The µ− and
e− are massless, and the W± are massless. The SU(2) × U(1) gauge symmetry does not allow a
lepton mass term e−Le

−
R or a W± mass term. The leptons must obviously get mass somehow for

the theory to be sensible. The W± must also be very heavy in order for the theory to agree with
data. A massless W± would give rise to a long-range weak force. In fact, the force has a very short
range.

Despite these shortcomings, we will press on and consider the neutral sector. If the theory is to
incorporate QED, one linear combination of the Wµ

3 and Xµ fields must be the photon field Aµ.
Thus, we write

Aµ = sin θWµ
3 + cos θXµ (2.2.14)

Then the orthogonal linear combination is another field called Zµ:

Zµ = cos θWµ
3 − sin θ Xµ (2.2.15)
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The two independent fields are orthogonal linear combinations of W3 and X because I have taken
the kinetic-energy terms for the gauge fields to be

− 1
4
Wµν
a Waµν −

1
4
XµνXµν (2.2.16)

where

Wµν = ∂µW ν
a − ∂νWµ

a − gεabcW
µ
b W

ν
c

Xµν = ∂µXν − ∂νXµ

. (2.2.17)

Thus, only the orthogonal combinations of W3 and X have independent kinetic energy terms.
At this point, sin θ is an arbitrary parameter. But if we insert (2.2.14-2.2.15) into the covariant

derivative, we must obtain the photon coupling of QED. This determines the couplings of g and g′

in terms of sin θ and e.
Schematically, the couplings of the neutral gauge particles are

g /W3T3 + g′ /XS (2.2.18)

Inserting (2.2.14)-(2.2.15) we get couplings

/A(g sin θ T3 + g′ cos θ S) + /Z(g cos θ T3 − g′ sin θ S) . (2.2.19)

Since /A must couple to eQ = e(T3 + S) [from (2.2.9)], we must have

g =
e

sin θ
, g′ =

e

cos θ
(2.2.20)

Then the Z couplings are

/Z(e cot θ T3 − e tan θ S) = /Z
e

sin θ cos θ
(T3 − sin2 θ Q) (2.2.21)

The interesting thing about (2.2.21) is that the Z, unlike the photon, has non-zero couplings
to neutrinos. Z exchange produces so-called neutral-current weak interactions such as νµe− elastic
scattering, shown in Figure 2-2.
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Figure 2-2:

The SU(2)×U(1) gauge structure was first written down by Glashow in 1960. At the time, the
nature of the weak interactions was by no means obvious. That he got the right form at all was
a great achievement that had to wait over 12 years for experimental confirmation. Of course, he
did not know how to give mass to the W± and Z without breaking the gauge symmetry explicitly.
The Z, like the W±, must be very heavy. That much was known immediately because a massless
Z would give rise to a peculiar parity-violating long-range force (see Figure 2-2.).
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2.3 Renormalizability? An Interlude

So why don’t we just add mass terms for the W± and Z by hand, even though it breaks the gauge
symmetry? The problem is not lack of symmetry. Nice as the idea of local symmetry is, it is not
what we care about. We are physicists, not philosophers. The real problem is that the theory
with mass terms is not renormalizable, so we don’t really know how to make sense of it. Before
discussing massive vector bosons, let’s go back an historical step and talk about the four-Fermi
theory.

Before SU(2)× U(1), there was a phenomenological theory of the charged-current weak inter-
actions based on a four-fermion interaction. For the µ decay interaction, the form was as follows:

GF√
2
Jαµ J

∗
eα (2.3.1)

where
Jαµ = νµγ

α(1 + γ5)µ− (2.3.2)

and
Jαe = νeγ

α(1 + γ5)e− (2.3.3)

(2.3.1) is called a current-current interaction for obvious reasons.
The constant GF (F is for Fermi) is determined from the µ decay rate. It has units of 1/mass2

m2
pGF ' 10−5 (2.3.4)

where mp is the proton mass.
(2.3.1) gives a perfectly adequate description of µ decay in tree approximation. The difficulty

is that it is a dimension-6 operator, where the dimension of the fermion field is determined by the
requirement that the kinetic-energy term iψ /∂ψ has dimension 4. The theory is not renormalizable
because quantum corrections produce an infinite sequence of interactions with higher and higher
dimensions, all with infinite coefficients.

If we decide that we need a renormalizable theory (for example, we might regard the success of
the e and µ g − 2 predictions in QED as evidence for renormalizability in general), the four-Fermi
theory is no good. We can do better by adding e−, µ−, and W± and Z terms to the gauge theory
of Section 2.2.1. Then there are no dimension-6 operators in the interaction Hamiltonian. But the
theory is still not renormalizable. To see this, consider the Z couplings (the W± would do as well).

The point is that the kinetic energy term is

− 1
4

(∂µZν)(∂µZν − ∂νZµ) (2.3.5)

which doesn’t involve the longitudinal component of the Zµ field, the component proportional to the
gradient of a scalar field. Let’s call this longitudinal component ZL and the transverse component
ZT .

Zµ = ZµT + ZµL, ∂µZ
µ
T = 0, ∂µZνL − ∂νZ

µ
L = 0 . (2.3.6)

The theory in which we add a Z mass term by hand, however, does involve ZL in the mass term.
Since ZL appears only in the mass term, not in the kinetic-energy term, it acts like an auxiliary
field. The ZL propagator does not fall off with momentum. MLZL then acts like a field with
dimension 2 for purposes of power counting. Then the ZL couplings to other stuff, such as ψ /ZLψ
terms, are dimension 5 and not renormalizable.
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But all is not lost. If we somehow preserve the gauge-invariance structure and give mass to
the W± and Z, we may be able to preserve renormalizability. This is what Weinberg and Salam
did by making use of spontaneous symmetry breaking. We will return to the general discussion of
why (and whether) the theory should be renormalizable when we discuss effective field theories in
Chapter 8.

2.4 Spontaneous Symmetry Breakdown

As a simple example of spontaneous symmetry breaking, consider the theory with a single Hermitian
scalar field and the Lagrangian

L(φ) =
1
2
∂µφ∂µφ−

m2

2
φ2 − λ

4
φ4 (2.4.1)

With only a single field, there can be no continuous internal symmetry, but this L(φ) is invariant
under the reflection

φ→ −φ (2.4.2)

This has allowed us to omit a φ3 (and φ) interaction term so that the theory has only two parameters,
m and λ. If λ is small, we can hope to treat the λφ4 term as a perturbation.

But suppose the sign of the mass term is changed so that the L(φ) becomes (discarding a
constant)

L(φ) = 1
2∂

µφ∂µφ− V (φ)

V (φ) = λ
4

(
φ2 − m2

λ

)2
. (2.4.3)

In this case, we cannot perturb around the φ = 0 vacuum because the free theory contains a
tachyon, a particle with imaginary mass. Nor would we want to do so because the potential looks
like what we see in Figure 2-3. It is clear that the φ = 0 vacuum is unstable and that the theory
much prefers to spend its time near one of two degenerate minima, φ = ±

√
m2/λ. It doesn’t care

which.

−
√
m2/λ 0 √

m2/λ
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Figure 2-3:

If instead, we perturb around one of the minima, we get a sensible theory. The two are physically
equivalent, so we pick φ =

√
m2/λ. For the φ field,

√
m2/λ is a “vacuum expectation value” (VEV).
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It is easier to see what is going on if we rewrite the theory in terms of a field with zero VEV.

φ′ = φ−
√
m2/λ (2.4.4)

The result is

L(φ′) = 1
2∂

µφ′∂µφ
′ − V (φ′)

V (φ′) = λ
4

(
φ′ 2 + 2

√
m2/λφ′

)2

= λ
4φ
′ 4 +

√
m2/λφ′ 3 +m2φ′ 2

. (2.4.5)

Several points should stand out. The symmetry is hidden. It has been spontaneously broken by the
choice of vacuum. However, the theory is still described by only two parameters, for this relation
between the φ′ 4, φ′ 3 and φ′ 2 terms will be preserved by quantum renormalization effects. This
enhanced renormalizability, the fact that we need only two independent counterterms, is the legacy
of the spontaneously broken symmetry. The φ′ field describes a massive scalar field with mass√

2m, with the original “imaginary” mass setting the scale, but not trivially related to the eventual
physical particle masses.

The existence of the other possible vacuum, φ = −
√
m2/λ or φ′ = −2

√
m2/λ, does not show

up in perturbation theory. It is infinitely far away because the field must be changed everywhere in
space-time to get there. Note that spontaneous symmetry breaking occurs only in infinite space-
time. In a finite space, the ground state would be a linear combination of the φ = ±

√
m2/λ

vacua, invariant under the discrete symmetry. In the infinite space, such states are forbidden by
superselection rules. The existence of the other vacuum does give rise to a variety of interesting,
and sometimes even more important, nonperturbative effects in the infinite volume theory, but we
will ignore them for now and press on.

2.5 The Goldstone Theorem

For continuous symmetries, spontaneous symmetry breaking is slightly more subtle. Let us consider
the fairly general situation described by the Lagrangian

L(φ) =
1
2
∂µφ∂

µφ− V (φ) (2.5.1)

where φ is some multiplet of spinless fields and V (φ) and thus L(φ) is invariant under some sym-
metry group

δφ = iεaT
aφ (2.5.2)

where the T a are imaginary antisymmetric matrices (because φ are Hermitian).
As in the previous section, we want to perturb around a minimum of the potential V (φ). We

expect the φ field to have a VEV, 〈φ〉 = λ, which minimizes V . To simplify the analysis, we define

Vj1···jn(φ) =
∂n

∂φj1 . . . ∂φjn
V (φ) (2.5.3)

Then we can write the condition that λ be an extremum of V (φ) as

Vj(λ) = 0 (2.5.4)
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Since λ is a minimum, V must also satisfy

Vjk(λ) ≥ 0 (2.5.5)

The second derivative matrix Vjk(λ) is the meson mass-squared matrix. We can see this by
expanding V (φ) in a Taylor series in the shifted fields φ′ = φ − λ and noting that the mass term
is 1

2Vjk(λ)φ′jφ
′
k. Thus, (2.5.5) assures us that there are no tachyons in the free theory about which

we are perturbing.
Now comes the interesting part, the behavior of the VEV λ under the transformations (2.5.2).

There are two cases. If
Taλ = 0 (2.5.6)

for all a, the symmetry is not broken. This is certainly what happens if λ = 0. But (2.5.6) is
the more general statement that the vacuum doesn’t carry the charge Ta, so the charge cannot
disappear into the vacuum. But it is also possible that

Taλ 6= 0 for some a (2.5.7)

Then the charge Ta can disappear into the vacuum even though the associated current is conserved.
This is spontaneous symmetry breaking.

Often there are some generators of the original symmetry that are spontaneously broken while
others are not. The set of generators satisfying (2.5.6) is closed under commutation (because
Taλ = 0 and Tbλ⇒ [Ta , Tb]λ = 0) and generates the unbroken subgroup of the original symmetry
group.

Now let us return to the mass matrix. Because V is invariant under (2.5.2), we can write

V (φ+ δφ)− V (φ) = iVk(φ)εa(T a)klφl = 0 (2.5.8)

If we differentiate with respect to φj , we get (since εa are arbitrary)

Vjk(φ)(T a)klφl + Vk(φ)(T a)kj = 0 (2.5.9)

Setting φ = λ in (2.5.9), we find that the second term drops out because of (2.5.4), and we obtain

Vjk(λ)(T a)klλl = 0 (2.5.10)

But Vjk(λ) is the mass-squared matrix M2
jk for the spinless fields, so we can rewrite (2.5.10) in

matrix form as
M2T aλ = 0 (2.5.11)

For Ta in the unbroken subgroup, (2.5.11) is trivially satisfied. But if T aλ 6= 0, (2.5.11) requires
that T aλ is an eigenvector of M2 with zero eigenvalue. It corresponds to a massless boson field,
given by

φTT aλ (2.5.12)

This is called a Goldstone boson after J. Goldstone, who first established this connection between
spontaneously broken continuous symmetries and massless particles.

The existence of the massless particle can be understood qualitatively as follows. If the sym-
metry is spontaneously broken, we know that our vacuum is part of a continuous set of degenerate
vacua that can be rotated into one another by the symmetry. Physically, we cannot really get from
one vacuum to another because to do so would require transformation of our local fields everywhere
in space-time. But we can look at states that differ from our vacuum by such a rotation in a finite
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region and then go smoothly back to our vacuum outside. The point is that the energy of such a
state can be made arbitrarily close to the energy of our vacuum state by making the region larger
and the transition smoother. But if there are states in the theory with energy arbitrarily close
to the energy of the vacuum state, then there must be massless particles in the theory. These
are Goldstone bosons. Their masslessness is the translation into local field theory of the global
degeneracy of the vacuum.

2.6 The σ-Model

Before discussing the spontaneous breakdown of symmetry in gauge theories, we will work out in
detail one example of global symmetry breakdown in the strong interactions that will be useful when
we discuss hadrons — and will turn out to have a curious connection with the weak interactions
as well. The example is the σ-model of Gell-Mann and Levy (Nuovo Cimento 16:705-713, 1960), a
toy model of nuclear forces and, in particular, of the π-nucleon coupling.

Let ψ be an isospin-doublet field representing the nucleons, P and N ,

ψ =
(
P
N

)
(2.6.1)

The theory should certainly be invariant under global rotations, with Ta = τa/2

δψ = iεaTaψ (2.6.2)

However, as we have seen, the kinetic-energy term for massless fermions is automatically invariant
under the larger group of symmetries, SU(2)× SU(2):

δψL = iεaLTaψL

δψR = iεaRTaψR

. (2.6.3)

These are the chiral symmetries. (2.6.3) can be rewritten in terms of the infinitesimal parameters

εa = (εaR + εaL)/2

εa5 = (εaR − εaL)/2
, (2.6.4)

in the following form
δψ = i(εa − γ5ε

a
5)Taψ (2.6.5)

If εa5 = 0, this is a pure isospin rotation. If εa = 0, it’s a pure chiral rotation.
This would all seem to be academic, since a nucleon mass term ψψ breaks the chiral symmetry

and leaves only isospin. But Gell-Mann and Levy found that they could build a Lagrangian with
chiral symmetry and a nucleon mass if the chiral symmetry was spontaneously broken. In the
process, the pion is interpreted as a Goldstone boson.

The Lagrangian involves a 2× 2 matrix of spinless fields Σ that transforms as follows under the
chiral symmetries:

δΣ = iεaLTaΣ− iΣεaRTa (2.6.6)

Then the Lagrangian has the following form:

L = iψ /∂ψ − gψLΣψR − gψRΣ†ψL + L(Σ) (2.6.7)
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The invariance of the Yukawa couplings may be more transparent in terms of finite transformations.
The infinitesimal transformations (2.6.3) and (2.6.6) can be integrated to obtain

ψL → LψL, ψR → RψR (2.6.8)

Σ→ LΣR† (2.6.9)

where L and R are independent 2× 2 unitary matrices with determinant 1,

L = exp (ilaτα) , R = exp (iraτa) (2.6.10)

with la and ra arbitrary real 3-vectors.
The most general 2× 2 matrix would have eight real components. The Σ field is constrained to

depend only on four real fields, as follows:

Σ = σ + iτaπa (2.6.11)

It is not obvious (at least to me) that this form is preserved by the transformations (2.6.6).1 But
it is true, and you can work out by explicit calculation the transformations of the σ and πa fields:

δσ = εa5πa

δπa = −εabcεbπc − εa5σ
. (2.6.12)

Another way to see this is to note that Σ†Σ = ΣΣ† =
(
σ2 + ~π2

)
I and det Σ = σ2 + ~π2. Thus

Σ is
√
σ2 + ~π2 times a unitary unimodular matrix. Obviously, if we multiply Σ on the left or on

the right by a unitary unimodular matrix, the result is still of the form
√
σ2 + ~π2 times a unitary

unimodular matrix.
Inserting (2.6.11) into L, we can write the Yukawa couplings as

− gσψψ + igπaψγ5τaψ (2.6.13)

From (2.6.13), you can see that the πa fields have the right form to describe the π’s. The coupling
g is the πNN coupling gπNN .

We still don’t have a nucleon mass term, but it is clear from (2.6.13) that if we can give σ
a VEV, we will be in good shape. To this end, we must ask how to build L(Σ) invariant under
SU(2)× SU(2). It is clear from (2.6.9) that

1
2

tr
(
Σ†Σ

)
= σ2 + π2

a (2.6.14)

is invariant. In fact, the most general invariant (without derivatives) is just a function of σ2 + π2
a.

This can be seen by noting that more complicated traces just give powers of σ2 + π2
a because

Σ†Σ =
(
σ2 + π2

a

)
(2.6.15)

and is proportional to the identity in the 2 × 2 space. Alternatively, we can recognize (2.6.12) as
the transformation law of a 4-vector in four-dimensional Euclidean space. The invariant (2.6.14) is
just the length of the vector, the only independent variant.

1These objects are actually related to interesting things called quaternions.
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Without further introduction, we can write down the invariant L,

L(Σ) =
1
2
∂µσ∂µσ +

1
2
∂µπa∂µπa − V

(
σ2 + π2

a

)
(2.6.16)

To get a VEV, we take V to be

V (σ2 + π2) =
λ

4

[(
σ2 + π2

a

)2
− F 2

π

]2

(2.6.17)

where λ is a dimensionless constant and Fπ has dimensions of mass (indeed, it is the only mass
scale in the theory so far). Then σ = πa = 0 is not a minimum. V is obviously minimized for

σ2 + π2
a = F 2

π (2.6.18)

Now we can use our freedom to make SU(2)× SU(2) transformations to rotate any VEV into the
σ direction so that without any loss of generality we can assume

〈σ〉 = Fπ, 〈πa〉 = 0 (2.6.19)

and perturb around that vacuum.
Thus, we define the shifted field

σ′ = σ − Fπ, 〈σ′〉 = 0 (2.6.20)

in terms of which L is

L = iψ /∂ψ − gFπψψ − gσ′ψψ

+igπaψτaγ5ψ + 1
2∂

µσ′∂µσ
′ + 1

2∂
µπa∂

µπa

−λ
4

(
σ′ 2 + π2

a + 2Fπσ′
)2

. (2.6.21)

This describes nucleons with mass gFπ coupled to the scalar σ′ field and massless pseudoscalar πa’s.
Why did Gell-Mann and Levy think (2.6.21) had anything to do with the world? For one thing,

the physical pion is very light compared to other hadrons. For example, m2
π/m

2
N ' 1/50. Perhaps

a theory in which it is massless is not such a bad approximation. But there was another reason.
The parameter g can clearly be measured in π-nucleon interactions. It turns out that Fπ can also
be measured. The reason is that, as we shall discuss in enormous detail later, it determines the
rate at which π± decay through the weak interactions. The crucial fact is that the axial vector
current, the current associated with εa5 transformations, has the form

jµ5a = − (∂µπa)σ + (∂µσ)πa − ψγµγ5τaψ (2.6.22)

which in terms of shifted fields has a piece proportional to ∂µπa:

jµ5a = −Fπ∂µπa + · · · (2.6.23)

The other terms are all bilinear in the fields. The point is that this current has a nonzero matrix
element between the vacuum and a one-pion state

〈0|jµ5a|πb〉 = iFπp
µδab (2.6.24)
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where pµ is the pion momentum. This is odd. A normal current, like the charge with which it is
associated, just moves you around within multiplets. (2.6.24) is a sign of spontaneous symmetry
breaking. At any rate, the decay π+ → µ+νµ is proportional to F 2

π , and so Fπ can be measured.
Then the nucleon mass can be predicted according to

mN = gπNNFπ (2.6.25)

This relation is called the Goldberger-Treiman relation, and it works fairly well (actually (2.6.25)
us a special case of the general Goldberger-Treiman relation that works even better).

The pion is a Goldstone boson in this model. This is probably obvious, but we can use the
formal machinery of Section 2.5 to see it directly. The Goldstone-boson directions are defined by
Taλ where λ is the VEV. In this theory, the isospin generators annihilate the vacuum, so isospin is
not spontaneously broken and there is no scalar Goldstone boson. But the chiral transformations
rotate the VEV into the π directions (σπa = · · ·+εa5Fπ from (2.6.12)), and thus the chiral symmetry
is broken and the π’s are Goldstone bosons.

We will discuss explicit chiral symmetry breaking later, but now notice that we can incorporate
a pion mass by adding to V the term

m2
π

2

(
σ2 + π2 − 2Fπσ + F 2

π

)
(2.6.26)

which is not invariant because of the linear term m2
πFπσ.

2.7 The Higgs Mechanism

We now want to apply the idea of spontaneous symmetry breaking to the SU(2)× U(1) model of
leptons. It seems clear that we can get an electron mass in much the same way we get nucleon
masses in the σ-model. It is probably not obvious that the W± and Z will get mass. But wait and
see. To give mass to the electron, we need an SU(2) × U(1) multiplet of spinless fields that can
couple the ψL to the e−R in a Yukawa coupling,

− f e−R φ
†ψL + h.c. (2.7.1)

If the field φ transforms under SU(2)× U(1) with charges

~Tφ =
~τ

2
φ, Sφ =

1
2
φ , (2.7.2)

then (2.2.6) and (2.2.10) with (2.7.2) imply that (2.7.1) is invariant under the SU(2) transformation
δ = iεaT

a + iεS. Evidently, φ must be a doublet field(
φ+

φ0

)
= φ (2.7.3)

where the superscripts are the Q values according to Q = T3 + S. Note that

δφ† = −iεaφ†Ta −
i

2
εφ† (2.7.4)

so that
δ
(
φ†ψL

)
= −iε

(
φ†ψL

)
(2.7.5)
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φ†ψL is an SU(2) singlet with S = −1, just like e−R, so (2.7.1) is invariant. Now when φ0 has a
nonzero VEV, (2.7.2) has a piece that looks like an electron mass.

Now that we have the SU(2)× U(1) properties of φ determined, we know the couplings of the
gauge particles to the φ — they are determined by the covariant derivatives:

LKE(φ) = (Dµφ)†(Dµφ) (2.7.6)

We can do everything in this notation, but it is slightly more convenient to go over to a notation
in which the scalar fields are self-adjoint. We can easily do this by rewriting the complex φ+ and
φ0 fields in terms of their real and imaginary parts:(

φ+

φ0

)
=
(

(φ3 + iφ4)/
√

2
(φ1 + iφ2)/

√
2

)
(2.7.7)

The conventional
√

2 is intended to ensure that the fields are normalized in the same way. At
any rate, we can arrange the real fields φj in a real 4-vector and ask how the generators ~T and S
translate into this notation. Thus, we write

Φ =


φ3

φ4

φ1

φ2

 (2.7.8)

The space of the Φ field has an obvious tensor-product structure. It is a tensor product of the two-
dimensional space of the original φ, on which the τ ’s act, and a two-dimensional space corresponding
to the real and imaginary parts of the components of φ, on which we can define an independent set
of Pauli matrices ~σ. The 15 traceless Hermitian matrices acting on φ can be written as

σj , τj , and σjτk (where j, k = 1 to 3) (2.7.9)

In this notation, it is easy to write down the generators ~T and S. The procedure is simple and quite
general: Leave antisymmetric matrices in φ space unchanged, but multiply symmetric matrices by
−σ2 to make them antisymmetric. Thus

T1Φ = −1
2τ1σ2Φ

T2Φ = 1
2τ2Φ

T3Φ = −1
2τ3σ2Φ

SΦ = −1
2σ2Φ

(2.7.10)

You can easily check that (2.7.10) gives the same transformation laws as (2.7.2) and (2.7.7). The
advantage of this notation is really marginal. For example, it makes it slightly easier to identify
the Goldstone bosons. But since it is so easy, we might as well use it.

In terms of Φ, the kinetic-energy term becomes

LKE(Φ) = 1
2D

µΦTDµΦ

= 1
2

[
∂µΦT − iΦT

(
e

sin θ
~T · ~Wµ + e

cos θ SXµ

)]
[
∂µ + i

(
e

sin θ
~T · ~Wµ + e

cos θ SXµ

)]
Φ

(2.7.11)
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The point of all this is that (2.7.11) contains terms like ΦTWµ
1 W1µΦ. If Φ has a VEV, this looks

like a W1 mass. Perhaps we will be able to give mass to the W± and Z. Of course, we hope to do
it without giving mass to the photon, and we still have the Goldstone bosons to worry about. But
let’s go on.

The most general SU(2) × U(1) invariant potential depends only on the combination φ†φ. In
particular, if it has the form

V (φ) =
λ

2

(
φ†φ− v2/2

)2
(2.7.12)

Then φ will develop a VEV.
We want the VEV of φ0 to be real and positive to that (2.7.1) gives an electron mass term

that is real and positive. This is purely conventional, of course. We can make an SU(2) × U(1)
transformation to make any VEV of φ+ and φ0 have the form

〈φ+〉 = 0, 〈φ0〉 = v/
√

2 (2.7.13)

for real v. Let’s prove that. Suppose

〈φ〉 =
(
a
b

)
(2.7.14)

By making a transformation of the form

φ→ exp(2iθ3T3)φ

we get
a→ eiθ3a, b→ e−iθ3b (2.7.15)

By a suitable choice of θ3 we can make a and b have the same phase. Then

φ→ exp(2iφ2T2)φ (2.7.16)

is an orthogonal transformation by which we can rotate the (a, b) vector into the φ0 direction.
Then by another (2.7.15) transformation we can make the VEV real and positive. Thus, all we
have done is to choose a convenient form for the VEV so that our original labeling of the fermion
fields is consistent.

In any case, (2.7.13) is equivalent to

〈Φ〉 =


0
0
v
0

 (2.7.17)

Now we want to rewrite (2.7.11) in terms of the VEV, λ, and the shifted scalar field:

Φ′ = Φ− λ (2.7.18)

Of course, LKE(Φ) contains the kinetic energy term for the Φ′ fields. But for the moment we will
concentrate on the terms that are quadratic in the fields. There are two types:

1
2
λT
[

e

sin θ
~T · ~Wµ +

e

cos θ
SXµ

]
·
[

e

sin θ
~T ·Wµ +

e

cos θ
SXµ

]
λ (2.7.19)

and
i∂µΦ′ T

[
e

sin θ
~T · ~Wµ +

e

cos θ
SXµ

]
λ (2.7.20)
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The (2.7.19) are the W and Z mass terms we want, as we will soon see. But (2.7.20) looks
dangerous. It describes some sort of mixing between the Goldstone bosons and the gauge fields.
The Goldstone-boson fields are

Φ′ T ~Tλ = ΦT ~Tλ (2.7.21)

The field Φ′ TSλ is not independent, since T3λ = −Sλ.
But we have not yet used all our freedom to make local SU(2) × U(1) transformations. In

fact, we can choose a gauge, called the unitary gauge, in which the Goldstone-boson fields just
vanish, so we can throw (2.7.20) away. To see this, we need to return to the unbroken theory. We
saw in (2.7.14-17) that we use the global SU(2) × U(1) symmetry to take an arbitrary VEV and
rotate it into the φ3 direction. But since we have the freedom to make different SU(2) × U(1)
transformations at each point in space-time, we can take an arbitrary field Φ(x) and rotate it into
the φ1 direction! So that after these rotations

φ2(x) = φ3(x) = φ4(x) = 0 (2.7.22)

Of course, we now have no further freedom to rotate Φ without disturbing (2.7.22). In other
words, we have chosen a gauge. Comparing (2.7.21) and (2.7.22), we can see explicitly that the
Goldstone-boson fields vanish in this gauge. The VEV is a VEV of the single remaining field φ1.

Having disposed of (2.7.20), we can now return to (2.7.19) and show that it is a mass term for
the W± and the Z. Note first that we can separate the problem into a neutral-gauge boson mass
matrix and a separate-charged boson matrix. Electromagnetic charge conservation prevents mixing
between the two. The neutral sector is more complicated than the charged sector, so we will do it
first. We saw in Section 2.2 that we could rewrite the covariant derivative in terms of Aµ and Z
fields as follows:

e

sin θ
T3W

µ
3 +

e

cos θ
SXµ = eQAµ +

e

sin θ cos θ

(
T3 − sin2 θ Q

)
Zµ (2.7.23)

Now we can see why the photon field doesn’t get a mass — because

Qλ = 0 (2.7.24)

so that Aµ doesn’t appear in (2.7.19) and (2.7.20). This, of course, is the way it had to work
out. (2.7.24) is the statement that the electromagnetic gauge invariance is not broken by the
vacuum. Thus, it must imply that the photon remains massless, and it does. (2.7.24) also shows
that the sin2 θQ term in the Zµ coupling is irrelevant to the mass. Putting (2.7.23)-(2.7.24) into
(2.7.19)-(2.7.20), we get

1
2

e2

sin2 θ cos2 θ
ZµZµλ

TT 2
3 λ =

1
2

[
ev

2 sin θ cos θ

]2

ZµZµ (2.7.25)

Thus
MZ =

ev

2 sin θ cos θ
(2.7.26)

An even simpler analysis for the charged fields gives

1
2

[
ev

2 sin θ

]2

(Wµ
1 W1µ +Wµ

2 W2µ) (2.7.27)

Thus
MW =

ev

2 sin θ
= MZ cos θ (2.7.28)
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The gauge defined by (2.7.22) is called “unitary” or “unitarity” gauge because all fields that
appear correspond to physical particles that appear in the S-matrix. In general, the unitary-gauge
requirement is that the Goldstone-boson fields vanish,

ΦTTaλ = 0 (2.7.29)

In this gauge, renormalizability is not obvious. But as ’t Hooft showed, the theory is renormalizable.
We will discuss other gauges and the question of radiative corrections in Chapter 8.

2.8 Neutral Currents

As you will show in Problem 2-1, at low-momentum transfers, W± exchange gives rise to the
effective four-fermion interaction (2.3.1) with

GF =
√

2 e2

8M2
W sin2 θ

=
1√
2v2

(2.8.1)

This is just one term of the general charged-current interaction that has the following form:

GF√
2

(jα1 j1α + jα2 j2α) (2.8.2)

where the currents are
jαa =

∑
ψ

ψLTaγ
α (1 + γ5)ψL (2.8.3)

where Ta are the SU(2) generators. So far, we have seen only the leptonic contribution to (2.8.3),
but as we will see later, there are others.

The coupling of the Z produces a neutral-current interaction analogous to (2.8.2). In the same
notation in which the W± coupling is

e

sin θ
Ta (2.8.4)

the Zµ coupling is
e

sin θ cos θ

(
T3 − sin2 θ Q

)
(2.8.5)

However, since the Z is heavier than the W by a factor of 1/ cos θ, the extra factor of cos θ in (2.8.5)
cancels from the effective four-fermion interaction, which has the form

GF√
2

(
jα3 − 2 sin2 θ jαEM

)
·
(
j3α − 2 sin2 θ jEMα

) (
where jαEM = ψγαQψ

)
(2.8.6)

The normalization of (2.8.6) is easy to remember because the j2
3 term has the same strength as

the j2
1 and j2

2 terms in (2.8.2).
The fact that the coefficients of j2

1 and j2
2 , and j2

3 are the same is really much more than
mnemonic. It is symptomatic of an important feature of the theory. In the limit in which the g′

coupling is turned off, the theory has a larger symmetry. Consider the substitutions

φ1 = σ, φ2 = −π3, φ3 = π2, φ4 = π1 (2.8.7)

Comparing (2.7.2) and (2.6.12), we see that our φ doublet can be identified with the Σ field of
the SU(2)L × SU(2)R σ-model, and the weak SU(2) is just SU(2)L. If there were no g′ coupling
and no Yukawa couplings, the theory would have a gauged SU(2)L symmetry and a global SU(2)R
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symmetry. When φ1 (= σ) gets a VEV, the SU(2)L × SU(2)R symmetry is broken down to the
diagonal SU(2), which remains as an unbroken global symmetry of the theory. This SU(2) is
sometimes called the “custodial” SU(2) symmetry. It requires the neutral currents to have the
form (2.8.6) because they must be part of an SU(2) singlet with (2.8.2) when sin2 θ = 0.

The parameter GF , the Fermi constant, can be fixed by a measurement of the µ decay rate (see
Problem 2-4). After appropriate radiative corrections, we find

GF = 1.166× 10−5 GeV−2 (2.8.8)

(2.8.6) has some interesting physics associated with it. Consider first the general question of
weak cross sections. If some scattering process takes place purely through the weak interactions,
the amplitude is proportional to GF , and so the cross section is proportional to G2

F . Thus, σ is
proportional to G2

F times a function of s and the fermion masses, where s is the square of the
center of mass energy. Furthermore, there is no way for one of the fermion masses to get into the
denominator. Thus, for s large compared to fermion masses, we must have

σ ' G2
F s (2.8.9)

on dimensional grounds.
(2.8.9) has important consequences for weak-scattering experiments. Since the only convenient

lepton fixed target is the e−, it is hard to get a large s in fixed-target experiments because

s ' 2Eme (2.8.10)

where E is the beam energy. Thus, to see processes such as

νµ + e− → νµ + e− or µ− + νe (2.8.11)

νµ + e− → νµ + e− (2.8.12)

νµ + e− → νe + e− (2.8.13)

is not easy. The first two have been seen in high-energy neutrino-scattering experiments where the
neutrinos are primarily νµ and νµ from π± decay. (2.8.13) has been seen in low-energy antineu-
trino beams from reactors where enormous neutrino fluxes are available. The advantage of these
experiments as tests of the model are that they only involve leptons — no strong interactions.
But the experiments are so hard that this is not the easiest way to get really detailed tests of the
SU(2) × U(1) theory. It works, but there is also good evidence from neutrino-nucleon scattering,
which we will discuss in some detail later. The data are better for neutrino-nucleon scattering.
The cross sections are larger because s is larger for a given beam energy by mNucleon/me — a large
factor. We will study this in Chapter 7.

2.9 e+e− → µ+µ−

The situation is more complicated in e+e− annihilation. At the low center of mass energies, the
process e+e− → µ+µ− is dominated by electromagnetic interactions, the s-channel exchange of a
virtual proton shown in Figure 2-4.

This produces a total cross section for the process that falls with 1/s (s = 4E2, where E is the
center of mass energy of one of the particles). The cross section (at energies large compared to the
particle masses) is

σe+e−→µ+µ− =
4πα2

3s
(2.9.1)
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Figure 2-5:

But the neutral-current weak interactions also contribute, as seen in Figure 2-5. Indeed, when the
total center of mass energy approaches the Z0 mass, this becomes the dominant contribution to
the amplitude. Eventually, this process should be one of the best sources of information about the
Z0.

In the 70’s and early 80’s, the largest active e+e− machines were the PETRA machine in
Hamburg and the PEP machine in Palo Alto, with a total center of mass energy between 30 and
40 GeV. This was not enough to produce the Z0 resonance. The largest effect of what occurs in
Figure 2-5 at these energies is the interference between the processes in Figures 2-4 and 2-5. There
are two types of contribution to the interference in the total cross section. Since the Z0 has both
vector (V) and axial vector (A) couplings, the process in Figure 2-5 has pieces of the form VV, AA,
and AV. But the photon has only V couplings, so (2.8.1) has the form VV. Thus the interference
has one of the following forms:

VV VV (2.9.2)

VV AA (2.9.3)

VV VA (2.9.4)

(2.9.4) does not contribute at all to the total cross section because it is a pseudoscalar. It does
contribute to various parity violating effects, such as helicity dependence.

(2.9.2) shares an interesting property with the purely electromagnetic contribution in that it
looks the same if we interchange the µ+ and the µ− in the final state. If this were the only
contribution, as many µ+ would scatter forward in the direction of the incoming e+ as backward,
in the opposite direction (see Problem 2-7).

(2.9.3), on the other hand, changes sign under the interchange of µ+ and µ− because the V
and A currents have opposite-charge conjugation. Thus, this term contributes to a front-back
asymmetry in the cross section (see Problem 2-7). The front-back asymmetry has been measured
and agrees with the SU(2)× U(1) model, not only for e+e− → µ+µ−, but also for e+e− → τ+τ−.
This was exciting because it was the first data we had on the τ neutral current.

Today, the largest e+e− machine is LEP at CERN which runs at a center of mass energy of
about MZ and today has produced millions of Zs. The SLC, the novel single pass collider at SLAC
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also produces Zs in e+e− annihilation. In this machine, the electrons can be polarized, so the
interactions of the left-handed and right-handed electrons can be separately studied.

Problems

2-1. Derive the relation M2
W =

√
2e2/8 sin2 θ GF .

2-2. Derive the analogous relation in a theory in which the left- handed electron and muon
fields are in triplets (with all right-handed fields in singlets) under SU(2)× U(1) as follows:

ψeL =

E+
L

νeL
e−L

 ψµL =

M+
L

νµL
µ−L


where E+ and M+ are heavy (unobserved) lepton fields.

The SU(2) generators of the triplet representation are

T1 =
1√
2

 0 1 0
1 0 1
0 1 0

 T2 =
i√
2

 0 −i 0
i 0 −i
0 i 0



T3 =

 1 0 0
0 0 0
0 0 −1


Note that [Ta, Tb] = iεabcTc

2-3. Find the constants Cj in the following relations:

(a) [γµP±]ij [γµP±]kl = C1[γµP±]il[γµP±]kj
(b) [γµP±]ij [γµP∓]kl = C2[P∓]il[P±]kj
(b′) Note that [σµνP∓]il[σµνP±]kj = 0
(c) [P±]ij [P±]kl = C3[P±]il[P±]kj + C4[σµνP±]il[σµνP±]kj
(d) [σµνP±]ij [σµνP±]kl = C5[P±]il[P±]kj + C6[σµνP±]il[σµνP±]kj

These six numbers are all there is to Fierz transformations.
Hint: For (a) and (b), multiply by γνlk and sum over l and k. For (c) and (d), it’s easiest to

avoid taking traces of σµν , so multiply by δlk and sum over l and k to get one equation. Multiply
by δjk and sum over j and k to get another. To prove (b′), multiply by γλlk and sum over l and k.

2-4. Calculate the µ decay rate assuming MW � mµ � me. Note that in this limit, the rate
depends only on GF and mµ.

2-5. In the SU(2)×U(1) theory, both W± and Z0 exchange contribute to the elastic scattering
process, νee− → νee

−. For momentum transfers very small compared to MW , use the results of
Problem 2-3 to write the effective interaction Hamiltonian for this process in the form:

GF√
2
νeγµ(1 + γ5)νe e−γµ(GV +GAγ5)e− .
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Find GV and GA.

2-6. Consider a variant of the SU(2)× U(1) model in which the electron mixes with a heavy
charged lepton, E−. The gauge group is SU(2) × U(1) with one left-handed doublet of fermions,
ψL, and singlets e−R, E−R and E−R (E− is not a mass eigenstate). E−R and E−R transform just like e−R
under SU(2)× U(1). The Yukawa couplings are

−me

a
cos ξ e−Rφ

†ψL +
mE

a
sin ξ E−Rφ

†ψL + h.c.

In addition, there are gauge-invariant mass terms

−me sin ξ e−REL −mE cos ξ E−REL + h.c.

Find ψL and EL in terms of mass-eigenstate fields, eL and EL. Then calculate the decay rate for
the process

E− → e− + e− + e+

from the neutral current interaction. Neglect me compared to mE .
Note: Try to get the answer from the µ decay rate actually calculating anything new.

2-7. Calculate the differential cross section dσ/dθ for e+e− → µ+µ−, in the center of mass
system where θ is the angle between the momentum of the incoming e− and the outgoing µ−.
Assume that the energy is large compared to mµ (so that the lepton masses can be ignored), but
not large compared to MZ (so that only electromagnetic and weak-electromagnetic interference
terms are relevant). Further assume that the incoming es are unpolarized and the polarization of
the outgoing µs is unmeasured. Integrate dσ/dθ to the contribution of the weak electromagnetic
interference to the total cross section, σ. Find the front-back asymmetry defined by

1
σ

[∫ 1

0

dσ

dθ
d(cos θ)−

∫ 0

−1

dσ

dθ
d(cos θ)

]

2-8. Consider a model of electrons and muons based on an SU(3) gauge symmetry in which
the left-handed fermion fields are a pair of SU(3) 3’s,

ψ1L =

 νeLe−L
µ+
L

 ψ2L =

 νµLµ−L
e+
L


where e+ and µ+ are the charge conjugated fields, µ+ = (µ−)c and e+ = (e−)c. Under an infinites-
imal SU(3) transformation, they transform as follows:

δψjL = iεaTaψjL

where Ta are the Gell-Mann matrices. Show that this SU(3) contains the usual SU(2) × U(1).
Calculate sin2 θ in tree approximation. SU(3) can be broken down to SU(2) × U(1) by an octet
field, φ (a traceless Hermitian 3× 3 matrix field, transforming as δφ = iεa[Ta, φ]) with V EV

〈φ〉 =

M 0 0
0 M 0
0 0 −2M


Show that the SU(3) gauge bosons that have mass of order M mediate, among other things, µ−

decay into right-handed electrons. How large does M have to be so that the rate for this decay is
less than 1% of the normal decay rate?



Chapter 3

— Quarks and QCD

In this section, we will give a semi-historical discussion of quantum chromodynamics, and the weak
interactions of the quarks. This is only the beginning of our discussion of the weak interactions of
strongly interacting particles. It is one thing to write down the model, as we will do in this chapter.
It is quite another to understand what it means and whether it is right — this will occupy us for
much of the rest of the book — and is one of the exciting issues in particle physics today.

3.1 Color SU(3)

Hadrons are built out of spin−1
2 quarks. We now have a rather convincing, though not fully

quantitative, theory based on an SU(3) gauge theory. The quarks and their fields (I’ll call them q
generically) come in three colors:

q =

 qred

qgreen

qblue

 (3.1.1)

In addition, the theory involves eight “gluon” fields Gµa , the SU(3) gauge particles. The Lagrangian
is

L = −1
4
Gµνa Gaµν +

∑
flavors

(iq /Dq −mqqq) (3.1.2)

where the Gµνa , the gluon field–strength, and Dµ, the covariant derivative, are

Dµ = ∂µ + igTaG
µ
a , igTaG

µν
a = [Dµ, Dν ] . (3.1.3)

The Ta are the eight 3× 3 traceless Hermitian matrices, conventionally normalized so that

tr(TaTb) =
1
2
δab . (3.1.4)

The Ta’s are “color” charges just like Q in QED. The net effect of the exchange of all eight color
gluons is to bind the quarks and antiquarks into color–neutral combinations, much as the photon
exchange binds charged particles into electrically neutral atoms. The color–neutral combinations
are

qq (3.1.5)

and
εjklqjqkql (3.1.6)

49



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 50

where j, k, and l are color indices and repeated indices are summed. (3.1.5) describes mesons and
those in (3.1.6) are baryons (of course, there are antibaryons as well). All the hadrons we have seen
correspond to one of these combinations, where each q is one of the types or flavors of quarks: u
(for “up”), d (for “down”), s (for “strange”), c (for “charm”), and b (for “bottom” or “beauty”).
A sixth quark flavor t (for “top” or “truth”) almost certainly exists and may have been seen.1

The flavors u, c, and t have Q = 2
3 . Flavors d, s, b have Q = −1

3 . In Table 3.1, I give the quark
composition of some representative hadrons.2

Particle Jp Mass(MeV) Quark Composition
π+ (π−) 0− 139.57 ud (du)
π0 0− 134.98 (uu− dd)/

√
2

K+ (K−) 0− 493.68 us (su)
K0 (K0) 0− 497.67 ds (sd)

η 0− 547.45 ∼ (uu+ dd− 2ss)/
√

6
η′ 0− 957.77 ∼ (uu+ dd+ ss)/

√
3

D+ (D−) 0− 1869.3 cd (dc)
D0 (D0) 0− 1864.5 cu (uc)
D+
s (D−s ) 0− 1968.5 cs (sc)
ηc 0− 2979.8 ∼ cc

B+ (B−) 0−∗ 5279 ub (bu)
B0 (B0) 0−∗ 5279 db (bd)
B0
s (B0

s ) 0−∗ 5369 sb (bs)

p 1
2

+ 938.77 uud

n 1
2

+ 939.57 ddu

Λ 1
2

+ 1115.68 uds

Σ+ 1
2

+ 1189.37 uus

Σ0 1
2

+∗ 1192.55 uds

Σ− 1
2

+ 1197.44 dds

Ξ0 1
2

+∗ 1314.90 ssu

Ξ− 1
2

+∗ 1321.32 ssd

Ω− 3
2

+∗ 1672.45 sss

Λ+
c

1
2

+∗ 2284.9 udc

Λ0
b

1
2

+∗ 5641 udb

Table 3.1: Quark content of hadrons.

In perturbation theory, the QCD Lagrangian describes a world of quarks and massless gluons
coupled to the eight color changes. This world doesn’t look much like our own. The quarks carry
fractional charges. The gluons are apparently massless. And we don’t see any of these things in
the real world. Nevertheless, many people believe QCD is the best candidate yet proposed for a
theory of the strong interactions. Why doesn’t the world look like a world of quarks and gluons?

The QCD Lagrangian with no quarks or with massless quarks has no dimensional parameter,
only the dimensionless coupling constant g. Classically, therefore, the theory is scale–invariant. But

1The t, however, is so heavy that it decays in to W+b so quickly that it hardly makes sense to talk about it being
confined in hadrons.

2∗ These are quark model predictions. Jp is not yet measured.
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to define the quantum theory, it is necessary to break the scale invariance and define or renormalize
the coupling g and the fields at reference momenta of the order of a “renormalization mass: µ.
Because the theory is renormalizable, the renormalization mass is completely arbitrary. A change
in µ can be compensated by redefining g and rescaling the fields. In this way, we can describe the
same physics with the theory defined at any µ we choose. Conversely, if the physics is fixed, the
coupling constant g becomes a function of µ, g(µ). Furthermore, if g(µ) is small for some particular
µ, we can find the dependence of g on µ in some region using perturbation theory by expanding in
powers of the small coupling constant. When we do that in the theory with no quarks, we find (to
lowest order)

αs(µ) ≡ g(µ)2

4π
=

2π
11

1
ln(µ/Λ)

(3.1.7)

Notice that dimensional transmutation has taken place. The quantum theory is characterized not
by a dimensionless parameter, but by the dimensional parameter Λ. Dimensional transmutation
does not depend on the perturbation formula (3.1.7). In general, αs(µ) = f(µ/Λ) were f(x) is
some fixed function.

(3.1.7) also exhibits the property of asymptotic freedom, which means formally that αs(µ)
decreases as the renormalization point µ increases. Roughly speaking, αs(µ) is the strength of the
QCD interactions between color charges separated by a distance of the order of 1/µ. Since we can
turn asymptotic freedom on its head and see that αs(µ) increases as µ decreases, this suggests that
something interesting happens for µ small, which is at large separations of color charges. The best
guess we have at the moment for what happens to the theory at long distances is that it confines
color.

What confinement means is that we can never see a completely isolated colored quark. If we
could somehow pull a single quark away from an antiquark without creating quark–antiquark pairs,
then when we got to distances large compared to the fundamental length in the theory that is 1/Λ,
the theory is that the quark would be subject to a constant restoring force of the order of Λ2.
In other words, the potential energy of the quark–antiquark system would rise linearly with the
separation r, like Λ2r. The constant force confines quarks into systems of size ∼ 1/Λ (or smaller).
These are the hadrons.

It is sometimes said that it is quark confinement that makes QCD complicated — that makes
it difficult to see quarks and gluons directly. Rubbish! Actually, what makes QCD complicated is
the fact that the lightest quarks are, in a sense which we will discuss more precisely later, much
lighter than the proton that is built out of them.

It is true that confinement means that it is impossible to isolate a quark. But then, we cannot
isolate an electron either. After all, every electron comes complete with its long–range electromag-
netic field. Any attempt to isolate an electron without its electromagnetic field is doomed because
the electromagnetic force has infinite range. If our concept of “observation of a particle” is not
flexible enough to apply to objects that cannot be entirely isolated, then it is not very useful.

The analogy between confinement and electromagnetism is imperfect, to be sure. The electro-
magnetic force, while it is long–range, at least falls off with distance, whereas we believe that the
chromodynamic force between color charges goes to a constant at large distances. It is even more
impossible to isolate quarks than it is to isolate charged particles. To make sure that we are not
fooling ourselves with this analogy and convince ourselves that confinement is not the whole answer
to the question of why we don’t see quarks, let’s do a little thought experiment and build a toy
world. For convenience, we’ll try to make this toy world look as much as possible like our own, but
we’ll leave open the possibility of adjusting the strength of the QCD force.
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3.2 A Toy Model

For simplicity, we’ll deal with a world with only two types of quarks, a u quark with electric charge
+2

3 and a d quark with charge −1
3 . We’ll take them approximately degenerate and give both

a mass ∼ mq. That’s a reasonable approximation to our world because it wouldn’t make much
difference to our everyday lives if strange quarks and charmed quarks, and heavier quarks didn’t
exist. We will also include in our toy world an electron, with nonQCD interactions, just ordinary
electromagnetism, and a mass me.

The QCD interactions in this toy world, as in our own, are such that the quarks tend to bind
together into color singlet states — states with no color charges. This is nothing complicated; it
happens for the same reasons that electromagnetic charges tend to bind together to form neutral
systems. In particular, we can build a proton state (P = uud) as a color singlet combination of
two u quarks and a d quark and a neutron state (N = ddu) as a color singlet combination of two
d quarks and a u quark, and these will be the lightest baryons.

In the microscopic toy world, that is in the Lagrangian, there are four parameters: me, the
mass of the quarks; Λ, including dimensional transmutation of the QCD coupling; and α, the
electromagnetic coupling. To make this look as much like our world as possible, let’s take me and
α to have the same values that they have in our world. Furthermore, let’s adjust the scale of mq

and Λ so that the proton mass mp in the toy world is the same at it is in our world. After all this,
we still have one parameter left, the ratio of the dimensional parameter Λ, which characterizes the
coupling constant αs, to the quark mass mq.

So far, we haven’t done anything to make the toy world any different from our own. But
that comes next. We will adjust the ratio Λ/mq so that the QCD coupling at the proton mass is
electromagnetic in size:

αs(mp) = α (3.2.1)

This makes quantum chromodynamics as easy as quantum electrodynamics. Perturbation theory
in QCD should be just as good and useful and accurate as perturbation theory in QED,

Now we can easily find the quark mass. Since the chromodynamic forces are weak (like electro-
magnetic forces), the proton is a nonrelativistic bound state. The proton mass is just three times
the quark mass plus binding corrections of the order of αmq. Thus, the quark mass is

mq ' mp/3 ' 310 MeV (3.2.2)

The proton radius in the toy world is a Bohr radius, (αmq)−1 ' 10−11 cm. Here is a major
difference between our world and the toy world. The toy nucleus is one hundred times bigger than
the nuclei in our world. Nevertheless, it is still very small compared to the atom as a whole, so
the chemistry of the toy world is probably just like what we are used to. Exactly what happens to
nuclear physics in the toy world is not at all clear. Indeed, there are many peculiar things about
nuclear physics in the toy world. For example, the baryon resonances ∆++ and ∆− are stable if
we neglect the weak interactions.

At any rate, it is at least possible to imagine that people (or some higher form of life) may exist
in the toy world, and we can then ask — What will they think about quark confinement? The
most likely answer is that they will not think about it very much at all. They will be perfectly
satisfied with their perturbative theory of quantum chromodynamics. Perhaps some very smart
creature will discover asymptotic freedom and speculate about what happens to the theory at very
large distances.

To see what kind of distances we are talking about, let’s calculate 1/Λ. That is roughly the
distance to which we must separate a quark from an antiquark before the confining force becomes
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important.
1
Λ

= exp
(

2π
11α

)
1
mp
' 1020cm (3.2.3)

In (3.2.3), I have written (3.1.7) for αs(mp) and inserted (3.2.1). Because of the exponential
dependence on 1/α, Λ is tiny, and 1/Λ is a truly enormous distance. Obviously, there is no hope
of seeing any confinement effects in terrestrial laboratories.

Elementary particle physics looks deceptively familiar in the toy world. For example, look
at the mass spectrum of the hadrons, by which I mean color–singlet bound states of quarks and
gluons. All of the familiar quark model states are there, not including strange and charmed particles
because we have not included s and c quarks. In fact, the qualitative correspondence between the
lightest three quark states in this simple model with the lightest baryon states in our world is quite
remarkable. We do not understand quite why it should work as well as it does, and this is one of
the things we will discuss in later chapters. But in the toy world, the quark model is not just a
qualitative guide to the physics, it is the whole story. The ∆++ and ∆− are stable, as mentioned
before, because they are split from P and N only by a mass of the order αmq and cannot decay by
pion emission (the ∆+(∆0) can decay electromagnetically into P +γ(N +γ) or chromodynamically
into P+ Gluons (N+ Gluons)). There is a whole sequence of “‘atomic” baryon resonances above
the P and N by mass splittings of the order of αmq.

There are qq bound states corresponding to pseudoscalar and vector mesons. Indeed, if the u
and d quarks are exactly degenerate, it makes sense to talk about a π and an “η” (an isospin–singlet
bound state of uu + dd). But in practice, if the u and d quarks differ at all in mass, isospin is
irrelevant. For example, if md−mu is a few MeV (as in our world), the mesons are predominantly
uu and dd bound states instead of neutral states of definite isospin. There is significant mixing
between the two states because of perturbative QCD interactions (both can annihilate into gluons)
that are comparable to QED interactions (annihilation into photons). At any rate, these meson
states and their excitations all have a mass ∼ 2mq ' 2mp/3. There is no light pion.

But there are light particles in the toy world. There are glueball states. The glueball states
would exist in the world independent of whether there are quarks, so their mass must be of order of
Λ, the only parameter in the quarkless theory. And Λ is a tiny mass, around 10−30 GeV. Needless
to say, no one is going to measure the glueball mass in the toy world.

It is easy, in this toy world, to observe quarks. Just make them and look at them. For example,
if we collide an electron and a positron, some of the time they will annihilate and produce a quark
and an antiquark. The quarks will separate, and we can see them in our bubble chamber, fractional
charge and everything.

We can almost see gluons the same way. Some of the time in e+e− annihilation, the qq pair will
bremsstrahlung off a hard gluon. We can detect this thing by its collisions with nuclei. It may be
that the hard gluon would pick up a very soft gluon and bind it into a color–singlet state, but we
won’t be able to tell the difference between a massless gluon and a glueball with a mass of 10−30

GeV.
I hope I have convinced you with this little fantasy that it is possible to see confined quarks.

Of course, what makes the quarks visible is the same thing that makes the toy world so different
from our own. The ratio of Λ to the quark mass mq is very small; on the natural scale of the QCD
interactions, the quarks are very heavy.

Now let’s see what happens as we increase the ratio Λ/mq to make the world look more like our
own. The first thing that happens as we increase Λ in that confinement effects become measurable
in the laboratory, but the microscopic properties are essentially the same as in the toy world. A
turning point of sorts occurs for Λ of the order of 1 MeV, so confinement effects are important at
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atomic distances. At nuclear distances, confinement is still irrelevant, so particle physics is still
well described by QCD perturbation theory.

A more important change occurs for Λ ' αsmq. At this point confinement effects become
important inside hadrons. This is the smallest value of Λ/mq for which we could reasonably say
that the quarks are unobservable, because here we cannot pull quarks far enough outside hadrons to
see them in a nonhadronic environment. Still, we would be on shaky ground because the structure
of elementary particles is still beautifully described by the nonrelativistic quark model. We just
have to include a confining term in our quark–quark force law. By this time, it makes sense to
talk about isospin as an appropriate symmetry, because Λ is much larger than the few–MeV mass
difference between the d and u quarks. The η is now measurably heavier than the π.

Perhaps the next most important landmark is the point at which the pion becomes the lightest
particle in the theory. The hadrons are still qualitatively described by a nonrelativistic bound–state
picture, but now the spin–spin interactions that split the pion from the p are becoming important
and bring down the pion mass. Eventually, the pion becomes lighter than the lowest–mass glueball
state. The general downward trend of the pion mass as mq/Λ decreases is correctly predicted by
the quark model, but for Λ > mq, the pion is really a rather highly relativistic bound state. In fact,
we believe that as mq goes to zero, the pion mass goes to zero, and the pion becomes the Goldstone
boson associated with the spontaneous breakdown of chiral SU(2) × SU(2) symmetry. This is
related to the fact that for Λ > mq, the proton mass is considerably greater than the sum of the
masses of its constituent quarks. The excess proton mass is the effect of confinement. Essentially,
it is the zero–point energy of quarks confined in a region of size 1/Λ. When mq = 0, the proton
mass is entirely due to this zero–point energy.

A bit further down in mq/Λ, the pion becomes so light that all glueball states are unstable
against decay into pions. By now, the nonrelativistic picture of hadrons has broken down badly.

In our world the pion is by far the lightest particle. The quark mass is negligible compared to
Λ. Our world is not so different from the world in which the quark mass is exactly zero. Certainly
we are much closer to mq = 0 than to the toy world with very small Λ that we considered at the
beginning.

The moral is that the reason that our world doesn’t look like a world of quarks and gluons is
not simply that the quarks are confined, but that the confined u and d quarks are light compared
to Λ.

Despite the fact that our world is very different from the toy world in which the QCD in-
teractions are weak, the simple nonrelativistic quark model still gives a useful description of the
low–lying mesons and baryons. The quark–model picture is a useful complement to the theory of
spontaneously broken chiral symmetry that we will further explore in later chapters. There is a
sense, apparently, in which the u and d quarks do have a mass of a few hundred MeV, ∼ mp/3,
with the s quark about 150 MeV heavier. These are not masses that appear in the renormalized
QCD Lagrangian. They are “constituent quark masses”, which include the effect of confinement,
chiral symmetry breaking, or whatever.

Though its phenomenological success is undeniable, the quark model is still not understood from
first principles. We have no satisfactory way, for example, of understanding the relation between
the picture of the pion as a bound state of quarks with constituent masses and the complementary
picture of the pion as a Goldstone boson. We will have more to say about this important puzzle in
Chapters 5 and 6.
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3.3 Quark Doublets

The quarks were not discovered all at once. In fact, the quark picture of hadrons grew up in the
same period as the SU(2) × U(1) model. In describing the weak interactions of the quarks, I will
adopt a partially historical view in which we assume the SU(2)×U(1) form and imbed the quarks
in it in order of increasing mass. This is not exactly what happened, but it will preserve some of
the flavor of the history without incorporating all of the confusion.

The two lightest quarks are the u and d. They are the major constituents of normal nuclei.
The two left-handed quarks could be put into an SU(2) doublet

ψL =
(
u
d

)
L

(3.3.1)

like the left-handed leptons. The charged–current interactions caused by W± exchange would then
include the β–decay interaction

d→ u+ e− + νe (3.3.2)

This same interaction causes π+ decay, because the ud can annihilate into a W+ and decay into e+νe
or µ+νµ. The electron mode is actually strongly suppressed in π decay because the electron mass
is small compared to the pion mass. The decay is forbidden by angular–momentum conservation in
the limit of zero lepton masses. Because of the 1− γ5 factor in the current, the e+ wants to come
out right-handed and the νe left-handed, which is impossible. The decay takes place because the
e+ mass term allows transitions from right-handed to left-handed e+, but the amplitude is then
suppressed by a factor of me.

(3.3.1) is inadequate to describe the interactions of the strange quark. But with two quarks with
charge −1

3 , it becomes possible to generalize (3.3.1) so that the field that appears in the doublet
with the u quark is a linear combination of d and s.

ψL =
(

u
cos θcd+ sin θcs

)
L

(3.3.3)

where θc is a phenomenologically important parameter called the Cabibbo angle. For a doublet
of the form (3.3.3), the strangeness–conserving processes have strength cos θc while the analogous
processes, in which the d quark is replaced by an s quark so that they are strangeness–changing, have
strength sin θc. Experimentally sin θc ∼ 1

5 , so that strangeness–changing processes are inherently
some 20 times weaker (∼ 1/ sin2 θc) than strangeness–conserving processes.

Another difference in s quark decay is that the process can produce not only leptons but also
light quarks. With these tools, we can understand most of the entries in the particle data book
describing K decays, at least qualitatively.

Things that we cannot understand at the moment include the preponderance of hadronic decays
in various systems over the semileptonic modes that we might expect to have a similar strength.
For example, the rate for Λ → pπ or nπ0 is 103 times larger than for Λ → pe−ν. Apparently
something is enhancing the hadronic decays, probably some complicated strong interaction effect.
The K0

s and K0
L are clearly peculiar. As we will see, these are different coherent combinations of

K0 and K
0.

3.4 GIM and Charm

So far, we have discussed only W± exchange, but if (3.3.3) were the whole story, there would be
decay processes mediated by Z0 exchange as well. For example, the Z0 coupling (from (2.2.21))

sin θc cos θc Z0 dLsL (3.4.1)
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can give rise to the decay
K0
L → µ+µ− (3.4.2)

at a rate comparable to the decay rate for

K+ → µ+νµ (3.4.3)

In fact, (3.4.2) is suppressed by a factor of 10−8!
This is one of the symptoms of a very general problem — the absence of flavor–changing neutral

current effects. The problem is particularly acute in the SU(2)×U(1) theory where there are neutral
current effects in tree approximation, but it is present in almost any theory of the weak interactions.

The problem prompted Glashow, Iliopoulos, and Maiani (GIM) to propose a radical solution, the
existence of a new quark, the charmed quark in an SU(2) doublet with the orthogonal combination
of s and d, so the doublet is

ψ′L =
(

c
cos θc s− sin θc d

)
L

(3.4.4)

Now the Z0 coupling to this doublet precisely cancels the strangeness–changing coupling from the
other doublet. This is easy to see directly. But we can also see it indirectly by rotating ψL and ψ′L
into another so that the Cabibbo mixing is entirely on the c and u fields.

This eliminates (3.4.2) in tree approximation. As we will see in Chapter 10, the problem will
reappear in one loop if the charmed quark is too heavy. The charmed quark had to appear with a
mass of less than a few GeV. And it did! The D+, D0 and Λ+

c have all been observed with just the
right properties. The charmed quark should decay primarily into s because of (3.4.4), and it does.

This was one of the great triumphs of theoretical physics. It made a tidy little world with a
correspondence between quarks and leptons — one light family with u, d, νe, e

− and one heavy
family with c, s, νµ, µ

−. Unfortunately, nature didn’t stop there. The τ− lepton ruined the
correspondence, and it didn’t come as much of as a surprise when a b quark was later discovered.
We now know that there is a t quark. God, I suppose, knows whether there will be any more.
There is some evidence (which we will discuss later) from the total width of the Z that we really
have now seen all the matter particles. We will assume this to be so, and in the next section we
will analyze the SU(2)× U(1) theory for six quarks.

3.5 The Standard Six–Quark Model

We are now ready to embed the quarks in SU(2)×U(1). We will assume that there are six quarks
and no more. To get charged–current weak interactions involving only the left-handed quarks,
we must assume that the left-handed quarks are in doublets while the right-handed quarks are in
singlets, just as for the leptons.

We will write down the most general theory coupling the quark and lepton fields to the Higgs
doublet. Let’s start by inventing a better notation. Call the lepton doublets

LjL =
(
νj
l−j

)
L

(3.5.1)

where j runs from 1 to 3 and labels the fields in a completely arbitrary way. The right-handed
singlets are

l−jR (3.5.2)
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They satisfy

~TLjL =
~τ

2
LjL, SLjL = −1

2
LjL

~T l−jR = 0, SL−jR = −l−jR
. (3.5.3)

The most general SU(2)× U(1) invariant Yukawa coupling of these fields to the Higgs field φ is

− fjkl−jR φ
†LkL + h.c. (3.5.4)

where fjk is a completely arbitrary complex matrix. When φ gets its VEV, (2.7.13), this becomes
the charged–lepton mass term

− fjk
v√
2
l−jR l

−
kL + h.c. (3.5.5)

This doesn’t look like much, but we can use the fact that the kinetic–energy term has separate
SU(3)× U(1) global symmetries for the l−jR and the L−jL. As we discussed in (1.2.45)–(1.2.47), we
can redefine the l−R and L−L so that the mass matrix is real, diagonal, and positive. Thus, quite
generally, the L−L and l−R can be taken to be pure mass eigenstate fields. We have not mentioned
neutrino masses. Later on we will discuss the possibility that neutrinos have a very small mass but
for the moment we will assume they are massless. Then the neutrino fields are all identical, and
the νe, for example, can simply be taken to be the field that is in a doublet with the e−L . Thus, the
theory of leptons described in Chapter 2 is just the most general broken SU(2) × U(1) of the L’s
and φ. Let us then see what is the most general theory of quarks.

Call the left-handed quark doublets

ψjL =
(
Uj
Dj

)
L

(3.5.6)

where Uj are the charge 2
3 fields, and the Dj are the charge −1

3 fields. The right-handed fields are
singlets

UjR and DjR (3.5.7)

The SU(2)× U(1) charges are

~TψjL =
~τ

2
ψjL, SψjL =

1
6
ψjL

~TUjR = ~TDjR = 0

SUjR =
2
3
UjR, SDjR = −1

3
DjR

(3.5.8)

The Yukawa couplings responsible for the charge −1
3 mass is

− gjkDjRφ
†ψkL + h.c. (3.5.9)

When φ develops a VEV, this produces the mass term

−MD
jkDjRDkL + h.c. (3.5.10)

where
MD
jk = gjkv/

√
2 (3.5.11)

It is easy to check that (3.5.9) is invariant under SU(2)× U(1) by comparing (2.7.2) and (3.5.8).
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To construct a Yukawa coupling involving the UjR field, we need to construct a modified Higgs
field with the opposite S value. We define

φ̃ = iτ2φ
∗ (3.5.12)

It is easy to see that (2.7.4) implies

δφ̃ = iεa
τa
2
φ̃− i

2
εφ̃ (3.5.13)

so that
~T φ̃ =

τ

2
φ̃, Sφ̃ = −1

2
φ̃ (3.5.14)

Then we can write the invariant Yukawa coupling

− hjkU jRφ̃†ψkL + h.c. (3.5.15)

Of course, the φ̃ field is constructed so that the neutral element is on top of the doublet

φ̃ =
(
φ0∗

φ−

)
, φ− = −φ+∗ (3.5.16)

Its VEV then produces the U term

−MU
jk U jRUkL + h.c. (3.5.17)

MU
jk = hjkv/

√
2 (3.5.18)

Now we can use the symmetries of the kinetic–energy term to simplify the mass terms. Each
of the three types of quark fields, UR, DR, and ψL can be redefined by an SU(3) × U(1) unitary
transformation. For example, we can redefine the fields so that the MU mass term is diagonal

−MU
jk U jRUkL (3.5.19)

MU =

mu 0 0
0 mc 0
0 0 mt

 (3.5.20)

But now we cannot diagonalize MD because we have already fixed the ψL field. We still have
freedom to redefine the DR fields so that we can write the D mass term as

−MD
jl V

†
lkDjRDkL + h.c. (3.5.21)

MD =

md 0 0
0 ms 0
0 0 mb

 (3.5.22)

and
V † is a unitary matrix (3.5.23)

The DjR are now simply mass eigenstate fields, but the DkL are related to mass eigenstates by the
unitary matrix V †.  ds

b


L

= V †DL (3.5.24)
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Thus

DL = V

 ds
b


L

(3.5.25)

In terms of the mass eigenstate fields, the quark charged current is then

(u c t ) γµ(1 + γ5)V

 ds
b

 (3.5.26)

The unitary matrix V is all the information that is left of the general mass matrices we started
with, except for the quark masses themselves.

A general unitary matrix V has nine parameters. However, we are still not finished redefining
fields. We can still redefine the phase of any mass eigenstate field. This means that we can multiply
V on either side by a diagonal unitary matrix. Thus, we can eliminate some phases in V . Only five
of the six phases in the two diagonal matrices are relevant, so we are left with four real parameters
in V . To see how this works explicitly, let us repeat the analysis first performed by Kobayashi and
Maskawa.

We can write a general unitary 3× 3 matrix in a kind of complex Euler angle parametrization
as follows:

V = V2V1V3 (3.5.27)

where matrices have the form

V1 =

X X 0
X X 0
0 0 X

 (3.5.28)

V2, 3 =

X 0 0
0 X X
0 X X

 (3.5.29)

We can show that by making diagonal phase redefinitions, we can make V2 and V3 real and write
V1 in a very simple form. First, let us show that any 2× 2 unitary matrix can be made completely
real. A unitary 2× 2 matrix must have the form

w =
(
εc εηs
−ρs ρηc

)
(3.5.30)

where |ε| = |η| = |ρ| = 1, c = cos θ, and s = sin θ. Then(
ε∗ 0
0 ρ∗

)
w

(
1 0
0 η∗

)
=
(
c s
−s c

)
(3.5.31)

Thus, we can redefine

V → DVD′ = DV2D
′′D′′∗V1D

′′ ′∗D′′ ′VsD
′ = V ′2V

′
1V
′

3 (3.5.32)

where D, D′ . . . are diagonal unitary matrices, and

V ′2 =

 1 0 0
0 c2 −s2

0 s2 c2

 V ′3 =

 1 0 0
0 c3 s3

0 −s3 c3

 (3.5.33)
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with cj = cos θj , sj = sin θj . V ′1 is still an arbitrary matrix with the block diagonal form (3.5.28).
We can still further redefine V by multiplying on either side by matrices of the formα 0 0

0 β 0
0 0 β

 |α| = |β| = 1 (3.5.34)

which commute with V ′2 and V ′3 . It is easy to see that using (3.5.34), we can redefine V ′1 to have
the form

V ′1 =

 c1 s1 0
−s1 c1 0

0 0 eiδ

 (3.5.35)

(3.5.32), (3.5.33), and (3.5.35) define the Kobayashi-Maskawa (KM) matrix. The interesting feature
is the appearance of a single nontrivial phase δ. As we will see, if δ 6= 0, the theory violates CP.

In one sense, the six–quark model represents a retreat from the level of understanding of the
nature of the weak current in the four–quark model. In a four–quark model, there is automatically
a relation among the strengths of strangeness–conserving quark interactions, strangeness–violating
interactions, and the µ decay interaction, just because sin2 θc + cos2 θc = 1. This relation is called
Cabibbo universality, and it is observed to be rather well satisfied. In the six–quark language, this
means that s3 is observed to be small. We don’t know why it should be so small. But then, we
know almost nothing about why the quark masses and angles are what they are.

Note that the six–quark KM model, like the four–quark GIM model that it generalizes, has no
flavor–changing neutral currents in tree approximation. This is simply because T3 and S commute
with any matrix in flavor space. Thus, in any basis, the Z0 couples to the quark neutral current
(with x = sin2 θ)

e

sin θ cos θ

∑
j

{(
1
2
− 2

3
x

)
U jLγ

µUjL +
(
−1

2
+

1
3
x

)
DjLγ

µDjL

−2
3
xU jRγ

µUjR +
1
3
xDjRγ

µDjR

}
.

(3.5.36)

It is only the mismatch between the unitary matrices required to diagonalize MU and MD that
produces flavor–changing effects. And these effects show up only in the charged–current weak
interactions that involve U and D simultaneously.

In general, the constraint that neutral currents will not change flavor in tree approximation can
be stated precisely as follows: Every set of fields whose members mix among themselves must have
the same values of T3 and S.

There is no universally used convention for the angles in the KM matrix. Nor does everyone
agree about where to put the nontrivial phase. However, everyone agrees about the form of the
current in (3.5.26). The matrix element Vjk is the coefficient of the term in the current with charged
2/3 quark field j and charged −1/3 quark field k. Thus in the convention and obvious basis of
(3.5.26), V has the form

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (3.5.37)

and at least the meaning of the absolute value of the matrix elements is unambiguous.
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3.6 CP Violation

The unremovable phase in the KM matrix is a signal of CP violation. A CP transformation takes
a simple form in a special representation of the γ matrices called a Majorana representation. A
Majorana representation is one in which the γ matrices are imaginary. For example, we can take

γ0 = σ2, γ1 = iσ2τ1

γ2 = iσ1, γ3 = iσ2τ3

(3.6.1)

In this representation, charge conjugation is trivial, just complex conjugation.
Then the CP transformation is

ψ(~x, t)→ γ0ψ∗(−~x, t) = −ψT (−~x, t)

ψ(~x, t)→ ψT (−~x, t)
(3.6.2)

Thus, it just interchanges ψ and ψ with a minus sign to make up for Fermi statistics.
A kinetic–energy term, even for a parity–violating state like a neutrino is invariant under (3.6.2).

This is why CP is interesting.
iψ/∂P+ψ (3.6.3)

is not invariant under C or P separately. But under (3.6.2), because ~γP+ is symmetric and γ0P+

is antisymmetric in a Majorana basis, (3.6.3) transforms into itself plus a total divergence.
A mass term or gauge coupling can be invariant under (3.6.2) if the masses and couplings are

real. In particular, consider the coupling of the W+ to quarks. It has the form

gU/W+P+D + g∗D/W−P+U (3.6.4)

The CP operation interchanges the two terms (with appropriate interchange of the W+ fields),
except that g and g∗ are not interchanged. Thus, CP is a symmetry only if there is some basis in
which all the couplings (and masses) are real. If there were only the four quarks u, d, c and s, the
SU(2) × U(1) interactions could not violate CP . As we have seen, we can find a basis in which
masses and couplings are real. The important result of Kobayashi and Maskawa was that with
six quarks or more, the SU(2) × U(1) interactions can violate CP . It is, of course, an important
experimental question whether the KM phase δ is in fact the source of observed CP violation. We
will discuss this question in detail when we study K0 physics.

Problems

3-1. Suppose the t quark didn’t exist. How could you build a five-quark SU(2)×U(1) theory?
What phenomenological difficulties would such a theory face if we did not know that the t existed?

3-2. Find the number of real angles and unremovable phases in the 4× 4 generalization of the
KM matrix.

3-3. Find a copy of the most recent Particle Physics Booklet from the particle data group, or
the Review of Particle Properties. Look through the summary tables for Gauge and Higgs bosons,
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Mesons, and Baryons. Identify each exclusive3 decay mode with a branching ratio of more than
2% that is produced by the electroweak interactions. Be prepared to talk about each such mode
and draw a representative Feynman graph that contributes to the decay process.

3-4. Construct an alternative SU(2) × U(1) model of the weak interactions of the u, d, s
and c quarks that involves a pair of heavy (unobserved) quarks, h and l, with charges 5

3 and −4
3 ,

respectively. One linear combination of the left-handed light-quark fields is in an SU(2) doublet:

ψL =
(
U1L

D1L

)
The other is an SU(2) quartet with the h and l:

XL =


hL
U2L

D2L

lL


All right-handed fields are SU(2) singlets. Find TaX and SX. What Higgs fields are required to
give mass to these quarks. Can the SU(2)× U(1) interactions in this theory violate CP? Explain.

3An exclusive decay is one that involves a definite final state, not something like Z → ΛX, which refers to an
inclusive decay into Λ plus anything.



Chapter 4

— SU(3) and Light Hadron
Semileptonic Decays

4.1 Weak Decays of Light Hadrons

In Chapters 2 and 3, I have written down the standard SU(3) × SU(2) × U(1) model of the
strong and electroweak (short for weak and electromagnetic) interactions of leptons and quarks. To
understand the theory fully, we need to understand two more things: hadrons and loops. That is,
we must understand how the weak interactions of quarks give rise to those of the hadrons. We have
seen that they work qualitatively. We would like to say something quantitative. Then we would
like to see the renormalizability of the theory in action by computing finite radiative corrections.

We will begin by using SU(3) symmetry to analyze some weak decays of hadrons. In the process,
we will determine some of the parameters in the KM matrix.

Historically, the weak decays of the hadrons are divided into three classes: leptonic decays,
which have only leptons (no hadrons) in the final state, such as π+ → µ+νµ or KL → µ+µ−;
semileptonic decays, which have both leptons and hadrons in the final state, such as K+ → π0µ+νµ
or n → pe− νe; and nonleptonic decays, which have no leptons (only hadrons) in the final state,
such as Ks → π+π− or Λ→ pπ−.

From our modern vantage point, this division misses the point. the important division is
between those decays that involve leptons (which are produced by four–fermion operators involving
two lepton fields and two quark fields) and the nonleptonic decays (produced by four–fermion
operators involving four quark fields).

4.2 Isospin and the Determination of Vud

The piece of the quark charged current involving the light u and d quarks is

Vud(jµ + jµ5 ) = Vuduγ
µ(1 + γ5)d. (4.2.1)

This is built out of the vector and axial isospin currents

jµa = ψγµ
τa
2
ψ (4.2.2)

and
jµ5a = ψγµγ5

τa
2
ψ, (4.2.3)

63
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where ψ is the isospin doublet

ψ =
(
u
d

)
. (4.2.4)

Because the u− d quark mass difference is very small compared to Λ, the isospin charges

Qa =
∫
j0
a(x) d3x, (4.2.5)

almost commute with the Hamiltonian. Isospin is broken by the electromagnetic (and weak) in-
teractions and by the u− d mass difference, but it is observed to be an excellent symmetry of the
strong interactions.

Of course, we believe that the u and d quark masses themselves are not much bigger than the
mass differences. For the moment, we will bypass them because they are not realized in the usual
way but are spontaneously broken.

Anyway, we can use symmetry arguments to determine the matrix elements of the Qa, and this
in turn should tell us about matrix elements of the currents (4.2.2).

So we would like to identify processes in which only the vector current contributes. We must
look for a decay involving leptons, because the light quarks only decay into leptons and, besides, a
purely hadronic decay would involve the matrix element of a product and two quark currents. The
axial current contribution can be eliminated in a special case. If the decaying hadron A has spin
zero and decays into another spinless hadron B with the same parity, in the same isomultiplet, the
amplitude for decay is

Vud〈B|jµ + jµ5 |A〉 lµ ·
GF√

2
, (4.2.6)

where lµ is the lepton matrix element. But the matrix element of jµ5 vanishes because of the parity
invariance of strong interaction! There is no way to form an axial vector of only the two hadron
momenta.

Thus, the matrix element of interest is that of jµ. If the momenta of A and B are p and p′, and
we define the momentum transfer

qµ = pµ − p′µ, (4.2.7)

we can write the matrix element

〈B, p′|jµ(0)|A, p〉 = C(q2)(pµ + p′µ) +D(q2)qµ. (4.2.8)

This form follows simply from Lorentz invariance. The invariant functions C and D also depend, in
general, on p2 and p′2, but since these are fixed at the particle masses, we suppress this dependence.

We want to use symmetry arguments to say something about C and D. We will, therefore, do
a rather peculiar thing. We will look at the matrix element in the limit of exact isospin symmetry.
The reason that this is peculiar is that in this limit A and B are degenerate, since they are in the
same isospin multiplet. Thus, A doesn’t decay into B in this limit! Nevertheless, we will try to say
something about C and D in this limit, the extrapolate back to the real world, assuming that C
and D don’t change very much. Then we can use the real observed masses and calculate the decay
rate.

In the symmetry limit, the current jµ is conserved. Thus qµ, contracted with (4.2.8) must
vanish, and therefore we don’t have to worry about D because

q2D(q2) = 0 ⇒ D(q2) = 0 for q2 6= 0. (4.2.9)
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To get a handle on C, we note that the matrix element of the charge Qa between A and B is
completely determined. Since A and B are in the same multiplet, we can write

|A, p〉 = |j, m, p〉

|B, p′〉 = |j, m′, p′〉,
(4.2.10)

where j and m(m′) are the isospin and Q3 values. In general

Qa|j, m, p〉 = |j, m′, p〉(Ta)m′m, (4.2.11)

where Ta are the isospin matrices for isospin j. In particular, we are interested in the raising
operator

Q+ = Q1 + iQ2 =
∫
j0(x) d3x =

∫
u†(x)d(x) d3x, (4.2.12)

which satisfies
Q+|j, m, p〉 =

√
(j −m)(j +m+ 1) |j, m+ 1, p〉, (4.2.13)

so m′ in (4.2.10) is m + 1 (this is obvious — the charged–current weak interactions change the
charge by one). Thus

〈B, p′|Q+|A, p〉 =
√

(j −m)(j +m+ 1) (2π)32p0δ(3)(~p− ~p ′), (4.2.14)

for states with standard invariant normalization.
Now let us calculate (4.2.14) a different way:

〈B, p′|j0(x)|A, p〉 = eix(p′−p)〈B, p′|j0(0)|A, p〉, (4.2.15)

from translation invariance. Thus, from (4.2.8)—(4.2.9)

〈B, p′|Q+|A, p〉 = C(0)2p0(2π)3δ(3)(~p− ~p ′). (4.2.16)

Note, as expected, the time dependence of Q+ goes away in the symmetry limit because p′0 = p0

when ~p ′ = ~p. Now we can compare (4.2.14) and (4.2.16) and find

C(0) =
√

(j −m)(j +m+ 1). (4.2.17)

Thus, we know C(0) in the symmetry limit. This should be good enough to give an excellent
approximation to the decay rate. In first approximation, we will just assume that C(q) is constant
and equal to its symmetry value (4.2.17). The difference between C(0) in the real world and in the
symmetric world should not be greater than ∆m/Λ, where ∆m is the u-d mass difference, a couple
of MeV, while Λ is a few hundred MeV.1 The q2 dependence of C should likewise be determined by
Λ, while the q2 in the decay is less than the A−B mass difference squared, of the order of (∆m)2.

Of course, if we want very accurate predictions, we can do better by modeling (or measuring)
the q2 dependence and the symmetry–breaking effects. We could also include the effect of photon
exchange and other radiative corrections (now that we have a renormalizable theory). So a decay
such as this can be characterized very accurately in terms of the single parameter Vud.

1In fact, the contribution from the u-d mass difference is even smaller because of the Ademollo-Gatto theorem,
but we will discuss this later when we deal with strangeness changing currents.
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There are many such process. In particle physics, the decay

π+ → π0e+νe (4.2.18)

has been seen. In nuclear physics, there are lots of them. For example

14O→ 14N e+νe

34Cl→ 34S e+νe

26Al→ 26Mg e+νe.

(4.2.19)

Since we are just using symmetry arguments to get our prediction, we don’t mind that the hadrons
are complex nuclei instead of nice simple “elementary particles”.

In fact, the most accurate data come from the nuclear decays and give, after suitable corrections,
the value shown in the particle data book.

Vud = 0.9747 to 0.9759

So we know at least one of the KM parameters rather well.

4.3 fπ

Having determined Vud by studying the vector part of (4.2.1), we can proceed to look at the simplest
process involving the axial vector part. This is π decay

π− → µ−νµ or e−νe, (4.3.1)

with amplitude

〈0|jµ5 |π
−〉 lµ

VudGF√
2

. (4.3.2)

Only the axial current contributes because of parity. We are not smart enough to calculate the
hadronic matrix element, but we can parametrize it:

〈0|jµ5 |π
−〉 = ifπp

µ, (4.3.3)

where pµ is the π momentum, the current is

jµ5 = uγµγ5d, (4.3.4)

and fπ is a constant with dimensions of mass. The π decay rate can then be calculated in terms of
fπ so that fπ can be determined from the observed rate. It is

fπ ' 0.93mπ. (4.3.5)

Be warned that there is another perfectly reasonable definition of fπ that appears in the literature,
in terms of the self-adjoint isospin currents and fields. It is

〈0|jµ5a|πb〉 = iδabFπp
µ. (4.3.6)
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I use capital F to distinguish it from (4.3.3), but this convention is not consistently used. The
literature is random. The relation between these two definitions is

ifπp
µ =

〈
0
∣∣∣∣ jµ51 + ijµ52

∣∣∣∣ π1 − iπ2√
2

〉
= i
√

2Fπpµ. (4.3.7)

Thus
Fπ = fπ/

√
2 ' 93 MeV. (4.3.8)

Notice that if we tried to integrate the current in (4.3.3) over space to get a charge, we would
have the charge acting on the vacuum to produce not zero, but a zero–momentum pion state. If this
situation persists in the symmetry limit mu = md = 0, it is an indication of spontaneous symmetry
breaking, since the charge doesn’t annihilate the vacuum state. Another way to see this is to note
that in the symmetry limit, the jµ5 current is conserved. Thus, if we contract (4.3.3) with pµ, we
must get zero, so

fπp
2 = 0 = fπm

2
π. (4.3.9)

Either fπ vanishes, or m2
π = 0 and the pion is the Goldstone boson associated with spontaneous

breakdown of the chiral isospin symmetry. We believe that it is the latter and that our world is
very close to a world with a Goldstone pion.

4.4 Strangeness Changing Currents

Now that we have determined the coefficient of the piece of the quark current involving u and d
quarks, we turn our attention to the next lightest quark and look for the term

Vusuγ
µ(1 + γ5)s. (4.4.1)

We can measure Vus (perhaps) by looking at the strangeness–changing semileptonic decays of
strange particles (since the current destroys an s quark and replaces it by a u quark).

The simplest such process that we can hope to calculate from symmetry principles is the Kl3

decays:

K− → π0e−νe

K− → π0µ−νµ

K0
L → π+e−νe

K0
L → π+µ−νµ

. (4.4.2)

We might hope to calculate these just as we calculated π− → π0e−νe. The amplitude for K− decay,
for example, is

〈π0|jµ|K−〉lµ · VusGF /
√

2, (4.4.3)

where jµ is jµ = uγµs. The charge associated with jµ is a generator of SU(3), which is a good
symmetry in the limit that the u, d, and s quarks are all degenerate. As in (4.2.8), we can write

〈π0|jµ|K−〉 = f+(q2)(pµπ + pµK) + f−(q2)(pµK − p
µ
π), (4.4.4)

where qµ = pµK − pµπ. As before, in the symmetry limit, we can argue that f−(q2) = 0, and we can
calculate f+(0) from symmetry arguments. Then if we ignore the symmetry breaking and the q2
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dependence of f+, we can calculate the decay rate and compare with experiment. This determines
Vus. The result is 0.216 ± .003, as calculated by R. E. Schrock and L. L. Wang (Phys. Rev. Lett.
41:1692–1695, 1978).

We may not believe this result! SU(3) symmetry is not as good as SU(2). Furthermore, SU(3)
breaking in the pseudoscalar meson sector seems to be especially severe. The K-π mass difference
is more than twice as large as the π mass. However, the situation is not quite so bad as it seems.
As we will see later, the large K-π mass difference is a consequence of the fact that both the π and
the K are almost Goldstone bosons — it is the difference in the squared masses, m2

K −m2
π that is

proportional to the SU(3) breaking quark mass difference, ms −md (or ms −mu). Furthermore,
the Ademollo-Gatto theorem2 implies that the symmetry breaking effect on the matrix elements of
the current is actually quadratic in the symmetry breaking — the linear terms cancel. The physics
of the Ademollo-Gatto theorem is that any symmetry breaking that effects the vector current also
effects the derivative terms in the Lagrangian. For symmetry breaking due to the quark masses,
the first order effect on the derivative terms changes the wave-function renormalization of the fields
in the same way it changes the currents, so the symmetry breaking to this order can be removed by
redefining the fields and there is no physical effect in first order. We will be able to see this easily
later, in chapter 6, when we explicitly write down the chiral Lagrangian that describes the πs and
Ks.

It worth looking at other places to get a handle on Vus. SU(3) breaking in the baryon family,
the octet with spin−1

2 , seems much less violent. Furthermore, there are several semileptonic decays
we can look at.

n → pe−νe

Λ → pe−νe or pµ−νµ

Σ+ → Λe+νe

Σ− → ne−νe or nµ−νµ or Λe−νe

Ξ− → Λe−νe or Λµ−νµ

. (4.4.5)

This looks like a good system to study.

4.5 PT Invariance

We are thus led to consider the matrix element of the charged weak current between baryon states.
Since both the vector and axial vector parts contribute, we must evaluate both

〈B′, p′, s′|jµ|B, p, s〉 = u(p′, s′) [f1γ
µ − if2σ

µνqν + f3q
µ]u(p, s) (4.5.1)

and

〈B′, p′, s′|jµ5 |B, p, s〉 = u(p′, s′) [g1γ
µγ5 − ig2σ

µνγ5qν + g3γ5q
µ]u(p, s) (4.5.2)

where fi and gi depend only on q2 = (p − p′)2. These forms follow from Lorentz invariance and
parity invariance of the strong interactions. The other tensor forms such as pµ+p′ µ can be reduced

2M. Ademollo and R. Gatto, Phys. Rev. Lett. 13 264, 1964.
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to these using the Dirac algebra. For example, when between u(p′, s′) and u(p, s)

pµ + p′ µ = 1
2{/p, γ

µ}+ 1
2{/p
′, γµ}

= γµ/p+ 1
2 [/p, γµ] + /p′γµ − 1

2 [/p′, γµ]

= (m+m′)γµ + iσµνqν

. (4.5.3)

Note that the spin polarization vectors sµ and s′ µ are not real physical objects. The physical
description of the spin state of the system is completely contained in the spinors u(p, s) and
u(p′, s′). So no sµ’s appear in the matrix element, and the invariant functions fi and gi only
depend on q2, not p · s′, etc. The spin polarization vectors sµ and s′ µ are just convenient devices
invented to describe the spinors.

Now let us use the fact that the strong interactions are invariant under time reversal invariance
to show that fi and gi are all real. To simplify our lives, we will actually use invariance under PT .
This is simpler because it involves changing the sign of all the coordinates, so we do not have to
keep separate track of the time and space components of vectors. They all do the same thing.

Suppose we PT transform a matrix element (4.5.1):

〈B′, p′, s′|jµ(5)|B, p, s〉
PT = ±〈B, p, −s|jµ†(5)|B

′, p′, −s′〉

= ±〈B′, p′, −s′|jµ(5)|B, p, −s〉
∗
. (4.5.4)

This needs some explanation. The PT is antiunitary, so it interchanges bras and kets and takes
operators into their adjoints. The +(−) sign for the vector (axial) current is not obvious, but we
will come back to it. T changes the signs of momenta and spins, but then P changes the momenta
back.

To see what PT does to spinor fields, consider the Dirac equation in a Majorana basis:

(i/∂ −m)ψ(x) = 0. (4.5.5)

We expect the PT–transformed field to be proportional to ψ∗(−x). In this basis ∗ doesn’t do
much because the γ’s are imaginary, but to change the sign of x. We also need something that
anticommutes with the γµ’s. This just γ5, so

ψ(x)PT → γ5ψ
∗(−x). (4.5.6)

The currents then transform as

jµ(0) = ψ1γ
µψ2 → ψ†2 [γ0γµ]Tψ1 = ψ2γ

µψ1 = jµ(0)∗ (4.5.7)

and
jµ5 (0) = ψ1γ

µγ5ψ2 → ψ†2 [γ0γµγ5]Tψ1 = −ψ2γ
µγ5ψ1 = jµ5 (0)∗. (4.5.8)

Note that there is no (−) sign due to Fermi statistics when we interchange 1 and 2, because this is
done not by us, but by the antiunitary transformation that reverses all operator products.

Now the spinors describing the PT–transformed states are obtained similarly:

u(p, −s) = γ5u(p, s)∗. (4.5.9)

Notice that
(/p−m)u(p, −s) = 0 (4.5.10)

and the γ5 changes the spin because in anticommutes with /s. Putting all this together, we find
(4.5.1)–(4.5.2), (4.5.4), and (4.5.7)–(4.5.9) yield the desired result that fi and gi are real.
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4.6 Second Class Currents

We can use the results of Section 4.5 to eliminate two of the coefficients in the matrix elements
(4.5.1)–(4.5.2), at least in the SU(3) symmetry limit. First, let’s consider the matrix element of a
diagonal current

jµ(5) = ψγµ(γ5)ψ

ψ = u, d, or s
, (4.6.1)

with B′ = B, since the currents do not change quark flavors. Note that both the vector and axial
currents are Hermitian. Thus

〈B, p′, s′ |jµ(5)|B, p, s〉 = 〈B, p, s |jµ(5)|B, p
′, s′〉∗. (4.6.2)

These can only be satisfied if
f3 = g2 = 0. (4.6.3)

The other terms are all allowed, f1 and f2 obviously so, since they are just like the electromagnetic
form factors.

Now for the off–diagonal currents, the situation is the same in the symmetry limit. For example,
consider

uγµ(γ5)d, (4.6.4)

which is a linear combination of isospin currents. But the diagonal isospin current

jµ(5)3 = ψγµ(γ5)
τ3

2
ψ (4.6.5)

has vanishing f3 (g2) by the preceding argument. If isospin is a good symmetry, (4.6.4) must also
have f3 and g2 equal to zero. Similarly

dγµ(γ5)s (4.6.6)

gives vanishing f3 (g2) in the limit that the SU(2) that mixes d and s (it is called U–spin) is a good
symmetry. And

uγµ(γ5)s (4.6.7)

has f3 (g2) = 0 when the SU(2) that mixes u and s (V –spin) is a good symmetry.
The f3 and g2 terms in the matrix elements of the off–diagonal currents are called “second–class

currents” for obscure historical reasons.

4.7 The Goldberger-Treiman Relation

In the symmetry limit, the currents are conserved, so if we contract (4.5.1)–(4.5.2) with qµ, we
must get zero. For (4.5.1), current conservation is automatic if f3 = 0, so it gives us nothing new.
We already knew that f3 = 0 in the symmetry limit. But (4.5.2) gives a peculiar relation

(m+m′)g1(q2) = q2g3(q2). (4.7.1)

It is peculiar because of the explicit power of q2 on the RHS. Either g1 goes to zero as q2 → 0 or
g3(q2) has a pole. To be specific, let the current be the axial current in neutron decay,

jµ5 = uγµγ5d. (4.7.2)
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We have repeatedly argued that because the u and d quark masses are very small compared to Λ,
this current is approximately conserved. Thus, g1(0) in the symmetric world should be very close
to g1(q2) measured at very small momenta (q2 ' m2

e) in neutron decay in the real world. Then
g1(0) ' −gA ' 1.25. We therefore believe that in the symmetric world, g3(q2) has a pole. In fact,
this is another signal of spontaneous symmetry breaking. The pole is due to the process shown in
Figure 4–1,

..............................................................................
................................................................................................................................................................................................................................................................ .............. .............................................................................. ..............

....................................................

....................................................

P N

π−
×

Figure 4-1:

where × indicates the current annihilating the π−. This diagram contributes

u(p′, s′)
qµ

q2
fπ
√

2 gπNNu(p, s) (4.7.3)

to the matrix element of the axial vector current. So it contributes the pole term to g3(q2).
Comparing (4.7.1) and (4.7.3), we find

mNgA =
fπgπNN√

2
= FπgπNN . (4.7.4)

This is the Goldberger-Treiman relation again, now in a more sophisticated version including
strong–interactions effects in gA, the renormalization of the axial vector current (compare (2.6.25)).

4.8 SU(3)−D and F

Let us summarize what we know about the parameters in semileptonic baryon decay. The term
f1(0) can be calculated from first principles similar to those used in Section 4.2. Furthermore,
f1(q2) and f2(q2) can be related to the electromagnetic form factors in the SU(3) symmetry limit.
The principle here is not really different from the general discussion that follows, but it is simpler
to say in this case, so we will illustrate it separately. The electromagnetic current can be written
in terms of the SU(3) currents as

jµEM = jµ3 +
1√
3
jµ8 . (4.8.1)

The jµ3 part is an isospin partner of the current we are actually interested in:

jµ = jµ1 + ijµ2 = uγµd. (4.8.2)

So we can use isospin considerations to show

〈P |jµ|N〉 = 〈P |jµEM |P 〉 − 〈N |j
µ
EM |N〉. (4.8.3)

Thus, the matrix element of interest in vector–current weak interactions is determined by the
matrix element of the electromagnetic current. This relation was noticed long ago by Feynman
and Gell-Mann. It was very important historically because it was a clue to the current–current
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structure of the weak interactions. In an analogous way we can use V –spin arguments to relate the
matrix elements of the strangeness changing current uγµs to the electromagnetic current matrix
elements.

Of the functions gi(q2), we can safely ignore g2(q2) because it vanishes in the SU(3) symmetry
limit. g3(q2) can be calculated in terms of g1(q2) in the chiral symmetry limit (4.7.3). However, we
should not trust the pole at q2 = 0. It is due to Goldstone–boson exchange, as shown by Figure
4–1. But in the real world, the lightest hadrons are the π and K, so we might expect the q−2 to be
replaced by (q2 −m2

π)−1. Because of the rapid q2 dependence of the pole, there is a big difference
between a pole at q2 = 0 and a pole at q2 = m2

π. When we discuss nonlinear chiral Lagrangians
in the next section, we will learn how to include chiral symmetry–breaking (and SU(3) breaking)
effects in a systematic way. For now, we can ignore the g3 term completely, so long as we stick to
decays with electrons in the final state. This is a good approximation because the contribution of
the g3 term is proportional to qµlµ, where lµ is the matrix element of the leptonic current in (4.2.6).
But the divergence of the electron current is proportional to me, which is very small.

Finally, we can use SU(3) symmetry to calculate g1(q2) for all the baryons in terms of just two
functions. To see this, notice that the currents and the baryon states in the matrix element

〈B′|jµ|B〉 (4.8.4)

are all SU(3) octets. There are only two ways to put three octets together in an SU(3) invariant
way.

The SU(3) invariant couplings of octets are very easy to write down in a matrix notation. The
quark triplet

ψ =

ud
s

 (4.8.5)

act like a column vector under SU(3) transformations. The conjugate fields

ψ = (u, d, s) (4.8.6)

act like a row vector. We can put these together to form a matrix ψψ that contains both SU(3)
singlet and octet pieces. We can get rid of the singlet part by making it traceless.

ψψ − 1
3Itr (ψψ) ≡M =

 (2uu− dd− ss)/3 ud us
du (−uu+ 2dd− ss)/3 ds
su sd (−uu− dd+ 2ss)/3



∝

π0/
√

2 + η/
√

6 π+ K+

π− −π0/
√

2 + η/
√

6 K0

K− K0 −2η/
√

6



, (4.8.7)

where we have identified the quark wave functions with the appropriate pseudoscalar mesons. Note
that

π0 = (uu− dd)/
√

2 , η = (uu+ dd− 2ss)/
√

6 . (4.8.8)

In (4.8.5)–(4.8.8) we are ignoring all Dirac indices and coordinate dependence; this matrix notation
is just a way of keeping track of the SU(3) properties.
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M is a pseudoscalar meson wave function. We can find an octet baryon wave function in two
ways. The simplest is just to replace each meson in (4.8.7) with the baryon with the same isospin
and hypercharge: η → Λ, π− → Σ−, K+ → P , and so forth. Alternatively, we can construct quark
wave functions by replacing ψ by

(ds− sd, su− us, ud− du), (4.8.9)

which also behaves like a row vector. Either way, we find a baryon matrix

B =

Σ0/
√

2 + Λ/
√

6 Σ+ P
Σ− −Σ0/

√
2 + Λ/

√
6 N

Ξ− Ξ0 −2Λ/
√

6

 . (4.8.10)

Note that the meson matrix is Hermitian in the sense that if we transpose it and charge conju-
gate, we get the same states back again. But the baryon matrix is not Hermitian because charge
conjugation does not give back the same states; it changes baryons to antibaryons.

To build an SU(3) invariant out of these matrices, we just saturate all the indices by taking
traces of products. For example, the SU(3) invariant meson–baryon coupling

〈B′|MB〉 (4.8.11)

is proportional to the matrices M and B and to the Hermitian conjugate matrix B′ (because B′

appears in a bra). There are two different ways of combining these three matrices to form an SU(3)
singlet:

tr MBB′ or tr MB′B. (4.8.12)

These are conventionally combined into combinations involving the commutator and anticommu-
tator of two of the matrices and called F and D, so that

〈B′|MB〉 = Dtr
(
M{B, B′}

)
+ F tr

(
M [B, B′]

)
, (4.8.13)

up to conventional normalization. The reason for the names is that the F coupling is proportional
to the structure constant fabc while the D coupling is proportional to the symmetric invariant
tensor dabc = 2tr (Ta{Tb, Tc}).

Similarly, if we write a current in an SU(3) notation in terms of a traceless 3× 3 matrix T such
that

jµ(5) = ψγµ(γ5)Tψ, (4.8.14)

then the SU(3) invariant matrix element is

〈B′|jµ5 |B〉 = Dtr
(
T{B, B′}

)
+ F tr

(
T [B,B′]

)
. (4.8.15)

All the spinors, momentum dependence, and the rest of the matrix elements like (4.5.1)–(4.5.2) are
contained in D and F . All the particle and current labels are in the traces. Thus, this enables us
to relate the invariants (for example, g1) in one matrix element to those in another.

Let us illustrate its use by explicitly writing out (4.8.15) for the current of interest in the
charged–current weak interactions with

T =

 0 Vud Vus
0 0 0
0 0 0

 . (4.8.16)
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If we explicitly evaluate (4.8.15) using (4.8.10) and its Hermitian conjugate B (we will drop the
prime because B′ always appears barred because it is in a bra), we get

F

{
Vud

[√
2Σ0Σ− −

√
2Σ+Σ0 + PN − Ξ0Ξ−

]
+Vus

[√
1/2Σ0Ξ− +

√
3/2ΛΞ− + Σ+Ξ0

−
√

1/2Σ0Ξ− −
√

3/2PΛ−NΣ−
]}

+D
{
Vud

[√
2/3Σ+Λ + PN + Ξ0Ξ−

]
+Vus

[√
1/2Σ0Ξ− −

√
1/6ΛΞ−

+
√

1/2PΣ0 −
√

1/6PΛ +NΣ−
]}

. (4.8.17)

Notice the F term for the Vud current is just an isospin raising–operator matrix element.
As we have discussed above, the f1 and f2 terms are very well constrained because they are

related to the electromagnetic current associated with

T =

 2
3 0 0
0 −1

3 0
0 0 −1

3

 . (4.8.18)

The axial vector current is not so well determined. One combination that is very well measured is
gA, which appears in neutron decay. Thus

Vud(D + F ) = g1N→P = −gA ' 1.25. (4.8.19)

Only the ratio D/F for the axial vector current remains to be determined. This can be fit to all
the semileptonic baryon decay rates. This also, of course, determined the KM parameter Vus. This
is where the value in your particle data book comes from.

Vus = 0.218 to 0.224 (4.8.20)

Problems

4-1. Calculate the rate for the decay K+ → π0e+νe in terms of GF and Vus. Assume the
SU(3) value for the hadronic matrix element, and set mπ = me = 0 in your calculation.

4-2. Calculate the rate for π+ → µ+νµ and π+ → e+νe in terms of fπ, GF , and the lepton
masses.

4-3. The energy-momentum tensor, Tµν(x), is symmetric, conserved, and related to the 4-
momentum operators by

Pµ =
∫
Tµ0(x) d3x

Use arguments analogous to (4.2.8-4.2.17) to calculate the matrix elements of Tµν between spinless
particle states.
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4-4. Show that (4.5.1) and (4.5.2) are the most general matrix elements consistent with Lorentz
invariance and parity invariance of the strong interactions.

4-5. Derive (4.8.3). Give an example of a similar relation involving the strangeness-changing
current uγµs.



Chapter 5

— Chiral Lagrangians — Goldstone
Bosons

5.1 SU(3)× SU(3)→ SU(3)

In Section 2.6 we discussed the σ–model of nucleons and pions with spontaneously broken SU(2)×
SU(2) chiral symmetry. In an obvious way, we could recast the model into a more modern language
by replacing the nucleon doublet (P, N) by the light quark doublet (u, d). To describe the strange
quark, we must extend the model to encompass an SU(3)× SU(3) chiral symmetry. The obvious
way to do this is simply to replace the 2× 2 σ field by a 3× 3 Σ field, transforming like

Σ→ LΣR† = Σ′ (5.1.1)

under independent SU(3) transformations of the left- and right-handed quark triplets by the unitary
unimodular matrices L and R.

However, it turns out that the 2× 2 case is rather special. In the 3× 3 case, we cannot restrict
the field as we did in (2.6.11). We can require that det Σ is real. But if the components of Σ are
to transform linearly into one another under (5.1.1), Σ must be a general 3× 3 matrix, except for
the reality of the determinant. Thus it depends on 17 real parameters. The reason is that the 3–
dimensional representation of SU(3) is complex. There is no matrix S that satisfies −ST ∗aS−1 = Ta
for the SU(3) generators Ta.

We suspect from our experience with the σ–model and fπ that the SU(3) × SU(3) symmetry
will have to be spontaneously broken if this model is to have anything to do with our world. There
is now a tremendous amount of phenomenological and theoretical evidence that the symmetry is
spontaneously broken down to SU(3) with a VEV

〈Σ〉 =

 f 0 0
0 f 0
0 0 f

 . (5.1.2)

For (5.1.2), since there is a broken SU(3) symmetry, all the ordinary SU(3) generators annihilate
the vacuum. The chiral SU(3) generators are associated with Goldstone bosons. The Goldstone
bosons are therefore an SU(3) octet of pseudoscalars. There are good candidates for all of these,
and indeed they are the lightest meson states, the pseudoscalar octet, π, K, K, and η (see Table
3.1).

76
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5.2 Effective Low–Momentum Field Theories

We can easily build a renormalizable theory based on the 3× 3 Σ field in which the field develops a
VEV of the form (5.1.2) and spontaneously breaks the SU(3)× SU(3) symmetry down to SU(3).
But we have no particular reason to believe that has anything to do with QCD. These two field
theories share a spontaneously broken SU(3) × SU(3) symmetry (in the limit of QCD in which
mu = md = ms = 0), and thus, as we will discuss in more detail, they both contain an SU(3) octet
of Goldstone bosons. But they have little else in common. The key fact about Goldstone bosons is
that they are massless because they are related to the vacuum state by the chiral symmetries. We
expect QCD to give such Goldstone bosons just because the symmetry is spontaneously broken, but
until we get smarter, we can’t say much about them that depends on the details of the dynamics.
So we would like to learn everything we can about the Goldstone bosons without assuming anything
but the spontaneously broken chiral symmetries.

A chiral charge (if such a thing actually made sense) would act on the vacuum state to produce
a zero–momentum Goldstone boson. This is why the charge doesn’t exist — the particle state and
vacuum state are normalized differently. Thus, we would expect the chiral symmetries to relate
processes involving different numbers of zero–energy Goldstone bosons. We want, therefore, to
study Goldstone bosons at low energies. In fact, at sufficiently low energies, only the Goldstone
bosons can be produced because they are the lightest particles around, so we can start by studying
a theory involving only Goldstone–boson fields.

We know that a QCD theory with three light quarks has a spontaneously broken SU(3)×SU(3)
symmetry, but that is all we can know without understanding the dynamics in detail. Therefore,
to incorporate the information about the symmetry without making unwarranted assumptions
about the dynamics, we would like to build the most general low–energy theory we can, consistent
with SU(3) × SU(3) symmetry. We will do this with two basic ideas: we will use a nonlinear
representation of the chiral SU(3) symmetry, and we will expand the Lagrangian in powers of the
momentum — in order to concentrate on low–momentum physics.

Consider an exponential function of the eight Goldstone–boson fields πa, the unitary, unimodular
matrix

U = exp[2iΠ∼/f ]

Π∼ = πaTa,

(5.2.1)

where f is a constant with dimensions of mass. We will require that U transform linearly under
SU(3)× SU(3):

U → U ′ = LUR†, (5.2.2)

just as in (5.1.1). But now the Goldstone–boson fields transform nonlinearly:

πa → π′a , Π∼ = πaTa → Π∼
′ = π′aTa (5.2.3)

where
U ′ = exp[2iΠ∼

′/f ]. (5.2.4)

(5.2.2)–(5.2.4) define π′a as a complicated nonlinear function of the π’s and L and R.
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To see what this looks like in detail, let us parametrize L and R as follows:

L = e
i c∼
e
i ε∼

R = e
−i c∼

e
i ε∼
,

(5.2.5)

where εa and ca are real parameters. This parametrization is entirely general. We can calculate ca
by noting

LR† = e
2i c∼

, (5.2.6)

then εa can be calculated from (5.2.5).
If ca = 0, the transformation is an ordinary SU(3) transformation

U → e
i ε∼
Ue
−i ε∼

, (5.2.7)

under which the π’s transform linearly

Π∼ → e
i ε∼

Π∼e
−i ε∼

. (5.2.8)

Thus εa describes the ordinary SU(3) subgroup of SU(3)× SU(3). The Goldstone bosons are just
an octet under the SU(3) subgroup as they should be.

If ε∼ = 0, (5.2.2) is a pure chiral transformation.

U ′ = e
i c∼
Ue

i c∼
. (5.2.9)

To get a feeling for the meaning of (5.2.9), let us take c to be infinitesimal and write Π′ as a power
series in c and Π.

(1 + 2iΠ∼
′/f + · · ·) = (1 + i c∼ + · · ·)(1 + 2iΠ∼/f + · · ·)(1 + i c∼ + · · ·). (5.2.10)

Comparing the two sides, we see

Π′∼ = Π∼ + f c∼ + · · · or π′a = πa + fca + · · · . (5.2.11)

All the terms in the (5.2.11) are odd in π and c because of parity invariance. Both c and π change
signs if we interchange L and R. The inhomogeneous term in (5.2.11) is a signal of spontaneous
symmetry breakdown, as we will see later.

This special exponential form for the nonlinear representation is the simplest of an infinite
number of possibilities. All the others are equivalent, however, in the sense that theories constructed
out of them will have the same S–matrix as the theories we will write down. This is discussed
(along with other interesting things) in an elegant pair of papers by S. Coleman et al. Phys.Rev.
177:2239–2247 and 2247–2250, 1969).

The idea is as follows. Suppose we build the most general Lagrangian involving the Π’s (or,
equivalently, U) that is invariant under SU(3) × SU(3) (5.2.2)–(5.2.4). Since all we have used is
the symmetry, our theory should be equivalent to a theory based on any other realization of the
SU(3)×SU(3) symmetry on the Goldstone bosons. We use nonlinear realizations of SU(3)×SU(3)
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because we can then describe only the Goldstone–boson fields, not any extraneous fields introduced
by a linear realization.

The Lagrangians we build will be complicated nonlinear functions of the Goldstone–boson fields.
They will not be renormalizable. That does not concern us. They are designed to describe the
low–energy behavior of the theory. Renormalizability has to do with the high–energy behavior.

We are going to organize the Lagrangian in terms of increasing powers of momentum or, equiva-
lently, in terms of increasing numbers of derivatives. Thus, we look first at terms with no derivatives,
then two, then four, and so on.

The terms with no derivatives are easy. There aren’t any. Every invariant function of U
without derivatives is just a constant. This will probably be obvious if you try to make one.
Alternatively, you can note that the terms with no derivatives actually have a local SU(3)×SU(3)
symmetry, which is enough to transform away from the Goldstone bosons completely (as in the
Higgs mechanism). Thus, the non-derivative terms can have no dependence at all on the Goldstone–
boson fields.

There is only one term with two derivatives. It is

f2

4
tr
(
∂µU †∂µU

)
. (5.2.12)

It is easy to see that all the other two derivative terms can be massaged into this same form. We
have chosen the constant in front of (5.2.12) so that it contains the conventionally normalized πa
kinetic energy,

1
2
∂µπa∂

µπa. (5.2.13)

The other terms in (5.2.12) describe the most important self–interactions of the π’s. They are
interesting but have little to do with weak interactions.

5.3 Sources

To discuss symmetry breaking and the currents in the low energy theory describing the Goldstone
bosons, it is convenient to start with the massless QCD theory for the triplet q of light quarks,
with the explicit SU(3)× SU(3) symmetry, and add classical sources in the following way

L = L0
QCD + qγµ(vµ + aµγ5)q − q(s+ ipγ5)q

= L0
QCD + qLγ

µ`µqL + qRγ
µrµqR − qR(s+ ip)qL − qL(s− ip)qR

(5.3.1)

where L0
QCD is the massless QCD Lagrangian and vµ, aµ, rµ, `µ, s and p are classical Hermitian

3× 3 matrix fields (we can take the vector fields to be traceless), and

rµ = vµ − aµ , `µ = vµ + aµ . (5.3.2)

The rµ and `µ fields are classical gauge fields for the SU(3)R and SU(3)L symmetries, and also the
sources for the corresponding Noether currents.

The theory described by (5.3.1) is invariant under an SU(3) × SU(3) gauge symmetry under
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which the fields and sources transform as follows:

qR → RqR

qL → LqL

rµ → RrµR
† + iR ∂µR

†

`µ → L `µ L
† + iL ∂µ L

†

s+ ip→ R (s+ ip)L†

(5.3.3)

where R and L are unitary 3× 3 matrices describing the SU(3)R and SU(3)L symmetries.
Thus we want to build a low energy theory with the same symmetries —

U → LU R†

rµ → RrµR
† + iR ∂µR

†

`µ → L `µ L
† + iL ∂µ L

†

s+ ip→ R (s+ ip)L†

(5.3.4)

The low energy theory will be described by an effective Lagrangian that depends on U and the
classical sources,

L(U, r, `, s, p) (5.3.5)

As usual, we want to build the most general such effective Lagrangian consistent with the symme-
tries, (5.3.4). This is only useful because the sources, like derivatives, can be thought of as small.
Thus we can expand (5.3.5) in powers of the sources and truncate the expansion after a small
number of terms.

Because the symmetry, (5.3.4), is a gauge symmetry, the derivatives in (5.2.12) must be pro-
moted to covariant derivatives,

f2

4
tr
(
DµU †DµU

)
. (5.3.6)

where
DµU = ∂µU − i`µU + iUrµ DµU † = ∂µU † − irµU † + iU †`µ (5.3.7)

Note also that the QCD theory is invariant under a parity transformation, which on the fields
of the low energy theory takes the form

U ↔ U †

`µ ↔ rµ

s→ s

p→ −p

(5.3.8)

along with the parity transformation in space, ~r → −~r.



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 81

5.4 Symmetry breaking and light quark masses

We do not want massless Goldstone bosons. We expect the masses of the observed pseudoscalar
octet to be due to the SU(3)×SU(3) symmetry breaking. In QCD, we know precisely what breaks
the symmetry. It is the quark term

qLMqR + h.c., (5.4.1)

where M is the quark mass matrix

M =

mu 0 0
0 md 0
0 0 ms

 (5.4.2)

But it is easy to incorporate the quark mass matrix in the theory with sources, with the symmetries
of (5.3.4). We simply have to build a low energy theory with the right symmetries, and then set
s = M . Of course, M is a constant and doesn’t transform under SU(3)× SU(3), so setting s = M
actually breaks the symmetry. By itself, this is not very useful because with an arbitrary function
of M , we can break the symmetry in an arbitrarily complicated way. To extract information, we
assume that we can expand (5.3.5) in powers of s and p (which always appear in the combination
s + ip or its adjoint, which transform simply under (5.3.4)) and truncate the expansion assuming
that the symmetry breaking is small. We expect this to be an excellent approximation for the u
and d quark masses, which seem to be very small compared to the QCD scale parameter Λ. It is
plausible, but not obviously justified for ms. We will see how it works.

To first approximation, we want to find the invariant function of U and s± ip that is linear in
s± ip. This is unique. It is

v3tr [U(s+ ip)] + h.c. (5.4.3)

To see what this means, we again expand in powers of Π, and we set s = M and p = 0. If v and
M are real, the linear term cancels and the quadratic term is

− 4
v3

f2
tr (MΠ2

∼ ), (5.4.4)

which corresponds to a mass term

8
v3

f2
tr (MΠ2

∼ ) (5.4.5)

for the pseudoscalar mesons.
We will first evaluate these masses in the limit of isospin invariance, ignoring weak and electro-

magnetic interactions and setting mu = md = m. Then

m2
π = 8 v

3

f2 tr

M
 1

4 0 0
0 1

4 0
0 0 0

 = 4 v
3

f2m

m2
K = 8 v

3

f2 tr

M
 1

4 0 0
0 0 0
0 0 1

4

 = 2 v
3

f2 (m+ms)

m2
η = 8 v

3

f2 tr

M
 1

12 0 0
0 1

12 0
0 0 1

3

 = 4 v
3

f2

(
m
3 + 2ms3

)
(5.4.6)
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The m2 determined in this way satisfy the Gell-Mann Okubo relation

3m2
η +m2

π = 4m2
K . (5.4.7)

The interesting thing about this is that we have derived the GMO relation for m2 specifically. In
an ordinary SU(3) symmetry argument, the relation should apply equally well for linear masses.
In fact, the GMO us much better satisfied for m2 than for m for the pseudoscalars. The only
coherent explanations of this fact are equivalent to the derivation we have just given. So this is
some evidence for the validity of the nonlinear chiral theory. Notice that the approximation we
have used of keeping two derivative terms in the invariant part of L and the term linear in M in
the symmetry breaking part makes a kind of sense. As (5.4.5) shows, if the pseudoscalar boson
momentum is of the order of its mass, the two terms are of the same order of magnitude.

Note also that (5.4.6) does not determine the scale of the quark masses. If we define the
parameter µ by

µ = 2v3/f2, (5.4.8)

then the pseudoscalar meson mass squares are proportional to µM . In the expansion in powers of
momenta and quark masses, µM counts as two powers of momentum or two derivatives.

To this order, the effective Lagrangian has the form

L = f2
{

1
4

tr
(
DµU †DµU

)
+

1
2

tr
[
U †µ(s− ip)

]
+

1
2

tr [Uµ(s+ ip)]
}
. (5.4.9)

5.5 What Happened to the Axial U(1)?

If something is bothering you about this treatment of Goldstone bosons from QCD, you are to be
commended. The free massless quark theory has a chiral SU(3)×U(1)×SU(3)×U(1). Why don’t
we include a Goldstone boson corresponding to a spontaneously breaking chiral U(1)? This would
mean adding a ninth π, π0 corresponding to a U(1) generator

T0 =
√

1/6

 1 0 0
0 1 0
0 0 1

 (5.5.1)

It is not hard to see that this is a phenomenological disaster. There is a ninth pseudoscalar, the
η′ at 958 MeV. It seems to be an SU(3) singlet, primarily. But if we followed the analysis of
Section 5.4, we would find something very different. Instead of an SU(3) octet and singlet like the
η and η′, there would be an ideally mixed pair like the ω and φ in the vector meson system, an
isoscalar degenerate with the pion and another consisting of almost pure ss with mass proportion
to ms. Even if the f constant is allowed to be different for the π0, the mass spectrum of the almost
Goldstone bosons does not look like what we see for the pseudoscalar mesons (see Problem 5–1).

This was a serious problem for many years until it was discovered that the axial U(1) is actually
not a symmetry of the QCD theory. The symmetry breakdown can be traced to the appearance of
a peculiar gauge invariant interaction term,

θ

64π2
g2εµνλσG

µν
a Gλσa . (5.5.2)

This term had always been neglected because it had been a total divergence. But using semiclassical
“instanton” techniques, ’t Hooft showed that it could not be neglected, essentially because the gauge
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fields relevant in the quantum theory do not fall off fast enough at infinity to allow neglect of surface
terms.

This is related to the axial U(1) problem because of yet another peculiar effect, the anomaly.
The gauge–invariant axial current

jµ5 = qγµγ5Tq (5.5.3)

in the massless quark QCD theory is not conserved unless trT = 0, even though canonical ma-
nipulations would lead us to believe it is. The problem is that the triangle diagrams in which the
current couples to two gluons through a quark loop are linear divergent. So the canonical reasoning
that leads to ∂µj

µ
5 = 0 breaks down and we find instead that

∂µj
µ
5 = trT

g2

32π2
εµνλσG

µν
a Gλσa . (5.5.4)

Because the divergence of the current involves the term (5.5.2), the associated symmetry does not
leave the Lagrangian invariant, it changes θ (this follows from our Noether’s theorem argument in
Section 1.1).

This doesn’t effect the SU(3) currents because tr T = 0, but it eliminates the axial U(1) as
a symmetry! Thus the analysis of the previous sections, in which we do not include the π0 as a
Goldstone boson, is all right.

5.6 Light Quark Mass Ratios

To extract reliable values for the ratios of mu, md, and ms to one another, we must include a
treatment of isospin breaking. There are two important sources of isospin breaking, the u — d
mass difference and the electromagnetic interactions. We will take them one at a time.

If we perform the analysis of Section 5.4 without assuming mu = md, we find

m2
π± = µ(mu +md)

m2
K± = µ(mu +ms)

m2
K0 = µ(md +ms)

. (5.6.1)

And for the π3, π8 system, we find a 2× 2 mass–squared matrix:

µ

(
mu +md (mu −md)/

√
3

(mu −md)/
√

3 (4ms +mu +md)/3

)
. (5.6.2)

The off–diagonal terms in (5.6.2) produce first–order mixing of the isovector and isoscalar states,
but their effect on the eigenvalues is second order in isospin breaking and very small. So we will
ignore it and write

m2
π0 ' µ(mu +md)

m2
η '

µ
3 (4ms +mu +md)

. (5.6.3)

The easiest way to understand the effect of the electromagnetic interactions is to think of them
as an additional chiral symmetry–breaking effect. Because the electric charge matrix

Q =

 2
3 0 0
0 −1

3 0
0 0 −1

3

 (5.6.4)
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commutes with the chiral SU(3) generators associated with π0, K0, K0, and η fields, the EM
interactions do not break the associated chiral symmetries. Thus, if there were no quark mass
terms, the π0, K0, K0, and η would remain as exactly massless Goldstone bosons. They would get
no contribution to their masses from electromagnetism. In the spirit of chiral perturbation theory,
we will assume that this situation persists approximately in the presence of quark masses. This
amounts to ignoring contributions that are suppressed both by quark masses and α.

The chiral symmetries associated with the K± and π± fields are broken by the electromagnetic
interactions, so that the K± and π± do get a mass contribution from electromagnetism. But
because the d and s charges are the same, the K± and π± get the same contribution (at least in
the limit that the quark masses vanish). The arguments of the last two paragraphs are part of an
analysis called Dashen’s theorem. It enables us to parametrize the effect of the EM interactions in
terms of a single number, the contribution to the π± mass–squared, which will call ∆m2. Thus, we
can write all the masses as follows:

m2
π± = µ(mu +md) + ∆m2

m2
K± = µ(mu +ms) + ∆m2

m2
K0 = µ(md +ms)

m2
π0 = µ(mu +md)

m2
η0 = µ(4ms +mu +md)/3.

(5.6.5)

Putting in observed π and K masses, we get

µmu = 0.00649GeV2

µmd = 0.01172GeV2

µms = 0.23596GeV2.

(5.6.6)

This gives the ratios
ms

md
= 20,

mu

md
= 0.55 . (5.6.7)

Putting (5.6.6) into (5.6.5) gives an η mass of 566 MeV compared to the observed 549, about 3%
off, but not bad.

5.7 The Chiral Currents

In this section, we derive and discuss the currents associated with chiral SU(3)× SU(3) transfor-
mations on our effective Lagrangian. The currents can be obtained easily by taking the functional
derivative with respect to the classical gauge fields, as in (1b.1.13). If we are interested in matrix
elements of a single current, we can then set the classical gauge fields to zero. Using (5.3.6) and
(5.3.7), with

`µ = `µaTa rµ = rµaTa (5.7.1)

we find for the left-handed current (which is involved in the semi-leptonic decays)

jµLa =
δL
δ`aµ

= i
f2

4
tr
[
U †Ta∂

µU − ∂µU †TaU
]
. (5.7.2)
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But since U †U = 1, it follows that

(∂µU)U † = −U∂µU †, (5.7.3)

so we can rewrite (5.7.2) as

jµLa = i
f2

2
tr (U †Ta∂µU). (5.7.4)

The right-handed current can be easily obtained by the parity transformation, (5.3.8), which in
this instance means interchanging U and U †.

We now want to evaluate (5.7.4) as a power series in Π. We can do it easily by means of a
marvelous identity for the derivative of the exponential of a matrix (see Problem 5–2)

∂µeM =
∫ 1

0
esM∂µMe(1−s)M ds. (5.7.5)

I love this identity because it is so easy to guess, yet rather nontrivial. At any rate, using (5.7.5),
we find

jµLa = −f
∫ 1

0
tr

(
Ta · e

2isΠ∼/f

∂µΠ∼e
−2isΠ∼/f

)
ds . (5.7.6)

It is now easy to expand in powers of Π∼ :

jµLa = −ftr

(
Ta∂

µΠ∼

)

−itr
(
Ta[Π∼ , ∂

µΠ∼ ]

)

+ 2
3f tr

(
Ta

[
Π∼ , [Π∼ , ∂

µΠ∼ ]

])

+ · · · .

(5.7.7)

These terms alternate. The terms odd in Π∼ are axial vectors while those even in Π∼ are vectors.

The right-handed current is obtained trivially by switching the signs of all the odd terms.
In the quark theory, the corresponding current is

jµLa = qTaγ
µ (1 + γ5)

2
q. (5.7.8)

If we compare (5.7.7)–(5.7.8), we see that the axial isospin current is

jµ5a = −f∂µπa + · · · , (5.7.9)

where a = 1 to 3. Thus, from (4.3.6)

f = Fπ = 93 MeV. (5.7.10)
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5.8 Semileptonic K Decays

The semileptonic decay amplitudes for K → µν, eν, µνπ, eνπ, eνππ, and so on, are all propor-
tional to matrix elements of the strangeness–changing charged current

uγµ(1 + γ5)s. (5.8.1)

In terms of SU(3)× SU(3) currents,

jµa = qγµTaq

jµ5a = qγµγ5Taq,

(5.8.2)

this is

uγµ(1 + γ5)s = qγµ(1 + γ5)(T4 + iT5)q

= jµ4 + ijµ5 + jµ54 + ijµ55,

(5.8.3)

because

T4 + iT5 =

 0 0 1
0 0 0
0 0 0

 . (5.8.4)

The currents associated with transformations on the left-handed quarks contain the projection
operator (1 + γ5)/2, so they are

qγµ
1 + γ5

2
Taq. (5.8.5)

These are the currents that correspond to the jµL in our effective theory. This correspondence
depends only on the symmetry, and it determines the normalization as well as the form of the
currents. Thus

jµLa ↔
1
2

(jµa + jµ5a) , (5.8.6)

and in particular
uγµ(1 + γ5)s↔ 2(jµL4 + ijµL5). (5.8.7)

To evaluate this in terms of explicit pseudoscalar meson fields, we note that

Π∼ =
M√

2
, (5.8.8)

where M is the SU(3) matrix, (4.8.7). We are only interested (for now) in the terms of (5.7.7)
involving one K field and zero, one or two pion fields. Here we will write down the terms involving
the charged K field:

uγµ(1 + γ5)s→ −
√

2 f∂µK− − i
{

1√
2
K−∂µπ0 − 1√

2
π0∂µK−

}
+ 2

3f

{
1√
2
K−π+∂µπ− −

√
2K−π−∂µπ+

− 1
2
√

2
K−π0∂µπ0 + 1

2
√

2
π0π0∂µK− + 1√

2
π+π−∂µK−

}
+ · · ·

(5.8.9)

To calculate the decay amplitudes, we now have only to calculate the matrix elements of (5.8.9)
between the initial and final hadronic states in a theory with the interactions given by (5.4.9). To
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calculate to lowest order in an expansion in momentum, we need only include tree diagrams. The
reason is that any loop diagram can be expanded in powers of momentum. The leading term is just
a renormalization of the corresponding tree diagram. The other terms involve more powers of the
momenta and are irrelevant in the approximation in which we are working. Thus, the effect of the
loop diagram is included just by using renormalized parameters in the current and the Lagrangian
(see Section 5.9).

In Feynman–diagram language, the amplitudes are shown in Figure 5–1, where the × represents
the current (5.8.9).

Notice that the tree diagram contributions involve not only the current (5.8.9) but also the
nontrivial interaction terms in the nonlinear Lagrangian (5.4.9). Both are required to make the
matrix element of the current divergenceless in the limit M = 0 (see Problem 5–3).

K− → µ−ν × K−............. ............. .............

K− → π0µ−ν ×............. ............. ............. ............. ............. .............K−π0

K− → π0π0µ−ν ×............. ............. ....................................................
.......................................

K−

π0

π0

+ ×............. ............. ............. ............. ............. .............
.......................................

K−

π0

π0

Figure 5-1:

We have seen that to lowest order in powers of momentum, the semileptonic K decays are
completely determined by the chiral SU(3)× SU(3) symmetry. The predictions of Figure 5–1 are
in fairly good agreement with the observed decay rates.

5.9 The Chiral Symmetry–Breaking Scale

Why should it work? To understand the success of (5.4.9) as a description of the interactions of the
pseudoscalar mesons, we must discuss the corrections to (5.4.9) in a systematic way. These arise
from SU(3)×SU(3) invariant couplings involving more powers of derivatives or quark masses. The
next most important terms, at low momentum, have one additional power of D2 or µM compared
to (5.4.9), such as the following:

tr
(
DµDνU †DµDνU

)
tr
(
DνU †DνUU

†µM
)

tr
(
U †µMU †µM

) (5.9.1)

Terms with more powers of D2 or µM are even less important.
We might expect that powers of D2 and µM will be associated with inverse powers of some

dimensional parameter that characterizes the convergence of the momentum expansion. We will
call this parameter ΛCSB, the chiral symmetry–breaking scale. Thus, the terms (5.9.1) would have
coupling constants of order f2/Λ2

CSB, down by two powers of ΛCSB compared to (5.4.9). In general,
we would expect a term involving 2n derivatives and m powers of µM to have a coupling of order

f2/Λ2(n+m)
CSB . (5.9.2)
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If these guesses are correct, then the convergence of the momentum expansion is determined
by the size of the chiral symmetry–breaking scale. If ΛCSB is large compared to the pseudoscalar
meson masses, the higher order terms are negligible compared to (5.4.9) at any momentum involved
in weak decays.

Unfortunately, it is unreasonable to suppose that ΛCSB is very large because the radiative
corrections to (5.4.9) produce terms like (5.9.1) and higher–order terms with infinite coefficients.
Thus, even if these terms are absent for some choice of renormalization scale, they will be there for
another. Under such circumstances, it would clearly be unreasonable to assume that the couplings
(5.9.2) are small compared to the changes induced in them by a change in renormalization scale by
some factor of order 1.

Let us explore these ideas in the example of π–π scattering. (5.9.10) predicts a four–pion vertex
proportional to two powers of momentum (or one power of µM — we will concentrate on the
momentum dependence). Schematically, it is(

p2

f2

)
π4. (5.9.3)

The quantum corrections induce additional contributions to π–π scattering from one–loop diagrams.
The loop integral is horribly divergent. But if we cut off the divergent integral with some procedure
that preserves the nonlinear chiral symmetry, the divergent contributions to the effective action
should all be associated with invariant interaction terms such as (5.4.9) or (5.9.1).

There should be no quartic divergence, appropriately defined, because a quartic divergence
could arise only if all the powers of momentum from (5.9.3) were loop momenta. But that would
yield a term in the effective action proportional to π fields with no derivatives, which must vanish
because of the chiral symmetry.

There is a quadratically divergent contribution proportional to two powers of external momenta.
Schematically, this contribution is

1
(4π)2

p2

f4
Λ2

COπ
4, (5.9.4)

where ΛCO is a cut–off scale and the 1/(4π)2 is associated with the loop–momentum integration.
This has the same form as (5.9.3), and so the quadratically divergent part can be absorbed into
(5.9.3). It just renormalizes (5.4.9).

Finally, there is a logarithmically divergent term involving four powers of the external momenta.
Schematically, it is

1
(4π)2

p4

f4
ln (ΛCO/κ)π4, (5.9.5)

where κ is some arbitrary renormalization scale. This has the same form as the first term in (5.9.1).
A change in the renormalization scale of order 1 (for example, e), will thus induce a change in (5.9.5)
of order

1
(4π)2

p4

f4
π4, (5.9.6)

which corresponds to a change in the coupling

f2/Λ2
CSB (5.9.7)

of order 1/(4π)2. Thus, we cannot reasonably assume that

f2/Λ2
CSB � 1/(4π)2, (5.9.8)
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because if this were true for one renormalization scale, it would not be true for another. But we
could imagine that

f2/Λ2
CSB ≈ 1/(4π)2. (5.9.9)

If this were true in any reasonable renormalization scheme, it would be true in others. Indeed,
(5.9.9) seems a reasonable guess for the chiral symmetry–breaking scale. If we assume

ΛCSB ≈ 4πf, (5.9.10)

and cut off our loop integrals at momentum of order ΛCSB so that ΛCO ≈ ΛCSB, then the quantum
corrections are of the same order of magnitude as the renormalized interaction terms. You can
see this explicitly in (5.9.5) and (5.9.6) and can easily prove it in general. This is what we would
expect on the basis of dimensional analysis in a strongly interacting theory in which there is no
relevant small adjustable parameter. The factor of 4π in (5.9.10) comes from the dimensionality of
space–time and is simply the appropriate connection between the constant f which appears in U
and the scale ΛCSB which appears in loop effects. Hence, we will adopt (5.9.10) as a guess for the
chiral symmetry–breaking scale.1

If these ideas make sense, we can understand the success of (5.4.9). 4πf is about 1 GeV,
considerably larger than the typical momentum in K decay and more than a factor of two larger
than the K mass. Thus we may hope that neglect of terms like (5.9.1) in our nonlinear Lagrangian
will be a good approximation. Similarly, we can ignore all divergent loop effects.

Many of the ideas in this section were stimulated by a very nice paper by S. Weinberg (Physica
96A:327–340 1979).

5.10 Important Loop Effects

Loop effects in effective chiral theories can often be ignored, as we have shown. But there are
situations in which the loop effects are important because they can be qualitatively distinguished
from the tree–diagram effects. All of these situations arise from the analytic structure of the loop
effects. The most important are loops that produce infrared logs and imaginary parts.

Consider, as a simple example, π–π scattering amplitude in the chiral symmetry limit. The
contribution from the diagram (for massless pions)

πb

πa

πd

πc...........
..
...........
..
...........
..
............
. ............. ....

...........
..

...........
..

...........
..

............
..................

.............
.............

.............
............. ............. ....

.............
.............

.............
..............................

+ cross terms (5.10.1)

=
{
−δabδcd

s2

32π2
− δacδbd

3s2 + u2 − t2

196π2

−δadδbc
3s2 + t2 − u2

196π2

}
ln(−s/κ2)

+cross terms + polynomial in s2, t2, u2.

(5.10.2)

In (5.10.2), s, t, and u are the Mandelstam variables, s = (pa+pb)2, t = (pa−pc)2, u = (pa−pd)2;
and κ is an arbitrary renormalizable scale. The polynomial comes from the matrix elements of

1Note that there are also corrections to the lowest–order chiral Lagrangian from things like ρ exchange, which are
not obviously related to chiral loop effects. But these are down by 1/m2

ρ, which is again ' 1/Λ2
CSB.
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interaction terms involving terms with four derivatives. Its coefficients cannot be calculated. But
the logarithmic terms cannot arise from tree diagrams, so they are completely determined.

The real part of the ln(−s) term in (5.10.2) is an infrared logarithm. It diverges as the momenta
go to zero. At very small momenta, it is more important than the terms with four derivatives from
tree diagrams because the logarithm is large.

The imaginary part of the ln(−s) term in (5.10.2) arises from the unitarity of the S matrix. It
is related to the total cross section.

Infrared logarithms can also play a role in the small symmetry breaking terms. For example,
there is a contribution to the effective action with two derivatives (coming from a single Goldstone–
boson loop) that has the form

f2

64π2

(
m2 lnm2/κ2

)
ab
· δ2

δπaδπb
tr
(
DµUD

µU †
)
, (5.10.3)

where m2 is Goldstone–boson mass–squared matrix

m2
ab = tr ({Ta, Tb}µM) .

In principle, for light Goldstone bosons, this is the most important correction to the kinetic energy
term (5.2.12) because the logarithm is large when κ is any reasonable renormalization scale (∼
ΛCSB). In practice, however, they are not tremendously useful. If the logarithm is large, the
symmetry breaking is small anyway. Thus, the terms proportional to m2

π lnm2
π are very small

while the terms proportional to m2
K lnm2

K or m2
η lnm2

η are no more important than the terms
without logarithms, because mκ/ΛCSB and mη/ΛCSB are not much smaller than 1.

The general subject of renormalization in theories of this kind is a beautiful one which is
part of the modern treatment, which is called, CHIRAL PERTURBATION THEORY. For more
information, I suggest that you look in a very nice review of the subject (by the same name) by G.
Ecker, Progress in Particle and Nuclear Physics, Vol. 35, 1995, Pergamon Press, Oxford.

5.11 Nonleptonic K Decay

The nonleptonic K decays, K− into π0π−, π−π−π+, and π0π0π−, Ks into π+π− and π0π0, and
KL into 3π0 and π+π−π0, are not as well understood as the semileptonic and leptonic decays. The
reason is that the form of decay Hamiltonian is not completely determined by the SU(3)× SU(3)
symmetry. In tree approximation in terms of quarks, the relevant term is

uγµ(1 + γ5)sdγµ(1 + γ5)u. (5.11.1)

Formally, this is just the product of two currents. But QCD corrections can change it in important
ways, as we will see in detail later. From the point of view of the chiral symmetry, all we can
say comes from the symmetry properties. (5.11.1) is a linear combination of terms that transform
like an 8 and a 27 under the SU(3)L. We can form several terms with the right transformation
properties, and their renormalization is completely undetermined.

Nevertheless, we can say something. All of the terms we can build with right symmetry have
a simple property that we can use to relate the K− → 2π and 3π decays. We will use this system
to exemplify another method for obtaining chiral symmetry predictions. The technique is called
“current algebra”.

Consider a K → 3π amplitude, for example

〈π+π−π0|HW |K0〉 = A(p+, p−, p0), (5.11.2)
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Figure 5-2:

where HW is the term in the weak Hamiltonian responsible for the decay and the p’s are the pion
momenta, in an obvious notation. Now for reasons that are not entirely obvious, we consider the
following: ∫

eip0x 〈π+π−|T (jµ53(x)HW ) |K0〉 d4x = Aµ(p+, p−, p0), (5.11.3)

where jµ53 is the axial isospin current. We will analyze this matrix element in the chiral symmetry
limit, and calculate the quantity

lim
p0→0

pµ0 Aµ(p+, p−, p0). (5.11.4)

This can be calculated in two different ways. The pµ0 can be turned into a derivative and taken
inside the time–ordered product. The current is conserved, but we are left with an equal–time
commutator

i

∫
eip0x δ(x0) 〈π+π−|[j0

53(x), HW ]|K0〉 d4x = − i
2
〈π+π−|HW |K0〉. (5.11.5)

The form of the equal–time commutator follows purely from the symmetry. The other way of
evaluating (5.11.4) relies on the fact that the limit vanishes except for contributions from the pion
pole due to the diagram shown in Fig 5.2. This contribution is

iFπA(p+, p−, 0). (5.11.6)

Thus, the 3π amplitude is related to the 2π amplitude. This relation works pretty well and is a
good example of old–fashioned current algebra.

The effective Lagrangian technique is a systematic and reliable way of doing the same thing
but, in simple cases like this, the current–algebra reduction formula can actually be faster.

Problems

5-1. If the axial U(1) were a symmetry of QCD, there would be an SU(3) singlet Goldstone-
boson field, π0, which in the SU(3) symmetry limit transforms under a U(1) transformation by a
translation, δπ0 = c0. In the presence of SU(3)× SU(3) symmetry breaking, the analog of (5.4.9)
would be

L(π) =
1
2
∂µπ0∂µπ0 + f2

{
1
4

tr (∂µΣ†∂µΣ)

+
1
2

tr
(
µMΣ†e−iλπ0/f

)
+

1
2

tr
(
µMΣeiλπ0/f

)}
(5− 1)
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where λ is an unknown constant that determines the strength of the spontaneous breaking of the
U(1) symmetry. Clearly when M → 0, there are nine Goldstone bosons. Prove that (5-1) cannot
describe the pseudoscalar mesons in our world for any value of λ. Assume mu = md = m and
consider the 2× 2 mass-squared matrix that describes π0 and π8. Show that the lightest isoscalar
meson has a mass less than kmπ for some k. What is k?

5-2. Prove (5.7.5).

5-3. Calculate the matrix element 〈
π+π−

∣∣∣ jµ5 ∣∣∣ K−〉
where the K−, π+ and π− momenta are Pµ, pµ+, and pµ−, respectively, and jµ5 is the current
corresponding to uγµγ5s in (5.8.9). Check your result by showing that the current is conserved in
the chiral limit.

5-4. Suppose that (5.9.2) is satisfied for the coupling of higher order terms in the momentum
expansion. Construct a power-counting argument to show that if a divergent loop diagram is cut off
at momentum of order ΛCSB ≈ 4πf , it contributes terms to the effective action of the same order
of magnitude as the bare interaction terms. Hint: Restrict yourself to the derivative interactions.
Terms with derivatives replaced by µM clearly act the same way. Then a vertex has the form

(2π)4 δ4(Σpi) f2 p2

(
p2

Λ2
CSB

)n (
1
f2

)n
where p is a typical momentum and m is the number of π lines emanating from the vertex. Explain
this, then take N such vertices for various n and m. Call the loop momenta k and external momenta
p. For each internal meson line, include a factor

1
k2

d4k

(2π)4

Suppose there are l such lines. Consider a contribution in which there is a k2j from the momentum
factors and the rest involves only external momenta, p2M , for M = N +Σn− j. Take it from there.

5-5. Write down the terms involving a K0 field and 0, 1, or 2 pions, in the current, (5.8.9).

5-6. Use chiral Lagrangian arguments to relate the following two matrix elements:〈
π+π0

∣∣∣ sγµ(1 + γ5)uuγµ(1 + γ5)d
∣∣∣ K+

〉
and 〈

K0
∣∣∣ sγµ(1 + γ5)d sγµ(1 + γ5)d

∣∣∣ K0
〉

Be sure to justify any assumptions you make about the form of the operators in the effective chiral
theory.



Chapter 6

— Chiral Lagrangians — Matter
Fields

6.1 How Do the Baryons Transform?

Now that we have learned how to construct nonlinear Lagrangians that incorporate SU(3)×SU(3)
symmetry for Goldstone bosons, we would like to do the same thing for the rest of the low–lying
hadrons. I will illustrate some of the issues involved by considering the SU(3) octet of spin–1

2
baryons.

To construct a theory describing the baryons, we must solve two problems. We need a sensible
transformation law for the baryon fields, and we must somehow deal with the fact that masses of
the baryons are not small compared to the chiral symmetry breaking scale. In this chapter, we
will address the first of these issues and we will apply what we learn to a different problem — the
constituent mass of the quarks.

We have some freedom to choose how the baryon fields transform under chiral SU(3)×SU(3) .
We might, for example, decide that the left- and right-handed baryon fields transform like an octet
under SU(3)L and SU(3)R, respectively. We could describe such baryons by chiral traceless 3× 3
matrix fields Ψ1L and Ψ1R that transform as follows:

Ψ1L → LΨ1LL
†, Ψ1R → RΨ1RR

†. (6.1.1)

Alternatively, we could take both the left- and right-handed baryons to transform like octets under
SU(3)L. We could describe such baryons by a four–Dirac–component traceless 3 × 3 matrix field
Ψ2 that transforms as follows:

Ψ2 → LΨ2L
†. (6.1.2)

We could also take the baryons (left-handed or right-handed, or both) to transform under SU(3)×
SU(3) like a (3, 3), described by a 3× 3 matrix field Ψ3 that transforms as follows:

Ψ3 → LΨ3R
†. (6.1.3)

There are eight such possibilities. We can take the left- and right-handed baryon fields indepen-
dently to transform in any of four ways, like

(8, 1), (1, 8), (3, 3), or (3, 3)

under chiral SU(3)× SU(3) .

93
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It might seem that each of these possibilities would lead to different physics. Not only do they
transform differently under SU(3)× SU(3) , but they even have different numbers of independent
components. A (3, 3) field cannot be traceless, so it has nine components, while (8, 1) or (1, 8)
has eight components.

Nevertheless, it doesn’t matter which representation of baryons we choose. We can describe the
low–momentum interactions of baryons and Goldstone bosons equally well with any of them. The
reason is that the Goldstone boson matrix U can be used to transform from one representation to
another. For example, we can take

Ψ2L = Ψ1L, Ψ2R = UΨ1RU
†. (6.1.4)

This gives the correct transformation properties for Ψ2. For Ψ3, although we cannot require that
the trace vanish because tr Ψ3 is not invariant, we can require

tr
(
U †Ψ3

)
= 0. (6.1.5)

Then we can take
Ψ3 = Ψ2U, (6.1.6)

which satisfies both (6.1.3) and (6.1.5).
The point is that the SU(3) × SU(3) symmetry is spontaneously broken down to SU(3). In

the low energy theory, it is only the SU(3) transformation properties of the baryons that matter.
Ψ1, Ψ2, and Ψ3 (once (6.1.6) is imposed) all transform like SU(3) octets.

6.2 A More Elegant Transformation Law

I argued in the previous section that we can build a nonlinear chiral theory with baryons in any
SU(3)×SU(3) representation that reduces to an octet under the unbroken SU(3) subgroup. Thus,
we can decide on a baryon representation that is maximally convenient. All of the representations
we have discussed so far are slightly inconvenient.

Ψ2 and Ψ3 are inconvenient because the representations are not parity invariant. Parity can
be imposed, but the parity transformation is nonlinear because it involves the Goldstone–boson
matrix U .

Ψ1 is slightly inconvenient for a different reason. We saw in Chapter 5 that, in the limit of exact
chiral symmetry, the Goldstone bosons have only derivative interactions because the chiral–invariant
terms with no derivatives are just constants. This is an important feature of Goldstone–boson inter-
actions. You can see it easily for the couplings of baryons to Goldstone bosons in the representation
Ψ2. To couple to baryons, the Goldstone bosons must be in an SU(3)R singlet because the baryons
transform only under SU(3)L. But if there are no derivatives, every SU(3)R invariant function
of the Goldstone–boson fields is constant, because with a local SU(3)R transformation, all the π’s
in U can be transformed away. But in the parity invariant Ψ1 representation, this feature of the
Goldstone–boson interactions is not explicit. In this representation, the SU(3) × SU(3) invariant
baryon mass term looks like

tr
(
Ψ1LUΨ1RU

†
)

+ h.c. (6.2.1)

In addition to the SU(3) invariant baryon mass term, (6.2.1) describes some π–baryon couplings.
Of course, there is nothing really wrong with this representation. The pseudoscalar π–baryon

coupling is equivalent to an axial–vector derivative coupling. But it might be nice to see it coming
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out explicitly. We can do this as follows. Define the matrix ξ as

ξ = e
iΠ∼/f

, (6.2.2)

so that ξ is a square root of U ,
ξ2 = U. (6.2.3)

The transformation properties of the Π∼ fields (5.2.1)–(5.2.4) induce a well-defined transformation

of ξ under an SU(3)× SU(3) transformation. We can write it as

ξ → ξ′ = Lξu(π)† = u(π)ξR†. (6.2.4)

This defines u(π) as a nonlinear function of L, R, and Π∼ .

The matrix u(π) is invariant under the parity transformation L↔ R, Π∼ → −Π∼ . If c∼ = 0 (that

is, L = R), then the critical transformation is just an ordinary SU(3) transformation, and u(π) is
the associated SU(3) matrix (u(π) = L = R). If ca 6= 0, then u(π) depends on ε∼ , c∼ , and Π∼ in a

complicated nonlinear way.
This is the desired connection between the broken and unbroken subgroups. An arbitrary chiral

transformation is represented by an ordinary SU(3) matrix

u(π) = e
i v∼
, (6.2.5)

where the Hermitian matrix
v∼( ε∼ , c∼ , Π∼) (6.2.6)

encodes the chiral SU(3)× SU(3) in a nonlinear way.
Now we take our baryon fields Ψ to transform as

Ψ→ u(π)Ψu(π)†. (6.2.7)

The form of (6.2.7) is determined by the transformation properties of the baryon field under ordinary
SU(3). All of the chiral nature of the transformation is contained in u(π). Note that u(π) depends
implicitly on the space–time coordinate x because it depends on Π∼(x). In the transformation (6.2.7),

the u(π), Ψ, and u(π)† fields are all to be evaluated at the same x. Thus, this chiral transformation
is a local transformation. Derivatives of Ψ will not transform simply.

To see what is going on more explicitly, calculate v∼ for an infinitesimal chiral transformation,

given by (5.2.5) for ε∼ and c∼ infinitesimal. The result is (see Problem 6–1)

v∼ = ε∼ + i[ c∼ , Π∼ ]/f + 0(π2). (6.2.8)

For a chiral transformation c∼ 6= 0, the transformation (6.2.7) multiplies the baryon field by functions

of Π∼ . This is an explicit realization of the vague statement that chiral transformations are associated

with emission and absorption of Goldstone bosons.
It must be admitted that the advantages of this notation over another parity–invariant defini-

tion, such as Ψ1, are rather slight. The most important difference is psychological. In this notation,
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all the Goldstone boson interactions in the chiral–symmetry limit are derivative interactions and
obviously on the same footing. Whereas, if the baryons are described by Ψ1, some are derivative in-
teractions while some come from (6.2.1), and we may be misled into treating them differently (that
is, assuming one set is small). At any rate, (6.2.2)–(6.2.7) define a simple and elegant notation,
and we will use it.

Later, we will discuss the baryon Lagrangian that we can construct with this procedure. This
involves an additional idea to deal with the large mass of the baryons (large, that is, compared to
the chiral symmetry breaking scale) — the nonrelativistic effective theory — that we will introduce
later. In the rest of this chapter, we will apply similar ideas to the quark model.

6.3 Nonlinear Chiral Quarks

In Section 3.2, I remarked that the nonrelativistic quark model gives a surprisingly useful description
of the light baryon and meson states. In this section, I suggest a partial explanation of the success
of the quark model. The problem is that the nonrelativistic quark model only makes sense if quarks
have “constituent” masses, a few hundred MeV for the u and d quarks and about 500 MeV for the
s quark. Whereas, we have learned from the arguments of Section 5.5 that the light quark masses
that appear in the QCD Lagrangian are very different.

It seems reasonable to suppose that the bulk of the constituent mass of the light quarks is
the effect of chiral symmetry breaking, like the baryon mass in the previous section. But then to
incorporate SU(3) × SU(3) , we must include Goldstone bosons and realize the chiral symmetry
nonlinearly. Thus, “nonlinear chiral quarks” would seem to be a reasonable starting point in our
search for an understanding of the success of the nonrelativistic quark model.

Let us, therefore, illustrate the ideas about the transformation of matter fields by building a
matter Lagrangian describing the u, d, and s quark, in a triplet q, transforming as a triplet under
the ordinary SU(3). We will also assume that q is a triplet under color SU(3), but for the moment
we will not worry about the color SU(3) gauge symmetry. Presumably, all derivatives should be
color SU(3) covariant derivatives, but since color SU(3) and flavor SU(3) commute, this shouldn’t
make much difference.

We require the quark field, q, to transform under SU(3)× SU(3) as

q → u(π)q. (6.3.1)

Then the term in a quark Lagrangian with no derivatives is unique:

Lq0 = −mqq. (6.3.2)

The parameter m is the constituent mass of a (hypothetical) massless quark.
There are two ways to construct the chiral–invariant terms with a single derivative. We can use

the ξ matrices to construct fields that transform linearly under SU(3)× SU(3) :

ξ qL and ξ qR = (3, 1) , ξ† qL and ξ† qR = (1, 3) . (6.3.3)

Note that because the chiral transformation properties come from the ξs and ξ†s, there is no
correlation with the handedness of the quark fields. All of these fields transform only under global
SU(3)×SU(3) , so derivatives cause no special problem. We can simply put them together to form
chiral invariant and parity invariant terms as follows:

1+gA
2

[
i qL ξ

† /∂ (ξ qL) + i qR ξ /∂
(
ξ† qR

)]
+

1− gA
2

[
i qR ξ

† /∂ (ξ qR) + i qL ξ /∂
(
ξ† qL

)] (6.3.4)
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An alternative method is to deal directly with the nonlinear local transformation (6.2.4)–(6.2.7).
With the ξ matrices, we can build two vector fields with simple transformation properties. The
vector field

V∼
µ =

1
2

(
ξ†∂µξ + ξ∂µξ†

)
(6.3.5)

is a gauge field for the local transformation. It transforms as

V∼
µ → u(π)V∼

µu(π)† + u(π)∂µu(π)†. (6.3.6)

The axial vector field
A∼

µ =
i

2

(
ξ†(∂µ − i`µ)ξ − ξ(∂µ − irµ)ξ†

)
(6.3.7)

is an SU(3) octet field. It transforms as

A∼
µ → u(π)A∼

µu(π)†. (6.3.8)

With the gauge field V∼
µ, we can make a covariant derivative

DµΨ = ∂µΨ +

[
V∼

µ, Ψ

]
, (6.3.9)

which transforms homogeneously under the local transformation:

DµΨ→ u(π)DµΨu(π)†. (6.3.10)

With these tools, we can easily write down the terms with one derivative in the baryon La-
grangian. There are two terms involving one derivative:

Lq1 = iq /D q + gAq /A∼ γ5q, (6.3.11)

where
Dµ = ∂µ + V∼

µ. (6.3.12)

If truncated at this point, the nonlinear chiral quark Lagrangian describes three degenerate
quarks with a constituent mass and couplings to Goldstone bosons. The noteworthy thing about
the Lagrangian is that is depends on only two new parameters m and gA. As you will show in
Problem 6–3, gA is related to the renormalization of the quark contribution to the axial vector
current. The point is that while the matrix elements of the vector SU(3) currents are guaranteed
to have their canonical form (at nonzero–momentum transfer) by the unbroken SU(3) symmetry,
there is no such constraint for the axial vector currents. SU(3) considerations require them to have
the form

gAqTaγ
µγ5q + · · · , (6.3.13)

but the constant gA is not determined by the symmetry. It is a parameter that must be calculated
from the QCD dynamics (too hard!) or simply fit to the experiment. But this is the only freedom
allowed in the nonlinear chiral quark theory to this order in the momentum expansion.
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There are several terms that contain either two derivatives or one power of µM . We would
expect, on the basis of the arguments (and assumptions) of Section 5.8 that these terms will have
a “dimensional coupling” constant of the order of

m/Λ2
CSB. (6.3.14)

The most important such term is the symmetry–breaking term

− fm

Λ2
CSB

q
(
ξµMξ + ξ†µMξ†

)
q, (6.3.15)

where f is a dimensionless constant of order 1. This term splits the s quark mass from the u and
d masses by an amount

∆m ' 2fmm2
K

Λ2
CSB

' 150 MeV. (6.3.16)

The 150 MeV is a rough estimate of the mass difference from quark model phenomenology, for
example, the mass splitting between states of different strangeness in the spin–1

2 baryon decuplet.
Note that if the constituent mass m is about 350 MeV, then f is indeed of order 1.

In general, we should also consider interaction terms involving more than two quark fields.
However, these are higher dimension operators than those that we have considered so far, and we
might expect their coefficients to be suppressed by additional powers of 1/ΛCSB. If we generalize
the analysis of Section 5.8 to include quark couplings, we conclude that we should include an extra
factor of ΛCSB for each pair of quark fields. In practice, this makes the terms with additional quark
fields less important. Their matrix elements are proportional (roughly) to powers of fπ, while their
coefficients are suppressed by powers of 1/ΛCSB. Thus, we will usually ignore such operators.

6.4 Successes of the Nonrelativistic Quark Model

The hope is that now that we have included the effect of chiral symmetry breaking in the constituent
quark mass, the interquark forces will be correspondingly weakened in our effective theory. Thus,
we may try to identify the low–lying hadrons with nonrelativistic bound states of the quarks
described in Section 6.4. Presumably, the quarks are bound by confining QCD interactions, along
with effects of multiquark and multigluon operators that appear in high orders of 1/ΛCSB in the
effective Lagrangian.

This picture of the baryons is attractive for several reasons. The first striking success is that
the baryon masses are given correctly by this picture. The spin–1

2 octet and spin–3
2 decuplet are

interpreted as color–singlet bound states of three quarks in a ground–state wave function with total
angular momentum equal to zero. The leading contribution to the baryon mass in the nonrelativistic
limit is just the sum of the constituent quark masses. The most interesting relativistic correction
is a spin–dependent contribution to the mass of the form of a sum of quark pairs

κ
∑
ij

~Si · ~Sj
mimj

, (6.4.1)

where ~Si and mi are the spin and mass of the ith quark and κ is a parameter that depends on the
detailed dynamics. (6.4.1) arises primarily from gluon exchange, which gives a contribution of the
right sign. It splits the decuplet from the octet by a few hundred MeV. Furthermore, it explains
the sign and magnitude of the Σ− Λ difference.
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Baryon µQuark model µExp
∗

p 2.61 2.79
n −1.74 −1.91
Λ −0.58 −0.61

Σ+ 2.51 2.36± 0.01
Σ− −0.97 −1.15± 0.02
Ξ0 −1.35 −1.25± 0.02
Ξ− −0.48 −0.69± 0.04

Table 6.1: Baryon magnetic moments. ∗ Source: L. C. Pondrom, AIP Conference Proceedings,
No. 95, New York: AIP, 1982. See also articles by R. Handler, J. Mariner, and B. L. Roberts in
the same publication.

A second success of the quark picture is the prediction of the magnetic moments. In leading
order in v/c, the baryon moment is simply the sum of the contributions from the individual quarks,

µ~S =
∑
i

µi~Si =
∑
i

Qi~Si/mi, (6.4.2)

where Qi is the quark change. A good picture of the baryon masses is obtained if we take

mu ' md ≈ m = 360 MeV, ms ' 540 MeV, (6.4.3)

(see Problem 6–5). With these masses, the octet baryon magnetic moments are those given in the
second column in Table 6.1 (in nuclear magnetons). The agreement with the data shown in the
third column is excellent.

The success of (6.4.2) in giving not only the ratios of the baryon magnetic moments, but even
their overall scale, seems to me to be very significant. The interesting thing about it is that (6.4.2)
depends on the approximate renormalizability of the effective chiral theory. Nonrenormalizable
terms, such as terms describing anomalous magnetic moments for the quarks, complicate the ex-
pression for µ of the baryons. Thus, the success of (6.4.2) shown in Table 6.1 is an indication that
these renormalizable terms are small. This is what we expect if ΛCSB is of the order of 1 GeV. We
would expect an anomalous magnetic moment term of the form

mf

Λ2
CSB

Fµνqσ
µνq, (6.4.4)

where f is of order 1. This gives an anomalous moment of order

m2/Λ2
CSB, (6.4.5)

which we expect to be about 10%. Other nonrelativistic terms and relativistic corrections give
similar contributions to the moments. Thus, in context, we can understand the success of the
magnetic moment predictions of the quark model.

We can also use the quark model to calculate the matrix elements of the vector and axial
currents. The f1 values for the vector currents are guaranteed to work at zero momentum to
the extent that the wave functions are SU(3) symmetrical. The axial vector currents are more
subtle. If we had built our quark model naively, without thinking about spontaneously broken
chiral symmetry, we might have expected the axial currents to be given by

qTaγ
µγ5q. (6.4.6)
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This would give a value 5/3 for g1 neutron decay, whereas the experimental value is 1.25, over 30%
off. Thus, it is a good sign that in a properly constructed chiral theory, the normalization of the
axial current can be different. The neutron decay value determines gA to be

gA = .75 (6.4.7)

In the language of Section 6.3, the overall scale of D and F are related to gA. But the ratio D/F
must now be fixed because we have no further freedom to change the form of the axial vector
current (see Problem 6–6). Again, this prediction works rather well.

We have seen that a chiral nonlinear quark model gives a very attractive picture of the properties
of the octet and decuplet baryons. But this model is probably not the most useful way of thinking
about the low–lying mesons. I say this because in a nonchiral quark model, one naturally interprets
the π and the ρ, for example, as the spin–1 and spin–0 states of a quark–antiquark pair in a zero
orbital angular–momentum state. As in the baryon sector, the spin–dependent interaction (6.4.1)
splits these states. And it has the right sign to make the ρ heavier. If we bravely apply the same
sort of nonrelativistic reasoning to this system, we get a nice simple picture of the mesons as well
as the baryons.

In our picture, however, the spin–0 bound state of quark and antiquark is not the pion. The
pion is an elementary Goldstone boson. Presumably, what happens is that s–channel pion exchange
in the quark–antiquark interaction produces a repulsive force that pushes up the qq state. Thus,
the connection between ρ and π is not very useful. The mystery of the connection between QCD
and the quark model remains, at least for the meson states.

6.5 Hyperon Nonleptonic Decays

As an example of the application of chiral–quark–model ideas to weak interactions, consider the
nonleptonic decays of the strange baryons, the hyperons Λ, Σ, and Ξ. The observed decays are
(along with the conventional shorthand):

Λ0
0 : Λ → π0n

Λ0
− : Λ → π−p

Σ+
+ : Σ+ → π+n

Σ+
0 : Σ+ → π0p

Σ−− : Σ− → π−n

Ξ0
0 : Ξ0 → π0Λ

Ξ−− : Ξ− → π−Λ.

(6.5.1)

We can write the invariant amplitude for a nonleptonic decay as

M = GFm
2
π[uf (pf )(A+Bγ5)ui(pi)], (6.5.2)

where ui(uf ) is the spinor describing the initial (final) baryon state with momentum pi(pf ) and mπ

is the π± mass. The A amplitude describes the parity–violating s–wave decay, the B amplitude
the parity–conserving p–wave.
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All these decays are produced by the ∆S = 1 weak Hamiltonian that, ignoring QCD and other
radiative corrections, looks like

GF√
2
s1c1c3uγ

µ(1 + γ5)sdγµ(1 + γ5)u. (6.5.3)

We will see in Chapter 9 how this is modified by QCD. At the moment, what is important is its
transformation property under SU(3)L×SU(3)R. It transforms as a linear combination of SU(3)L
8 and 27. In the effective chiral–quark Lagrangian, (6.5.3) will appear as a sum of operators that
transform the same way. As with the terms in the Lagrangian, we can order the terms in increasing
numbers of derivatives, symmetry–breaking parameters, and quark fields.

Before we discuss the chiral–quark model, it may be useful to set the historical context by
discussing the nonleptonic decays in the chiral mode of baryons discussed in Sections 6.1–3. We
will concentrate on the SU(3) octet operator because, as we will see in Chapter 9, there is reason
to believe that it is enhanced by the QCD interactions.

It is helpful to consider a matrix h,
hij = δi2δ

3
j , (6.5.4)

which is a symmetry–breaking parameter whose coefficient is the operator of interest. That is, is
we imagine that h transforms under SU(3)L as

h→ LhL†, (6.5.5)

and build all the SU(3)L × SU(3)R invariants that are linear in h, we will have the operators that
we want. For example, in the chiral Goldstone–boson theory, the leading octet contributions are

tr
[
h(∂µU)∂µU †

]
tr [hUµM ], (6.5.6)

which involve derivatives or explicit symmetry breaking (note that the second term can be absorbed
into a redefinition of the π masses, so it does not contribute to decays).

The interesting thing about the chiral baryon theory is that there are operators that do not
involve any derivatives or µM . There are two such operators involving only two baryon fields whose
matrix elements are not proportional to momenta or µM . They can be written as

GFm
2
πfπtr Ψ

[
d{ξ†hξ, Ψ}+ f [ξ†hξ, Ψ]

]
. (6.5.7)

There are other terms that involve no explicit derivatives, such as

tr Ψγ5ξ
†hξΨ. (6.5.8)

But their matrix elements vanish in the symmetry limit because of the γ5. They contain an implicit
factor of the symmetry breaking, or pion momentum.

It is reasonable to suppose that (6.5.7) gives the dominant contribution to the baryon nonlep-
tonic decays (assuming octet enhancement), with the effect of operators like (6.5.8) suppressed by
powers of pπ/ΛCSB. This assumption gives the standard current algebra results for the nonleptonic
decays. It works very well for the s–wave amplitudes. For example, with

d = −1
2
, f =

3
2
, (6.5.9)

the result for the s–wave decay amplitudes is shown in Table 6.2, along with the experimental value
(where the signs have been chosen consistent with the conventions used in the particle data book).
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Decay A(Th) A(exp)
Λ0
− 1.63 1.47± .01

Λ0
0 −1.15 −1.07± .01

Σ+
+ 0 0.06± .01

Σ+
0 1.41 1.48± .05

Σ−− 2.00 1.93± .01
Ξ0

0 1.44 1.55± .03
Ξ−− 2.04 2.04± .01

Table 6.2: Baryon decay amplitudes.

No fit has been attempted here, but it is clear that everything works to 10% or so, which is all we
can expect from the effective theory (see Problem 6–7).

The theoretical predictions exhibit five relations among the seven amplitudes that follow from
(6.5.7). Three of these are ∆I = 1

2 relations.

A(Λ0
−) = −

√
2A(Λ0

0)

A(Ξ−−) = −
√

2A(Ξ0
0)

√
2A(Σ+

0 ) +A(Σ+
+) = A(Σ−−).

(6.5.10)

One is the Lee-Sugawara relation
√

3A(Σ+
0 ) +A(Λ0

−) = 2A(Ξ−−) (6.5.11)

and one is the simple relation
A(Σ+

+) = 0. (6.5.12)

All are satisfied as well as we could expect (or better).
Unfortunately, we can now take (6.5.9) from the s–waves and predict the p–waves. The p–wave

decays, in this picture, arise from so-called pole diagrams in which the hyperon changes strangeness
through the ψψ term in (6.5.7) before or after a pion is emitted. The pion emission is accompanied
by a factor of pion momentum, proportional to symmetry breaking. But this is compensated by
the pole in the baryon propagator that is inversely proportional to the symmetry breaking, so the
contribution is large. The only trouble is that the predictions for the p–wave decay look absolutely
nothing like the data (see Problem 6–7). This has been a puzzle for nearly twenty years. Is this a
general problem for the effective Lagrangian idea, or is there something more specific wrong with
the assumption that (6.5.7) dominates the nonleptonic decays?

Can we find our way out of this difficulty in the chiral–quark model? As in the baryon theory,
there are octet operators in the quark theory that do not involve derivatives or µM . With two
quark fields there is a unique operator,

ψξ†hξψ. (6.5.13)

With four quark fields, there are a variety of operators, such as

ψξ†hξγµTaψψγµTaψ. (6.5.14)

We expect (6.5.13) to be more important than (6.5.14), but because (6.5.13) is chirality–violating,
the detailed power–counting analysis of Section 5.8 (and Problem 5–4) suggests that the suppression
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of (6.5.14) compared to (6.5.13) is only

∼ Fπ
m
' 1

3
. (6.5.15)

The most penetrating way to analyze the chiral–quark theory is to use it to construct a chiral–
baryon theory by comparing the matrix elements of the corresponding interactions between various
states. For example, the matrix elements that give rise to the s–wave amplitudes in the quark
theory from the two–quark operator (6.5.13) are obtained by acting with ψ[h, Π∼ ]ψ on each of the

quark lines. Any s quark can emit a π0 or π− and turn into a d or u. This produces a baryon matrix
element like (6.5.7), but because the quark–flavor dependence is like that of an SU(3) generator,
the matrix is pure f . Thus (6.5.13) makes a contribution to (6.5.7) with

d = 0. (6.5.16)

The four–quark operators like (6.5.14) produce similar terms, but with both f and d contributions.
Thus, we expect a slight suppression of the d amplitude, by a factor of about 1

3 (from (6.5.15)),
which is just what is observed (in (6.5.9)).

The same terms, (6.5.7), (6.5.13), and (6.5.14) give rise to p–wave amplitudes through pole
diagrams in both the baryon and quark theories. But here the correspondence is not exact. If we
look at the baryon pole diagram in the quark–model language with the operator given by (6.5.14),
the transition induced by (6.5.14) and the pion emission are uncorrelated events. For example, in
the decay Λ → π0N , in the pole diagram with an intermediate N , the π0 emission amplitude is
a coherent sum of π0 emission from each of the three quarks in the N . But in the quark model,
while all the same diagrams exist, the s to d transition and pion emission are not independent.
Now we must keep track of the energy and momentum of each quark. Typically, the QCD binding
forces must redistribute the energy produced in the transition in order for the decay to take place.
For example, it clearly makes a difference whether the transition and the emission occur on the
same quark line or not. The momentum redistribution that must take place to get from the initial–
state to final–state baryons is quite different in the two cases. Thus, while the quark theory with
operators (6.5.13) and (6.5.14) gives s–wave amplitudes that can be interpreted in a baryon theory
as coming from the operator (6.5.7), there is no reason to believe that the p–wave amplitudes
produced by (6.5.14) are the same as those produced by (6.5.7).

If this is correct, then one theory or the other, or both, must contain additional contributions
to the ∆S = 1 octet operator that makes up the difference. The leading contributions must involve
an explicit Goldstone–boson field with vector coupling because the mismatch does not occur in the
s–wave amplitudes. For example, in the baryon theory, there are the six such SU(3) singlets that
we can make by taking traces in various orders of the four octets

Ψ, γµγ5Ψ, ξ†hξ, A∼
µ, (6.5.17)

where A∼
µ (defined by (6.3.7)) is the chiral version of the derivative of the Π∼ field. Similar operators

are possible in the quark theory.
These extra contributions are peculiar in the sense that they involve a derivative but are designed

to produce an effect that is not proportional to the symmetry breaking. Their coefficients must be
inversely proportional to the symmetry breaking. The moral is that we cannot avoid such terms
in both theories simultaneously. They are certainly absent in the fundamental QCD–quark theory,
and it is hard to see how they could get induced in the transition to the chiral–quark model.
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If (6.5.13) and (6.5.14) dominate in the chiral–quark model, then the extra operators with large
coefficients will be induced in the baryon theory.

Of course, this doesn’t make much sense in the limit in which the symmetry breaking goes to
zero. When the quark mass differences become very small compared to typical momenta in the
baryon bound state, the distinction between different energy and momentum redistributions in the
decay disappears. Then the coefficients of the extra terms level off so that they can approach finite
but large limits as the symmetry breaking vanishes.

The result of all this is what we expect, in the baryon theory, the operators constructed out
of (6.5.17) to appear with large coefficients. Four of these contribute independently to the p–wave
decays. This eliminates all relations for the p–wave amplitudes except the isospin relations, which
are well satisfied.

In a sufficiently explicit quark model, it should be possible to find relations among some of
these extra parameters and test these ideas in detail. For now, we will content ourselves with the
negative result that the p–wave amplitudes cannot be simply predicted.

Problems

6-1. Derive (6.3.6).

6-2. With LB = LB0 + LB1 , calculate the axial vector currents, and calculate their matrix ele-
ments between baryon states. Derive the Goldberger-Treiman relations. Use the meson Lagrangian
including the chiral symmetry-breaking term.

6-3. Find the quark-current contribution to the vector and axial-vector currents from Lq =
Lq0 + Lq1, (6.3.2) and (6.3.11). Derive a Goldberger-Treiman relation for constituent quark masses.

6-4. Find all the SU(3) × SU(3) invariant terms in the chiral-quark Lagrangian with two
derivatives or one µM , and no more than two quark fields.

6-5. If we include only the spin-dependent relativistic corrections, the masses of the ground-
state baryons have the form ∑

i

mi + κ
∑
i,j

~Si · ~Sj
mimj

Show that (6.4.3) gives a good fit to the octet and decuplet masses.

6-6. Use the chiral-quark model to find d/f in the chiral-baryon Lagrangian (6.5.7). Note that
in the nonrelativistic limit, the matrix elements of jµ5a are nonzero only for the space components,
and these have the form ∑

quarkTa ~σ

6-7. Calculate the s-wave and p-wave amplitudes for the observed hyperon nonleptonic decays
from (6.5.7) and compare with the data in the “Review of Particle Properties.” You will need to
understand their sign conventions. Find the four operators built from (6.5.17) that contribute to
the observed decays. Calculate their contributions and find the coefficients such that together with
(6.5.7) and (6.5.9) they give a reasonable picture of both s-wave and p-wave amplitudes.



Chapter 6a

- Anomalies

6a.1 Electromagnetic Interactions and π0 → 2γ

The π0 decay into two photons obviously involves electromagnetic interactions, not weak inter-
actions. Nevertheless, I cannot resist discussing it here. It affords a beautiful illustration of the
chiral Lagrangian technique together with a good excuse to study some of the history of the axial
anomaly (which we used in Section 5.4 to argue away the axial U(1) symmetry).

It would seem fairly trivial to incorporate the effects of electromagnetism into our chiral La-
grangian. In the underlying QCD theory, we merely replace the usual color SU(3) covariant deriva-
tive (3.1.3) with one that incorporates the photon field

Dµ → Dµ + ieQAµ, (6a.1.1)

where Q is the quark charge matrix

Q =

 2
3 0 0
0 −1

3 0
0 0 −1

3

 . (6a.1.2)

In our chiral Lagrangian, we can simply impose electromagnetic gauge invariance in the same way.
For example, we replace ∂µU with

DµU = ∂µU + ieAµ
[
Q, U

]
. (6a.1.3)

The commutator in (6a.1.3) arises because Q acts on both left-handed and right-handed quarks.
That is, the electromagnetic charge is in the ordinary SU(3) subgroup of SU(3)× SU(3) .

The replacement (6a.1.3) has a variety of effects. In Section 5.5, for example, we discussed the
effect of such interactions on the pseudoscalar masses. These arose because the electromagnetic
interactions explicitly break the chiral (and ordinary) isospin and V –spin symmetries. We thus
expect a variety of symmetry–breaking terms proportional to the quark charges. However, these
classical electromagnetic effects are not very efficient in producing the decay π0 → 2γ.

From angular momentum and parity considerations, it is clear that the two photons in the π0

decay are in an l = 1, j = 0 state associated with the pseudoscalar operator

εµνλσ F
µν F λσ. (6a.1.4)

For example, an interaction of the form

π3εµνλσ F
µν F λσ (6a.1.5)

105



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 106

would produce π0 decay.
The pseudoscalar photon operator is contained in terms like

iεµνλσ trU †DµDνDλDσU + h.c. (6a.1.6)

However, such terms never contain the interaction (6a.1.5). The reason is the commutator (6a.1.3).
The quark charge matrix of QCD commutes with T3 because both are diagonal. Quite generally, in
the limit of exact chiral symmetry, terms like (6a.1.5) are impossible. This follows simply from the
fact that, at least classically, electromagnetism doesn’t break the chiral symmetry associated with
the π3 field. The argument should by now be familiar. If there is no derivative acting on the π fields,
the unbroken chiral symmetries can be taken to be local, and the corresponding Goldstone bosons
can be transformed away. Thus, as before, the Goldstone bosons have only derivative interactions.
(6a.1.5) is ruled out!

This reasoning is called the Sutherland theorem, after David Sutherland who derived an equiv-
alent statement using current algebra. It worried people for a long time because it seemed to
imply that electromagnetism could not account for the π0 → 2γ decay, at least if current–algebra
reasoning was correct.

In our modern language, we can see that there are possible interaction terms with derivatives,
such as

iεµνλσ F
µν F λσ tr

(
Q2U †∂α∂αU

)
+ h.c. (6a.1.7)

There are also terms involving the explicit chiral symmetry breaking, such as

iεµνλσ F
µν F λσ tr

(
Q2µMU

)
+ h.c. (6a.1.8)

But the contribution of these terms to the π0 decay amplitude is suppressed by a power of m2
π

(over Λ2
CSB, presumably) compared to the contribution of a term like (6a.1.5). For any reasonable

coefficient, they are just too small to account for the observed decay rate.
The resolution of this puzzle is the anomaly. In fact, the chiral symmetry associated with π3

is broken by the electromagnetic interaction, but only through a triangle diagram like (5.5.4) with
the gluons replaced by photons. The axial T3 current is not conserved. Rather it satisfies

∂µj
µ
5 =

3e2

16π2
tr
(
T3Q

2
)
· εµνλσ Fµν F λσ. (6a.1.9)

The factor of 3 in (6a.1.9) comes from the sum over the three colors of the quarks. Thus, there must
be an extra term in our chiral Lagrangian with the property that under a T3 chiral transformation
this extra term changes by

− c3
3e2

16π2
tr
(
T3Q

2
)
εµνλσ F

µν F λσ. (6a.1.10)

The extra term must also have appropriate transformation properties under all the other SU(3)L×
SU(3)R transformations. This is not trivial to implement. Wess and Zumino (Physics Letters
37B:95–97, 1971) determined the form of the extra term by imagining a theory in which not only
the electromagnetic U(1) is gauged, but also the full SU(3)L × SU(3)R, as we did in (5.3.1). The
form of the anomaly in this theory, with all of its dependence on the non-Abelian structure of
the group, is determined by the algebra of the infinitesimal gauge transformations. The anomaly
equation can then be formally integrated to give the extra term.

Let
lµ = lµaTa, rµ = rµaTa (6a.1.11)
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be conventionally normalized SU(3)L and SU(3)R gauge fields. Then an SU(3)L × SU(3)R gauge
transformation in the effective theory has the form:

U → LUR†

lµ → LlµL† − iL∂µL†

rµ → RrµR† − iR∂µR†

(6a.1.12)

It is convenient to work with the vector and axial vector fields that we introduced in (5.3.2),

vµ =
(
lµ + rµ

)
/2, aµ =

(
lµ − rµ

)
/2, (6a.1.13)

which are gauge fields for the ordinary and chiral SU(3) transformations, respectively. In the
notation of Wess and Zumino, an infinitesimal SU(3) gauge transformation looks as follows (with
all space–time variables evaluated at the same point):

L = R = 1 + i ε∼

δεU = i
[
ε∼ , U

]
+

δεv
µ = i

[
ε∼ , v

µ
]
− ∂µ ε∼

δεa
µ = i

[
ε∼ , a

µ
]

. (6a.1.14)

An infinitesimal chiral gauge transformation looks as follows:

L = R† = 1 + i c∼

δcU = i
[
c∼ , U

]
δcv

µ = i
[
c∼ , a

µ
]

δca
µ = i

[
c∼ , v

µ
]
− ∂µ c∼

. (6a.1.15)

In this notation, the commutation relations of the SU(3)L × SU(3)R gauge algebra take the form

δε1δε2 − δε2δε1 = δε3 , ε∼ 3 = −i
[
ε∼ 1, ε∼ 2

]
δεδc1 − δc1δε = δc2 , c∼ 2 = −i

[
ε∼ , c∼ 1

]
δc1δc2 − δc2δc1 = δε, ε∼ = −i

[
c∼ 1, c∼ 2

]
.

(6a.1.16)

In the absence of the anomaly, the algebra (6a.1.16) is realized trivially on the effective action of
the chiral theory, which is simply invariant. But the extra term that we must add to incorporate the
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effect of the anomaly is not annihilated by the δ’s. Call this term W (U, vµ, aµ). If we renormalize
the theory so as to maintain invariance under ordinary SU(3) gauge transformations, then

δεW = 0, δcW = F
(
c∼ , v

µ, aµ
)
. (6a.1.17)

Now, (6a.1.17), (6a.1.16), and the Abelian anomaly (6a.1.10) are sufficient to determine the full
non-Abelian anomaly. The result of a straightforward but tedious calculation is (again ala Wess
and Zumino)

F
(
c∼ , v

µ, aµ
)

=
∫
f
(
c∼(x), vµ(x), aµ(x)

)
d4x , (6a.1.18)

where

f = − 1
16π2

εµναβ tr
(
c∼

(
3vµνvαβ + aµνaαβ

−8i(aµaνvαβ + aµvναaβ + vµνaαaβ)

−32aµaνaαaβ
))
,

(6a.1.19)

with

vµν = ∂µvν − ∂νvµ + i
[
vµ, vν

]
+ i
[
aµ, aν

]
,

aµν = ∂µaν − ∂νaµ + i
[
vµ, aν

]
+ i
[
aµ, vν

]
.

(6a.1.20)

This is Bardeen’s form for the non-Abelian anomaly. We will give a more elementary derivation of
parts of this, using Feynman graphs, later in this chapter, and will show you how to derive the rest.
There are other forms that are not what we want because they do not satisfy ordinary SU(3) gauge
invariance, but they can be obtained from (6a.1.19) with the addition of polynomials in vµ and
aµ to the action. These correspond to different schemes for renormalizing the underlying theory.
However, there is no way of removing the anomaly entirely by such manipulations.

Now we can integrate the anomaly to obtain W . Define

U(s) = e
2isΠ∼/f

, ξ(s) = e
isΠ∼/f

,

lµ(s) = ξ†(1− s)lµξ(1− s)− iξ†(1− s)∂µξ(1− s),

rµ(s) = ξ(1− s)rµξ†(1− s)− iξ(1− s)∂µξ†(1− s),

vµ(s) =
(
lµ(s) + rµ(s)

)
/2,

aµ(s) =
(
lµ(s)− rµ(s)

)
/2.

(6a.1.21)

The point of (6a.1.21) is that the different values of s are related by chiral gauge transformations,
which depend on the Goldstone boson field Π∼ . In particular

d

ds
W
(
U(s), vµ(s), aµ(s)

)
ds

= δdsΠ∼/f
W = ds F

(
Π∼/f, v

µ(s), aµ(s)
)
.

(6a.1.22)
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This we can integrate to obtain

W
(
U, vµ, aµ

)
= W

(
U(1), vµ(1), aµ(1)

)
=
∫ 1

0
F
(
Π∼/f, v

µ(s), aµ(s)
)
ds−W

(
U(0), vµ(0), aµ(0)

)
.

(6a.1.23)

The second term on the right-hand side is actually an SU(3)L×SU(3)R invariant. To see this,
note that

U(0) = 1

lµ(0) = ξ†lµξ − iξ†∂µξ

rµ(0) = ξrµξ† − iξ∂µξ†,

(6a.1.24)

where
ξ2 = U. (6a.1.25)

A local SU(3)L × SU(3)R transformation on U defines a local SU(3) transformation u on the ξ’s
as follows:

U → LUR†

ξ → Lξu† = uξR† .

(6a.1.26)

This defines the u matrix as a local SU(3) transformation that depends on L, R, and ξ. From
(6a.1.24)–(6a.1.26) it follows that

lµ(0) → ulµ(0)u† −u∂µu†

rµ(0) → urµ(0)u† −iu∂µu†.
(6a.1.27)

But (6a.1.27) has the form of an ordinary SU(3) gauge transformation, and W
(
(1, lµ(0), vµ(0)

)
is

invariant under ordinary SU(3) gauge transformations. Thus, it can be absorbed into the ordinary
terms in the action that are invariant under SU(3)L×SU(3)R. Hence, we can write the extra term
that incorporates the effect of the anomaly as

W
(
U, vµ, aµ

)
=
∫ 1

0
F
(
Π∼/f, v

µ(s), aµ(s)
)
ds . (6a.1.28)

Now that we have solved the problem (at least formally) for a general SU(3)L× SU(3)R gauge
theory, we can specialize to the case in which we are actually interested by setting

vµ = eQAµ, aµ = 0 (6a.1.29)

in (6a.1.21) and (6a.1.28) to obtain the effect of the electromagnetic anomaly.
Specific interaction terms (such as (6a.1.5)) can be obtained by expanding ξ(s) in a power series

in Π∼ before doing the s integration.

That was a lot of work, but the result is rather remarkable. Not only does it answer the question
that we posed originally, but several others. It gives a term of the form (6a.1.5) (see Problem 5–6),
but also a term which produces a γ → 3π transition. Even when the gauge field is turned off
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completely, an effect of the anomaly remains like the Cheshire cat’s smile. The leading operator
that does not involve the gauge field is

2
5π2f5

εµναβtr
(
Π∼∂

µΠ∼∂
νΠ∼∂

αΠ∼∂
βΠ∼
)
. (6a.1.30)

This term is interesting because it is the leading term in the effective Lagrangian that requires
the Goldstone bosons to be pseudoscalars (note that it is absent in SU(2)L × SU(2)R because of
G parity). No such term with only four derivatives can be built simply as an SU(3)L × SU(3)R
invariant function of the U ’s.

There is a subtlety hidden in the Wess-Zumino analysis, Our expression for the extra term
seems to depend on our ability to define the Goldstone boson field Π∼ . But in general, the U field

does not uniquely determine the Π∼ field. In perturbation theory, this doesn’t bother us. We always

assume that the Π∼ field is “small”. In fact, E. Witten (Nuclear Physics B223, 422–432, 1983) has

shown that the analysis makes sense even for large fields, provided the coefficient of the anomaly
(and therefore of the extra term in the action) is properly quantized. His analysis clarifies the
significance of the Wess-Zumino term.

6a.2 The Steinberger Calculation

Jack Steinberger is an outstanding experimental physicist. He did one important piece of theoret-
ical physics. He considered a field theory in which pions are coupled to massive fermions (proton
and neutron at the time, although they could just as well have been quarks) with the interaction
term

− igψ γ5 Taπa ψ . (6a.2.1)

Steinberger calculated the contribution of a fermion loop to the decay π0 → γγ — from the diagram

................

.................
...................

........................
.......................................................................................................................................................................................................................................................................................................................................
......................

..................
................
.......................... ............. .............π0

..............................................................................................................................

..............................................................................................................................

................................

................................

................... .............

γ

γ

Figure 6a-1:

He found a result that (for the case of three colors of quarks) reproduces the result of the
Wess-Zumino calculation, (6a.1.28) (see also problem 6a-1). This has caused some confusion. If
the π0 → γγ decay can be produced either by the anomaly or by a quark loop, what happens in
the chiral quark model? And for that matter, what about baryon loops? In particular, what does
this do to the discussion at the beginning of chapter 6 of how the baryons transform.

Thus we must answer the following question. When should we include the Wess-Zumino term?
The way to think about it is to note that the term always appears when the quarks are integrated
out of the theory to produce a low-energy theory of the Goldstone boson fields alone. What happens
when the quarks are left in the theory as in the chiral quark model depends on how the quarks
transform under the chiral symmetry. If the quarks transform nonlinearly as discussed in above, so
that all their interactions explicitly involve derivatives, then the Wess-Zumino term must be there,
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just as in the case when the quarks are integrated out. The reason is simply that in this case, the
quark interactions go away at low momentum, so quark loops are harmless at low momenta — they
do not produce any new interactions. We can figure out what happens for other transformation
laws by actually building the fields with the desired transformation laws using the Goldstone boson
fields.

For example, suppose we want to go from quark fields, q, transforming nonlinearly under SU(3)×
SU(3) , to quark fields, q′, transforming linearly as

q′L → Lq′L , q′R → Rq′R . (6a.2.2)

The q′ quarks are related to the q quarks by a chiral transformation

q′L = ξ qL , q′R = ξ† qR . (6a.2.3)

In terms of the q′ quarks, the mass term becomes

−mqq → −mq′RU
†q′L −mq′LUq

′
R (6a.2.4)

which contains nonderivative couplings of the Goldstone bosons to the quarks. You can check that
the couplings are determined by the Goldberger-Trieman relation, in its naive form, (2.6.25) (with
no factor of gA).

But we saw in the previous section that the Wess-Zumino term is precisely the response of
the Lagrangian to such a chiral transformation. The transformation (6a.2.3) precisely cancels the
Wess-Zumino term. Thus we expect the Steinberger calculation to reproduce the effects of the
Wess-Zumino term when the nonderivative coupling is given by (6a.2.4).

6a.3 Spectators, gauge invariance and the anomaly

Here is a diagrammatic way to determine the form of the anomaly. It is really just another way of
seeing that the Steinberger calculation must give the right answer, but is perhaps a little cleaner
and more convincing than the argument we gave in the previous section. Suppose that we add to
the QCD theory of three massless flavors, three sets of three spectator fermions, to cancel the chiral
flavor anomalies. Specifically, add to the theory of colored quarks,

q =

ud
s

 (6a.3.1)

a set of three massless spectator fermions

Qj =

U j

Dj

Sj

 for j = 1 to 3. (6a.3.2)

These massless fermions have their own chiral symmetries, but we can break the symmetry down
to SU(3)× SU(3) with a four-fermion interaction of the following form:

1
Λ2

(
qRQ

j
L

) (
QjR qL

)
+ h.c. (6a.3.3)

This term ensures that qL and QjR rotate under the same SU(3)L, and that qR and QjL rotate
under the same SU(3)R. It is not renormalizable, but that doesn’t matter to our argument. We
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could generate such a term by exchange of a scalar field, but since we will only use it at low energy
scales, it doesn’t really matter where it comes from. Notice also that this term is constructed to be
a color singlet, and also a singlet under a global SU(3) acting on the j index (this global symmetry
is unnecessary, but simplifies the tableaux).

Now there are no anomalies to break the chiral flavor symmetries, so if we couple in classical
flavor gauge fields, as usual, the theory is gauge invariant. Now QCD gets strong and the chiral
symmetry is spontaneously broken, and realized nonlinearly.

Now what happens to the term (6a.3.3) in the low energy theory? This is actually easy to see
from (5.3.1) and (5.4.3). The point is that because the spectator fermions do not carry the color
SU(3), the term

1
Λ2

QjLQ
j
R (6a.3.4)

enters into the theory in exactly the same way as s+ ip in (5.3.1). Thus in the low energy theory,
it also must appear in the same way as s + ip. The leading term at low energies that does not
involve derivatives of Π is therefore one in which the term (6a.3.4) appears in the same way as
s+ ip appears in (5.4.3). Thus the term is

M QjR U Q
j
L + h.c. (6a.3.5)

where M = v3/Λ2. This is a spectator mass term in the low energy theory, along with a specific
set of Goldstone bosons couplings consistent with the Goldberger-Treiman relation.

Now as we go further down in energy scale, below the spectator mass, we must get a gauge
invariant theory involving only Goldstone bosons. Spectator loops must cancel any gauge variant
effects in the low energy chiral theory. Thus the spectator loops must give minus the WZ term.
This has the virtue that we can regularize it to preserve the vector symmetry, and that should give
the conventional WZ term. We can now take the spectator mass, M , to infinity, because the theory
has to make sense at arbitrarily long distances, so the only things that can matter are the terms
that are independent of the mass.

This analysis shows that we can get any coupling in the Wess-Zumino term from a Steinberger-
like loop calculation. But we can also just calculate the coupling of a single Goldstone boson
to the external gauge fields. This is actually equivalent to finding the result of an infinitesimal
chiral transformation, because that is what the Goldstone boson field represents. Thus this should
reproduce the Wess-Zumino analysis that leads to Bardeen form for the anomaly. Then we can
get the rest of the Wess-Zumino term by integrating the anomaly, as we did in the first section.
What graphs can contribute? The Goldstone boson coupling is proportional to 1/f . Thus to get
a contribution that is independent of M , we need dimension five operators. Thus only the three-,
four- and five-point functions can contribute on dimensional grounds (any operator with dimension
higher than five will be suppressed by powers M). There are only a few possibilities that are
proportional to εµναβ and consistent with the vector SU(3), parity and Lorentz invariance. They
are

εµναβ tr
(
ΠVµν Vαβ

)
, εµναβ tr

(
ΠAµν Aαβ

)
, εµναβ tr

(
ΠVµν aα aβ

)
,

εµναβ tr
(
Π aµ Vνα aβ

)
, εµναβ tr

(
Π aµ aν Vαβ

)
, εµναβ tr

(
Π aµ aν aα aβ

)
,

(6a.3.6)

where

Vµν = ∂µvν − ∂νvµ + i
[
vµ , vν

]
, Aµν = ∂µaν − ∂νaµ + i

[
vµ , aν

]
+ i

[
aµ , vν

]
. (6a.3.7)
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In terms of the these objects, the Bardeen anomaly, (6a.1.19), with c∼ → Π becomes

f = − 1
16π2

εµναβ tr
(

Π
(
3V µνV αβ +AµνAαβ

−2i(aµaνV αβ + V µνaαaβ)− 8iaµV ναaβ+

+4aµaνaαaβ
))
,

(6a.3.8)

Below, we will verify each of these terms.
Let us start by calculating the terms proportional to two field-strengths, the first two terms

in (6a.3.6). To do that we consider the three point function for SU(3) × SU(3) vector and axial
currents and a Goldstone field.
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..................
..................
..................
..................
..................


..................
..................
..................
..................
..................
..................
................................

.............................................................................................................................................................................................................................................................................................................. ..............

γµ1vµ1(p1) (or γ5 aµ1(p1))γµ2vµ2(p2) (or γ5 aµ2(p2))

γ5 Π(−p1 − p2)

k − p1

k

k + p2

(6a.3.9)

The ΠV V term is
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..................
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.............................................................................................................................................................................................................................................................................................................. ..............

γµ1vµ1(p1)γµ2vµ2(p2)

γ5 Π(−p1 − p2)

k − p1

k

k + p2

(6a.3.10)

2M
f

tr
(
Π(−p1 − p2) vµ1(p1) vµ2(p2)

)
∫

tr

(
γ5

/k − /p1 +M

(k − p1)2 −M2
γµ1

/k +M

k2 −M2
γµ2

/k + /p2 +M

(k + p2)2 −M2

)
d4k

(2π)4

(6a.3.11)

We are interested in a term in the integrand which is linear in each of the momenta, because there
is no other way to get a term with an ε symbol in it that will survive as M → ∞. Expanding in
powers of momentum and keeping only the relevant term, we can write the integrand as

− tr

(
γ5 p

ν
1

[
∂

∂kν
/k +M

k2 −M2

]
γµ1

/k +M

k2 −M2
γµ2 pλ2

[
∂

∂kλ
/k +M

k2 −M2

])
(6a.3.12)

We can do the trace before performing the differentiations. One of the propagators must
contribute an M and the two others must contribute γs. Using

tr
(
γ5γ

µγνγαγβ
)

= 4i εµναβ (6a.3.13)
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we have

−4i εµ1µ2αβ pν1 p
λ
2{

−
([

∂

∂kν
kα

k2 −M2

]
kβ

k2 −M2

[
∂

∂kλ
M

k2 −M2

])

+

([
∂

∂kν
kα

k2 −M2

]
M

k2 −M2

[
∂

∂kλ
kβ

k2 −M2

])

−
([

∂

∂kν
M

k2 −M2

]
kα

k2 −M2

[
∂

∂kλ
kβ

k2 −M2

])}
(6a.3.14)

At least one of the derivatives must act on the k with an index in each term, otherwise the ε
vanishes, so we can write this as

−4i εµ1µ2αβ pν1 p
λ
2{

2

([
gνα

k2 −M2

]
kβ

k2 −M2

[
M kλ

(k2 −M2)2

])

+

([
gνα

k2 −M2

]
M

k2 −M2

[
gλβ

k2 −M2

])

−2

([
gνα

k2 −M2

]
M

k2 −M2

[
kλ kβ

(k2 −M2)2

])

−2

([
kν kα

(k2 −M2)2

]
M

k2 −M2

[
gλβ

k2 −M2

])

+2

([
M kν

k2 −M2

]
kα

k2 −M2

[
gλβ

k2 −M2

])}

(6a.3.15)

Now since 2 kα kβ → 1
2k

2 gαβ, this is

−2iM εµ1µ2αβ p1α p2β

{(
k2

(k2 −M2)4

)
+ 2

(
1

(k2 −M2)3

)

−
(

k2

(k2 −M2)4

)
−
(

k2

(k2 −M2)4

)
+

(
k2

(k2 −M2)4

)} (6a.3.16)

The integrals in (6a.3.16) are∫ 1
(k2 −M2)3

d4k

(2π)4
= −i 1

32π2M2

∫
k2

(k2 −M2)4

d4k

(2π)4
= −i 1

48π2M2
(6a.3.17)

Using this and putting in the factors from (6a.3.11), and multiplying by three, because we need
three different kinds of spectators because there are three colors of quarks, we get, in momentum
space,

− 3
4π2f

tr
(
Π(−p1 − p2) vµ1(p1) vµ2(p2)

)
εµ1µ2αβ p1α p2β (6a.3.18)
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which corresponds to

− 3
16π2f

εµναβ tr
(
ΠVµν Vαβ

)
. (6a.3.19)

The calculation of the term with two axial vector currents proceeds similarly. The relevant
integral is

2M
f

tr
(
Π(−p1 − p2) aµ1(p1) aµ2(p2)

)
∫

tr

(
γ5

/k − /p1 +M

(k − p1)2 −M2
γµ1γ5

/k +M

k2 −M2
γµ2γ5

/k + /p2 +M

(k + p2)2 −M2

)
d4k

(2π)4

(6a.3.20)

We can proceed as before. In fact, we can immediately turn (6a.3.20) into something very like
(6a.3.12) by moving the γ5s around —

− tr

(
γ5 p

ν
1

[
∂

∂kν
/k +M

k2 −M2

]
γµ1

/k −M
k2 −M2

γµ2 pλ2

[
∂

∂kλ
/k +M

k2 −M2

])
(6a.3.21)

The only difference between (6a.3.21) and (6a.3.12) is the sign of the M in the middle propagator.
Thus the terms proportional to this factor of M just change sign:

−4i εµ1µ2αβ pν1 p
λ
2{

−
([

∂

∂kν
kα

k2 −M2

]
kβ

k2 −M2

[
∂

∂kλ
M

k2 −M2

])

−
([

∂

∂kν
kα

k2 −M2

]
M

k2 −M2

[
∂

∂kλ
kβ

k2 −M2

])

−
([

∂

∂kν
M

k2 −M2

]
kα

k2 −M2

[
∂

∂kλ
kβ

k2 −M2

])}
(6a.3.22)

which we can write this as

−4i εµ1µ2αβ pν1 p
λ
2{

2

([
gνα

k2 −M2

]
kβ

k2 −M2

[
M kλ

(k2 −M2)2

])

−
([

gνα
k2 −M2

]
M

k2 −M2

[
gλβ

k2 −M2

])

+2

([
gνα

k2 −M2

]
M

k2 −M2

[
kλ kβ

(k2 −M2)2

])

+2

([
kν kα

(k2 −M2)2

]
M

k2 −M2

[
gλβ

k2 −M2

])

+2

([
M kν

k2 −M2

]
kα

k2 −M2

[
gλβ

k2 −M2

])}

(6a.3.23)
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Now since 2 kα kβ → 1
2k

2 gαβ, this is

−2iM εµ1µ2αβ p1α p2β

{(
k2

(k2 −M2)4

)
− 2

(
1

(k2 −M2)3

)

+

(
k2

(k2 −M2)4

)
+

(
k2

(k2 −M2)4

)
+

(
k2

(k2 −M2)4

)} (6a.3.24)

Thus the result is

− 1
4π2f

tr
(
Π(−p1 − p2) aµ1(p1) aµ2(p2)

)
εµ1µ2αβ p1α p2β (6a.3.25)

corresponding to

− 1
16π2f

εµναβ tr
(
ΠAµν Aαβ

)
. (6a.3.26)

Now let us look for the terms proportional to one field-strength. For that we need to look
at four-point functions. We could do all of these at once by putting in a general momentum
dependence, but it is a little simpler to keep track of what is going on if we restrict ourselves to
external momentum dependence that picks out a single term in (6a.3.6). We can do this by having
the external momentum carried only by the Π and v fields, because we know from (6a.3.6) that
if picked out terms proportional to the momenta of the a fields, the terms would either vanish or
reproduce what we already calculated in (6a.3.26). So for example, we look at the following graph:

......................
......................

......................
......................

......................
......................

......................
......................

......................
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
......................

......................
......................

......................
......................

......................
......................

......................
...............

......................
......................

......................
......................

...............................................

......................
......................

......................
......................

...............................................

.......................................................................................................................................

......................................................................................................................... ..............

γ5 Π(−p1)

γµ1 vµ1(p1)

γµ2γ5 aµ2(0)

γµ3γ5 aµ3(0)

k − p1

kk

k

(6a.3.27)

The Feynman integral is

2M
f

tr
(
Π(−p1) vµ1(p1) aµ2(0) aµ3(0)

)
∫

tr

(
γµ3γ5

/k +M

k2 −M2
γ5

/k − /p1 +M

(k − p1)2 −M2
γµ1

/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2

)
d4k

(2π)4

(6a.3.28)

Begin by writing the integrand as follows:

−tr

(
γµ3

1
(k − p1)2 −M2

γµ1
/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2

)

+tr

(
γµ3

/k −M
k2 −M2

/p1

(k − p1)2 −M2
γµ1

/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2

) (6a.3.29)
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In the second term, because the numerator is explicitly proportional to p1 and since we are looking
for a term involving only one power of p1 we can drop the p1 dependence in denominator. In the
first term, we must expand in powers of p1 and pick out the first term:

−tr

(
γµ3

2kµp1µ

(k2 −M2)2
γµ1

/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2

)

+tr

(
γµ3

/k −M
k2 −M2

/p1

k2 −M2
γµ1

/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2

) (6a.3.30)

We now average over the k directions, replacing kµkν → 1
4g
µν and dropping terms odd in k to

obtain

−1
2
k2 tr

(
γµ3

1
(k2 −M2)2

γµ1
/p1

k2 −M2
γµ2γ5

M

k2 −M2

)

−1
2
k2 tr

(
γµ3

1
(k2 −M2)2

γµ1
M

k2 −M2
γµ2γ5

/p1

k2 −M2

)

+
1
4
k2 tr

(
γµ3

γµ
k2 −M2

/p1

k2 −M2
γµ1

γµ

k2 −M2
γµ2γ5

M

k2 −M2

)

+
1
4
k2 tr

(
γµ3

γµ
k2 −M2

/p1

k2 −M2
γµ1

M

k2 −M2
γµ2γ5

γµ

k2 −M2

)

−1
4
k2 tr

(
γµ3

M

k2 −M2

/p1

k2 −M2
γµ1

γµ
k2 −M2

γµ2γ5
γµ

k2 −M2

)

−tr

(
γµ3

M

k2 −M2

/p1

k2 −M2
γµ1

M

k2 −M2
γµ2γ5

M

k2 −M2

)

(6a.3.31)

In the third through fifth terms in (6a.3.31), we can use the standard identities,

γµγαγβγµ = 4gαβ , γµγαγµ = −2γα , γµγαγ5γµ = 2γαγ5 , (6a.3.32)
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to get rid of pairs of γs, to obtain

−1
2
k2 tr

(
γµ3

1
(k2 −M2)2

γµ1
/p1

k2 −M2
γµ2γ5

M

k2 −M2

)

−1
2
k2 tr

(
γµ3

1
(k2 −M2)2

γµ1
M

k2 −M2
γµ2γ5

/p1

k2 −M2

)

+k2 tr

(
γµ3

p1
µ1

(k2 −M2)2
γµ2γ5

M

k2 −M2

)

−1
2
k2 tr

(
γµ3

1
k2 −M2

/p1

k2 −M2
γµ1

M

k2 −M2
γµ2γ5

1
k2 −M2

)

−1
2
k2 tr

(
γµ3

M

k2 −M2

/p1

k2 −M2
γµ1

1
k2 −M2

γµ2γ5
1

k2 −M2

)

−tr

(
γµ3

M

k2 −M2

/p1

k2 −M2
γµ1

M

k2 −M2
γµ2γ5

M

k2 −M2

)

(6a.3.33)

The third term vanishes. In the rest, we can use (6a.3.13) to obtain

4i εµµ1µ2µ3 p1µ

[
M k2

(k2 −M2)4

{
−1

2
− 1

2
+

1
2

+
1
2

}
+

M3

(k2 −M2)4

]

= 4i εµµ1µ2µ3 p1µ

M3

(k2 −M2)4
.

(6a.3.34)

Now using ∫ 1
(k2 −M2)4

d4k

(2π)4
= i

1
96π2M4

(6a.3.35)

we get (putting in the color factor)

− 1
4π2f

tr
(
Π(−p1) p1µvµ1(p1) aµ2(0) aµ3(0)

)
εµµ1µ2µ3 (6a.3.36)

which corresponds to
i

8π2f
εµµ1µ2µ3 tr

(
ΠVµµ1 aµ2 aµ3 .

)
(6a.3.37)

Now look at the following graph:
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......................................................................................................................... ..............

γ5 Π(−p2)

γµ1γ5 aµ1(0)

γµ2 vµ2(p2)

γµ3γ5 aµ3(0)

k − p2

k − p2k

k

(6a.3.38)
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The Feynman integral is

2M
f

tr
(
Π(−p2) aµ1(0) vµ2(p2) aµ3(0)

)
∫

tr

(
γµ3γ5

/k +M

k2 −M2
γ5

/k − /p2 +M

(k − p2)2 −M2
γµ1γ5

/k − /p2 +M

(k − p2)2 −M2
γµ2

/k +M

k2 −M2

)
d4k

(2π)4

(6a.3.39)

Again, we start by writing the integrand as follows:

−tr

(
γµ3

1
(k − p2)2 −M2

γµ1γ5
/k − /p2 +M

(k − p2)2 −M2
γµ2

/k +M

k2 −M2

)

+tr

(
γµ3

/k −M
k2 −M2

/p2

(k − p2)2 −M2
γµ1γ5

/k − /p2 +M

(k − p2)2 −M2
γµ2

/k +M

k2 −M2

) (6a.3.40)

Now we expand in powers of p2 and pick out the first term:

−tr

(
γµ3

2kµp2µ

(k2 −M2)2
γµ1γ5

/k +M

k2 −M2
γµ2

/k +M

k2 −M2

)

+tr

(
γµ3

1
k2 −M2

γµ1γ5
/p2

k2 −M2
γµ2

/k +M

k2 −M2

)

−tr

(
γµ3

1
k2 −M2

γµ1γ5
(/k +M) 2kµp2µ

(k2 −M2)2
γµ2

/k +M

k2 −M2

)

+tr

(
γµ3

/k −M
k2 −M2

/p2

k2 −M2
γµ1γ5

/k +M

k2 −M2
γµ2

/k +M

k2 −M2

)
(6a.3.41)

We again average over the k directions, replacing kµkν → 1
4g
µν and dropping terms odd in k to
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obtain

−1
2
k2 tr

(
γµ3

1
(k2 −M2)2

γµ1γ5
/p2

k2 −M2
γµ2

M

k2 −M2

)

−1
2
k2 tr

(
γµ3

1
(k2 −M2)2

γµ1γ5
M

k2 −M2
γµ2

/p2

k2 −M2

)

+tr

(
γµ3

1
k2 −M2

γµ1γ5
/p2

k2 −M2
γµ2

M

k2 −M2

)

−1
2
k2 tr

(
γµ3

1
k2 −M2

γµ1γ5
/p2

(k2 −M2)2
γµ2

M

k2 −M2

)

−1
2
k2 tr

(
γµ3

1
k2 −M2

γµ1γ5
M

(k2 −M2)2
γµ2

/p2

k2 −M2

)

−tr

(
γµ3

M

k2 −M2

/p2

k2 −M2
γµ1γ5

M

k2 −M2
γµ2

M

k2 −M2

)

+
1
4
k2 tr

(
γµ3

γµ
k2 −M2

/p2

k2 −M2
γµ1γ5

M

k2 −M2
γµ2

γµ

k2 −M2

)

−1
4
k2 tr

(
γµ3

M

k2 −M2

/p2

k2 −M2
γµ1γ5

γµ
k2 −M2

γµ2
γµ

k2 −M2

)

+
1
4
k2 tr

(
γµ3

γµ
k2 −M2

/p2

k2 −M2
γµ1γ5

γµ

k2 −M2
γµ2

M

k2 −M2

)

(6a.3.42)

In the last three terms in (6a.3.42), we can again use (6a.3.32) to get rid of pairs of γs. Then
we can perform all the traces (the last term vanishes)

4i εµ1µµ2µ3 p2µ

[(
1
2
− 1

2

)
M k2

(k2 −M2)4
− M

(k2 −M2)3

+
(

1
2
− 1

2

)
M k2

(k2 −M2)4
+

M3

(k2 −M2)4
+
(

1
2
− 1

2

)
M k2

(k2 −M2)4

] (6a.3.43)

Now using (6a.3.17) and (6a.3.35) and putting in the color factor, we get

− 1
π2f

tr
(
Π(−p2) aµ1(0) p2µvµ2(p2) aµ3(0)

)
εµ1µµ2µ3 p2µ (6a.3.44)

which corresponds to
i

2π2f
εµ1µµ2µ3 tr

(
Π aµ1 . Vµµ2 aµ3

)
(6a.3.45)

Finally, let us consider the five-point function with four a fields, the last of the possible terms
in (6a.3.6). Here, there are no derivatives, so we can take all the fields to be constant. The relevant
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Feynman integral is

2M
f

tr
(
Π aµ1 aµ2 aµ3 aµ4

)
∫

tr

(
γµ4γ5

/k +M

k2 −M2
γ5

/k +M

k2 −M2
γµ1γ5

/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2
γµ3γ5

/k +M

k2 −M2

)
d4k

(2π)4

(6a.3.46)
The integrand is

−tr

(
γµ4

1
k2 −M2

γµ1γ5
/k +M

k2 −M2
γµ2γ5

/k +M

k2 −M2
γµ3γ5

/k +M

k2 −M2

)

= −tr
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) (6a.3.47)

Averaging over directions of k gives
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(6a.3.48)

The third term vanishes and the second and fourth and equal, so this is

tr

(
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) (6a.3.49)

which gives

− 4i εµ1µ2µ3µ4

{
M3

(k2 −M2)4
+

M k2

(k2 −M2)4

}
(6a.3.50)

Now again using (6a.3.17) and (6a.3.35) and putting in the color factor, we get

− 1
4π2f

tr
(
Π aµ1 aµ2 aµ3 aµ4

)
εµ1µ2µ3µ4 (6a.3.51)
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Problems

6a-1. Repeat the Steinberger calculation of π0 → γγ.

6a-2. Do the analog of the Steinberger calculation for the “anomalous” interaction term of
(6a.1.30). That is, compute the contribution to such a term from a loop of quarks coupled (non-
derivatively) to the Goldstone bosons, as in the q′ quarks of (6a.2.4). Show that it reproduces the
Wess-Zumino result. Hint: If you think carefully about all the simplifications that are possible
because of the factor of εµναβ , the Feynman graph is extremely simple. Think, rather than working
too hard.

6a-3. Use (6a.1.28) to calculate the decay rates for π0 → 2γ and η → 2γ. Compare your
results with the data in the particle data book. Can you suggest any reason why the π0 rate should
be more reliably given by (6a.1.28) than the η rate?



Chapter 7

— The Parton Model

7.1 Mode Counting

The basic idea of the parton model can be easily understood in the toy QCD model of Section
3.2. In the imaginary world with weak QCD, it is easy to calculate, for example, all weak decay
rates. Just calculate in the quark theory using perturbation theory. This gives a perfectly adequate
description of what happens during the short time that the particles are actually decaying. Much
later (very much later in the imaginary world) when the decay products separate to distances
at which confinement becomes important, complicated things happen (glueball emission, in the
imaginary world), but these don’t affect the total rate. The same ideas can be applied to our
world.

Many processes involving quarks in the real world can be characterized by two separate time
scales: a short time during which the quarks and gluons interact relatively weakly because of
asymptotic freedom, and a longer time scale at which confinement effects become important. When
these two scales can be cleanly separated, we can give the process a parton-model interpretation.
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Figure 7-1:

The simplest parton-model process is the e+e− total cross section into hadrons. The relevant
Feynman diagram is Figure 7-1 , where q is any quark that is light enough to be produced. If we
compare this with e+e− → µ+µ− (Figure 2-4), we see that if the center of mass energy is large
compared to the µ and quark masses, the only difference between the Feynman diagrams is the
charge and color of the quark. The charge Q produces an extra factor of Q2 in the quark cross
section. The color produces an extra factor of 3, just because we must sum over the three colors in
the final state. Thus, the ratio of the quark to muon total cross sections in lowest order is

R =
∑

quarks

3Q2, (7.1.1)

where the sum runs over all quarks with mass less than half the center of mass energy (that is the

123
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electron or positron beam energy, of course), E/2.

............................................................................................................................................................................................................................................................
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Figure 7-2:

This prediction for the total cross section can be improved by including QCD corrections, such
as the single-gluon emission diagram (Figure 7-2). This is rather easy. When the appropriate
virtual gluon diagrams are included, the result is

R =
∑

3Q2
[
1 + αs/π + 0

(
(αs/π)2

)]
. (7.1.2)

The higher-order terms are harder, but the order (αs/π)2 terms have been calculated. The
coupling in (7.1.2) should be evaluated at the center of mass energy, thus the QCD corrections go
to zero as the energy gets Large. There are also corrections to (7.1.2) that cannot be calculated in
perturbation theory in αs. But these all involve the confinement time scale, and they fall off like
powers of (Λ/E)2. Thus, at large E, the simple parton prediction (7.1.1) should be accurate.

Indeed, the data bears out this simple picture. Except at low energies or near the threshold
for production of new quark states, the cross section is roughly flat and roughly given by (7.1.1).
In fact, the observed cross sections are always a bit larger than (7.1.1), as we would expect from
the form of the QCD corrections in (7.1.2). Near thresholds, complicated things happen, most
conspicuously production of quark-antiquark resonances like ρ0, ω, φ, J/ψ, and Υ all of which
give rise to large, relatively narrow peaks in R.
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Figure 7-3:

As discussed in Section 2.9, weak-interaction effects have already been seen in e+e− → µ+µ−.
It is somewhat more difficult to see (and interpret) the analogous effects in e+e− → qq. However,
there are processes in which exactly the same parton-model ideas can be employed to predict weak
effects, for example, decay of a heavy lepton such as the τ− . In this process, the τ− decays into
a ντ , and a virtual W−. The subsequent splitting of the virtual W− is precisely analogous to the
decay of the virtual photon shown in Figure 7-1. Here the appropriate Feynman diagram is shown
in Figure 7-3, where d′ is the combination of d and s (the b is too heavy to be produced) that
appears in the SU(2) doublet with the u quark. To first approximation, we can take d′ = d. Now
the same kind of mode counting applies as in e+e− annihilation, but it is even easier here because all
the couplings are the same. Thus, we expect branching ratios of 20% each into electrons and muons
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and 60% into primarily nonstrange hadrons. QCD corrections will modify this picture slightly by
enhancing the hadronic modes as in (7.1.2). Thus, the leptonic modes should be somewhat smaller
than 20% but, of course, still equal.

This is exactly what is observed. The leptonic branching ratios are about 18% each, and the
hadronic modes consist primarily of nonstrange hadrons.

There is even some evidence that the d′ linear combinations of d and s is the same as that
measured in decays of strange particles. There we found, with

d′ = cos θ1d+ sin θ1 cos θ3s, (7.1.3)

that
cos θ1 = 0.97, sin θ1 cos θ3 = 0.22, (7.1.4)

so that the ratio of us to ud in the final state of hadronic τ− decay should be

sin2 θ1 cos2 θ3

cos2 θ1
= 0.05. (7.1.5)

The decay
τ− → ντ +K∗−(892) (7.1.6)

has been observed. The K∗−(892) is a us bound-state vector meson that is the analog of the ud
bound-state ρ−(770). Thus, we would expect the decay (7.1.6) to have a branching ratio smaller
by a factor of 20 than the decay

τ− → ντ + ρ−(770). (7.1.7)

Again, this is just what is seen. (7.1.6) has branching ratio (1.45 ± 0.18)% while (7.1.7) has
branching ratio about 25% (the π−π0ντ mode, with branching ratio (25.2± 0.4)% is essentially all
ρ−ντ ). Apparently, both the parton model and the SU(2)× U(1) model work very well for heavy
lepton decay.

7.2 Heavy Quark Decay

One might imagine that the decay of a hadron containing a heavy quark such as a t, b, or c might
be described in the same way by a diagram such as Figure 7-4. In this diagram the qlight plays
no role. Even higher-order QCD corrections, in which gluons are exchanged between qlight and
everything else, do not depend on the identity of qlight. Thus, the qlight is just a spectator. We will
call processes like that in Figure 7-4 “spectator processes”.
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Figure 7-4:

It is clear that lots of other things can happen in the decay of a hadron containing a heavy
quark. In particular, the presence of the other quark or antiquark in the initial state can influence
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the gross structure of the decay. The most extreme example of this is a purely leptonic decay . We
would expect, for example, that the F+ meson will decay occasionally into µ+ ν through a diagram
(Figure 7-5) in which the c and s in the F+ annihilate into a virtual W+.

However, this “annihilation diagram” will be suppressed because of angular-momentum conser-
vation, just like the decay π+ → e+ν. However, there is a class of generalized annihilation processes
that are not as suppressed as what we find in Figure 7-5, for example, the processes in Figures 7-6
and 7-7.
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Figure 7-6:
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Figure 7-7:

Indeed, there is evidence that the process in Figure 7-7 is important in charmed particle decay.
To understand the evidence, notice that in Figure 7-7 the process is possible for D0 decay but not
for D+ decay. The process in Figure 7-6 is possible for D+ decay, but it is suppressed because
the angle associated with the cd current is small. Thus, we expect only spectator interactions to
be important for D+ decay, but both spectator and annihilation to be important in D0 decay.
Experiment suggests that the annihilation process is about as important as the spectator process.
The evidence for this comes from a measurement of the semileptonic branching ratios of the D0

and D+ and from measurements that suggest that the D+ lifetime is longer than that of the D0.
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The semileptonic branching ratios are measured to be

B(D+ → e+ +anything) (17.2± 1.9)%

B(D0 → e+ +anything) (7.7± 1.2)%.

(7.2.1)

The D+ decay is about what we would expect on the basis of the spectator process. This is
reasonable because the annihilation contribution is suppressed. But the D0 decay is quite different.
Presumably, the spectator decay contributes to D0 → e+ + anything at the same rate as D+ →
e+ +anything anything. The branching ratio in D0 decay must be smaller because the annihilation
process is making a large contribution to the nonleptonic modes. This, of course, must make the
D0 decay rate larger.

Frankly, the size of the annihilation effect in (7.2.1) is something of an embarrassment. No
one really knows how to calculate it, but theoretical estimates before the measurement put the
annihilation contribution as smaller than or perhaps at most equal to the spectator contribution.
But that means that the ratio of the D+ to D0 branching ratios in (7.2.1) should have been no
more than a factor of two. We have now gotten used to the experimental ratio, but I still believe
that we don’t know how to calculate it.

The data from direct measurements of the D+ and D0 lifetimes are now pretty good. Because
of improvement in detector technology, we can now measure these very short lifetimes. On the
basis of the spectator model and mode counting, we would expect a lifetime of order

τµ

(
mµ

mc

)5

· 1
5
' 8× 10−13 sec, (7.2.2)

where mc is the charmed quark mass, about 1.5 GeV. Initially, the experiments showed a D0 lifetime
much shorter than this, consistent with the semileptonic decay data. But more recent experiments
tend to support the view that the D0 lifetime is about a factor of two shorter than that of the D+.
The most recent numbers are:

τD+ = (1.057± 0.015)× 10−12 sec

τD0 = (.415± 0.004)× 10−12 sec.

(7.2.3)

Note that τD+ is roughly consistent with the spectator-model prediction, (7.2.2).
For the b quark (and heavier quarks), we expect the spectator model to work well. Fragmentary

data on b-quark decay suggests that the b is rather long-lived, with a lifetime of order 10−12 sec.
This would imply small values for s2 and s3 in the KM matrix.

7.3 Deep Inelastic Lepton-Hadron Scattering

One reason for the tension that you may have noticed between theorists and experimentalists is
a very natural difference between their short-term goals. Experimenters want to do experiments
that are doable while theorists want to interpret experiments that are interpretable. This is a real



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 128

problem in experiments with hadrons because the quantities that are easy to measure are typically
related to the long-distance structure of the theory that is too hard for the theorists to deal with.

Deep inelastic lepton-hadron scattering experiments are a class of experiments about which
experimenters and theorists can both be enthusiastic. The idea is to scatter a high-energy lepton
beam off a hadron target and measure the four momentum of the scattered lepton but not the
details of the hadronic final state. A typical process is electron-proton scattering, first studied
extensively with the high-energy electron beam from the two-mile-long linear accelerator at SLAC
in Stanford.
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Figure 7-8:

The dominant process is the electromagnetic scattering described by the diagram in Figure
7-8. The momentum P ′ of the hadronic final state is determined by momentum conservation,
P ′ = P + k− k′, but no other information about the state is used. This is just as well because it is
usually very complicated, involving lots of pions. The virtual photon carries momentum q, which
is spacelike, so −q2 is positive. The product Pq is the proton mass m times the virtual photon
energy, so it is positive (the photon energy is sometimes called ν). It is conventional and useful to
define the dimensionless variables:

xH = − q2

2Pq
, y =

Pq

Pk
. (7.3.1)

Both of these are bounded between zero and one. If E and E′ are the energies of the initial and
final electron, y is

y =
E − E′

E
, (7.3.2)

the fractional energy loss of the lepton. When y = 0, no energy is transferred to the hadronic
system (which is impossible kinematically, but one can get very close to y = 0 at high lepton
energies). When y = 1, the initial lepton energy is almost all transferred.

To see that xH must be less than 1, note that P ′ = P + q and

P ′2 = m2 + 2Pq + q2 ≥ m2, (7.3.3)

since there is always at least one proton in the final state. This immediately gives xH ≤ 1.
We will study the differential cross sections d2σ/dxHdy. To interpret the results, we need a

theoretical model that describes the process in QCD. The key idea, due to Feynman, is that there
are two distinct time scales characterizing this process. The virtual photon that is far off its mass
shell scatters off a quark, antiquark, or gluon in a short time of order 1/

√
−q2. The hadronic time

scale Λ enters in two ways. The quarks have been bound in the hadron for a long time, and they
may be off their mass shell by a momentum of order Λ. Also, after scattering, the quarks recombine
into hadrons in a time of order 1/Λ.

When Feynman invented the idea, he wasn’t sure what kind of particles inside the proton were
scattering. He just called them partons, the parts of the proton. Gell-Mann, meanwhile, knew all
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about quarks, but it took almost ten years for the two of them to get together. (J. D. Bjorken was
one of the first to put these ideas together.)

At any rate, the presence of these two scales suggests that we view the scattering as a two-step
process in which first the short-distance scattering occurs, then later the scattered parton and the
debris of the shattered proton recombine into hadrons. As in e+e−, we assume that the cross section
is determined by the short-distance scattering. To calculate it, we need to know two things: the
probability of finding a given parton in the proton carrying a given momentum, and the probability
of the parton scattering from the virtual photon.
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Figure 7-9:

We will analyze the process in the center of mass frame of the proton and the virtual photon
because it is only through the virtual photon that momentum is transferred to the hadronic system.
At high Pq, the proton is going very fast in this frame, and the partons have momenta that are
parallel to the proton’s momentum P up to terms of order Λ. We will ignore these (because they
change the cross section only by ∼ Λ2/− q2 and write the momentum of the a parton as

pµ = ξPµ, (7.3.4)

where 0 ≤ ξ ≤ 1. Then we can describe the distribution of parton in the proton as a function of
the single variable ξ. We write

fj(ξ) dξ (7.3.5)

is the probability of finding a parton of type j (j runs over each type of quark and antiquark and
gluon) with momentum between ξP and (ξ + dξ)P . This defines the distribution function fj(ξ).
These cannot be calculated with our present theoretical tools. They depend on the structure of the
proton, which we do not understand in terms of QCD perturbation theory.

We can, however, calculate the probability for parton scattering. We do this just by calculating
the cross section dσj/dx dy, where x and y are defined in terms of the parton momentum pµ = ξPµ,

x = − q2

2pq = xH/ξ

y = pq
pk = Pq

Pk ,

(7.3.6)

and the j-type parton is the target. The lowest-order diagram contributing to this process is that
in Figure 7-9, where j is a quark or antiquark. I will not calculate this in detail, but it is fairly
easy to figure out its general form. dσj is clearly proportional to e4Q2

j/q
4, where Qj is the quark

or antiquark charge. The kinematics produces a factor of
[
1 + (1− y)2

]
for reasons that we will

describe in detail later. There is also a δ function that expresses the fact that the final quark in
Figure 7-9 is on its mass shell,

δ(p′ 2) = δ(2pq + q2) ∝ δ(1− x), (7.3.7)
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(where we have neglected the quark mass, though it wouldn’t matter). Finally, to get the dimensions
right, we need a factor of k · p = ξk · P = ξmE. Thus, putting the factors of π and 2 in, we get

dσj
dx dy

=
e4Q2

j

4q4

ξmE

π

[
1 + (1− y)2

]
δ(x− 1). (7.3.8)

We now can put this together just by combining the probabilities, using the fact that xH = ξx,
to obtain (see Problem 7-1)

dσH
dxH dy

=
∑
j

∫
fj(ξ) · dσj

dx dy δ(xH − xξ) dξ dx

= e4mE
4πq4

[1 + (1− y)2]
∑
j Q

2
jxfj(x).

(7.3.9)

The striking thing about this result is that the dependence on q2 is like that in electron scattering
off a pointlike target. This is just what is observed.

Higher-order QCD effects change this simple prediction only slightly. The distribution func-
tions actually are predicted to depend weakly on q2. Something very much like the predicted q2

dependence has actually been observed. This subject is very interesting but should be discussed in
a course on strong interactions. Here we will work only to zeroth order in QCD and use (7.3.9).

7.4 Neutrino-Hadron Scattering

Precisely the same reasoning can be applied to neutrino-hadron or anti-neutrino-hadron scattering.
The new elements here areW± or Z0 exchange rather than photon exchange and the parity-violating
nature of the couplings.

We will first consider the charged-current process νµ (or νµ)+hadron→ µ− (or µ+)+anything.
This is easier to see experimentally than the neutral-current processes we will discuss later. The
parton processes differ depending on whether the beam is νµ, or νµ. For νµ, the important processes
are

νµ + d → µ− + u

νµ + u → µ− + d,

(7.4.1)

while for νµ, they are

νµ + u → µ+ + d

νµ + d → µ+ + u.

(7.4.2)

The cross sections for these parton processes are similar to those for e−-quark scattering, but
they differ in two ways. The W± propagator gives a G2

F rather than e4/q4, at least at −q2 small
compared to M2

W . And the (1 + γ5)’s in the weak coupling affect the y distribution. The rule
is the following: when particles of the same handedness scatter, as νµ + d (both left-handed) or
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νµ + d (both right-handed), the cross section is independent of y; when particles of the opposite
handedness scatter, as νµ + u or νµ + u, the cross section vanishes at y = 1 like (1− y)2.

Putting all this together, we find for the hadronic cross sections

dσνH
dxH dy

=
2mEG2

F

π
·
{
xd(x) + (1− y)2xu(x)

}
(7.4.3)

dσνH
dxH dy

=
2mEG2

F

π
·
{

(1− y)2xu(x) + xd(x)
}
. (7.4.4)

We have ignored various small effects, such as the distribution functions of strange and charmed
quarks and the strangeness-changing and charm-changing parts of the u and d currents, but (7.4.3)-
(7.4.4) is a good first approximation, and the other effects can be included by the same techniques.

The distribution functions depend on the target. Things are particularly simple for targets that
consist of equal numbers of protons and neutrons. Then isospin symmetry implies

u = d ≡ q, u = d ≡ q. (7.4.5)

We expect q to be much larger than q and perhaps also to have a different shape. What is seen
is that q(x) is smaller than q(x) and vanishes faster as x goes to one.

Notice that the total cross sections are (with fq =
∫
dx 2xq(x), and so on)

σν = mE
π G2

F [fq + fq/3]

σν = mE
π G2

F [fq/3 + fq],

(7.4.6)

where fq (and fq) are the fraction of the proton and neutron momentum carried by quarks (and
antiquarks). This can be directly compared with the e− cross section in the same approximation
of ignoring heavy quarks:

σe
−

=
e4mE

4πq4

4
3
· 5

18
(fq + fq). (7.4.7)

Thus, we find the relation (which works)

σe
−

=
5
72

e4

q4G2
F

(σν + σν). (7.4.8)

From the observed cross sections, we can also extract the normalized values of fq and fq. The
results are (very roughly, since we have not included heavy quarks or QCD corrections)

fq ≈ 0.5, fq ≈ 0.1 (7.4.9)

The amusing thing here is that the quarks and antiquarks carry only about half of the nucleon’s
momentum. Most of the rest is carried by gluons. Heavy quarks and antiquarks carry a small
fraction.

The fact that the parton-lepton scattering vanishes as y → 1 when the lepton and parton have
opposite handedness can be seen easily by a helicity argument. y = 1 corresponds to a lepton that
loses all its energy in the lab frame. In the center of mass frame, that means the particles are
scattered backwards. It is then easy to see that the scattering is allowed by angular-momentum
conservation about the beam axis if the parton and lepton have the same handedness, but not if they
have opposite handedness. This is the physical reason for the factors of (1 − y)2 in (7.3.8)-(7.3.9)
and (7.4.3)-(7.4.4).
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7.5 Neutral Currents

In much the same way, we can study neutral-current processes

νµ + P or N → νµ + anything

νµ + P or N → νµ + anything.

(7.5.1)

The cross sections are similar to the charged current but involve the coupling of the Z0 to the
quarks, T3 − sin2 θQ. This time both left- and right-handed quarks scatter, but T3 is nonzero only
for the left-handed quarks. Thus, in the same approximation we used for (7.4.3)-(7.4.4), we have

dσ̃H
dxHdy

= 2mEG2
F

π · {
(
εL(u) + (1− y)2εR(u)

)
x u(x)

+
(
(1− y)2εL(u) + εR(u)

)
xu(x)

+
(
εL(d) + (1− y)2εR(d)

)
x d(x)

+
(
(1− y)2εL(d) + εR(d)

)
x d(x)},

(7.5.2)

where εL,R(q) is (T3 − sin2 θ Q)2 for the appropriate quark state.

εL(u) =
(

1
2 −

2
3 sin2 θ

)2

εL(d) =
(
−1

2 + 1
3 sin2 θ

)2

εR(u) =
(
−2

3 sin2 θ
)2

εR(d) =
(

1
3 sin2 θ

)2
.

(7.5.3)

The antineutrino cross section dσ̃ν/dxHdy can be obtained from (7.5.2) by interchange of the quark
and antiquark distributions.

Things simplify if we look at the total cross-sections off matter targets (u = d). Then

σ̃ν =
mEG2

F

π

{
(εL(u) + εL(d))

[
fq +

1
3
fq

]
+ (εR(u) + εR(d))

[
1
3
fq + fq

]}
(7.5.4)

and again σ̃ν is obtained by interchanging q and q. The ratios of the neutral to charged-current
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cross sections are useful because some experimental uncertainties drop out. The predictions are

Rν = σ̃ν/σν = (εL(u) + εL(d)) + x−1 (εR(u) + εR(d))

Rν = σ̃ν/σν = (εL(u) + εL(d)) + x (εR(u) + εR(d)) .

(7.5.5)

where

x = σν/σν =
fq + 1

3fq
1
3fq + fq

. (7.5.6)

The measured values of Rν and Rν agree with the predictions of the standard SU(2)×U(1) model
and the quark-parton model for sin2 θ ' 0.23.

7.6 The SLAC Experiment

The linear accelerator at SLAC, which was responsible for most of the early experimental work on
e−P scattering that gave rise to the parton model, was also the site of the crucial experiment that
convinced us of the correctness of the SU(2)×U(1) model. The experiment measured the difference
between the scattering cross sections for left-handed and right-handed electrons on protons. This is
a parity-violating effect, obviously, so the leading electromagnetic contribution to the cross section
cancels out in the difference. What is left is a weak-electromagnetic interference that can be
calculated using standard parton-model techniques. This provides very different information from
neutrino scattering, since it is linear in the quark-Z0 coupling and probes the structure of the e−

neutral current. The results are in agreement with the SU(2)×U(1) predictions with sin2 θ ' 0.23
(see C. Y. Prescott et al., Physics Letters 84B, 524-528, 1979) (see Problem 7-2).

Problems

7-1. Derive (7.3.9) and (7.4.3)-(7.4.4).

7-2. By including Z0 exchange in the e−p-scattering cross section, calculate the parity-violating
γ − Z0 interference contribution to the difference in differential cross sections for left- and right-
handed electrons,

∂σL
∂dxHdy

− ∂σR
∂dxHdy



Chapter 8

— Standard Model Precision Tests

Since the original version of this text was written, experimental tests of the standard model have
progressed to the point that there is overwhelming evidence for the basic picture of a spontaneously
broken SU(2)× U(1) gauge theory. The Z and W have been studied extensively, and their static
properties (masses, partial widths into various decay channels, and so on) have been measured.
There are still details that we are unsure about (such as the precise couplings of the W to quarks),
but in general, the experimental results agree with the theoretical predictions of the simplest version
of the standard model not just in the tree approximation but beyond, to the level of the radiative
corrections. Nevertheless, we will argue that it is still unclear what the physics is that spontaneously
breaks the SU(2)× U(1) gauge symmetry, for two reasons:

1. The largest radiative corrections are independent of the details of electroweak symmetry
breaking, depending only on the particle content of the theory below the symmetry breaking
scale; and

2. The leading low-energy effects of the physics of electroweak symmetry breaking are relatively
small, and tightly constrained by the symmetries of the model. They can be gathered into
the values of a few effective interactions.

We will only know for sure what breaks the electroweak symmetry when we can see the scattering
of W s and Z at very high energies, of the order of 1 TeV. This should be possible at the LHC - the
Large Hadron Collider, expected to operate at CERN in the first decade of the next millennium.

It this chapter, we will review some of the issues involved in the calculation of radiative cor-
rections, and show in what sense the largest corrections are simple, and independent of the details
of symmetry breaking. We will also briefly discuss two alternatives to the simplest version of elec-
troweak symmetry breaking — technicolor and a composite Higgs boson. We will not attempt to
give a complete account of modern calculations of radiative corrections. This has become a large
industry, and the details are beyond the scope of this course.

8.1 Choosing a Gauge

In a theory like SU(2)×U(1) with spontaneously broken gauge symmetry, the unitary gauge that
we introduced in Section 2.7 is not very convenient for explicit loop calculations. This formalism has
the advantage that the only fields that appear correspond to physical particles. But the resulting
Lagrangian involves massive vector fields coupled to nonconserved currents. As we discussed in
Section 2.3, this is a potentially dangerous situation. The renormalizability of the theory is not
obvious. In this section, we will discuss a class of gauges in which renormalizability is more explicit.

134
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In chapter 1b, we discussed the necessity of choosing a gauge and the Faddeev-Popov recipe for
constructing a gauge fixing term.

The Faddeev-Popov “derivation” discussed in chapter 1b was very formal. The functional
integral we started with was not well defined, and it is certainly not obvious that the result of
interchanging order of functional integrations and canceling infinite quantities has anything to do
with the gauge theory we started with. Physicists were impressed with the derivation because it
incorporated all of the techniques that had been developed (unsystematically) over the years to
deal with QED, Yang-Mills theories, and gravity. It was not taken for granted that it would be
adequate to properly define spontaneously broken gauge theories. But at least for the gauge–fixing
terms we will describe below, it does work. It yields theories that are unitary and renormalizable
in perturbation theory.

We will now discuss some explicit gauge–fixing terms. The unitary gauge that we have already
discussed in chapter 2 corresponds to a choice of the Faddeev-Popov function

f(Aµ, φ) =
∏
x

∏
broken

generators

δ
(
〈φT 〉gaTaφ

)
. (8.1.1)

In this case ∆ depends only on the surviving Higgs fields.
A gauge that is simple and convenient for some purposes is Landau gauge, which corresponds

to
f(Aµ, φ) =

∏
x

∏
a

δ (∂µAµa) . (8.1.2)

To calculate ∆(Aµ), note that because of the appearance of the δ function (8.1.2) in the integral
(1b.2.12), we need to know ∆(Aµ) only for Aµ satisfying ∂µAµa = 0. Thus, it is enough to consider
infinitesimal transformations of the form

Ω = 1 + iωaTa + · · · (8.1.3)

under which
AµΩa = Aµa − fabcωbAµc −

1
g
∂µωa (8.1.4)

and
[dΩ] =

∏
a, x

[dωa(x)]. (8.1.5)

Then
f(AµΩ, φΩ)[dΩ] =

∏
a, x

[dωa(x)]
∏
b, y

δ
(
∂µA

µ
Ωb(g)

)
. (8.1.6)

If we insert (8.1.4) into (8.1.6) and ignore terms proportional to ∂µAµa , we can write

∆(Aµ)−1 =
∫ ∏

b, y

δ

(∫
Mbc(y, z)ωc(z)d4z

) ∏
a, x

[dωa(x)] , (8.1.7)

where
Mbc(y, z) = −1

g
∂µ
(
∂µδbc − gfbdcAµd

)
· δ(y − z) = −1

g
∂µD

µ
bc(y − z). (8.1.8)

Then
∆(Aµ) = detM. (8.1.9)
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We could calculate detM directly, but it is more fun to express it as a functional integral over
anticommuting variables ηa and ηa in the adjoint representation of the gauge group:

detM ∝
∫

exp{iSGhost} [dη][dη] , (8.1.10)

where
SGhost =

∫
ηa(x)∂µD

µ
abηb(x) d4x . (8.1.11)

Thus, this term can simply be added to the action to produce the Faddeev-Popov determinant ∆.
The η and η fields are the Faddeev-Popov ghost particles. They are massless scale fermions that
(fortunately) do not appear in the physical states.

In the Landau gauge, the gauge–boson propagator is

−gµν + kµkν/k2

k2 −M2
, (8.1.12)

where M2 is the gauge–boson mass–squared matrix. This gauge is extremely convenient for calcu-
lations in unbroken non-Abelian gauge theories, and it is also often useful in spontaneously broken
gauge theories. In Landau gauge, the mixing terms between the gauge bosons and the Goldstone
bosons, (2.6.21), are irrelevant because they are total divergences. Thus, while the Goldstone
bosons are not eliminated, at least they do not complicate the gauge–boson propagators. However,
for some applications, the appearance of the massless Goldstone bosons and the corresponding
appearance of the pole at k2 = 0 in the longitudinal part of the gauge–boson propagator is in-
convenient. In such applications, it is often useful to use one of a set of gauges which interpolate
continuously between Landau gauge and unitary gauge. These are the renormalizable ξ–gauges.
We will discuss them in some detail, both because they are often useful and because they will give
us some insight into the nature of the Higgs mechanism.

We start with an f(Aµ, φ) of the form∏
x

∏
a

δ
(
∂µA

µ
a + iξ〈ΦT 〉gaTaΦ− ca

)
, (8.1.13)

where Φ is the unshifted Higgs field, ca is an external field, and ξ is a positive constant. It may
not be obvious why we have added the second and third terms in the δ functions at this point, but
eventually we will use them to simplify the propagators. Calculating ∆ by the techniques discussed
above, we find (see Problem 8–1):

∆(Aµ, φ) ∝

∫
exp

{
−i
∫
ηa(x)

[
∂µD

µ
ab + ξ〈ΦT 〉gaTagbTbΦ

]
ηb(x) d4x

}
[dη][dη] .

(8.1.14)

Note that ∆ is independent of ca. Notice, also, that when we write Φ in terms of shifted fields, we
are left in (8.1.14) with a mass term for the ghost fields. The mass–squared matrix is just

µ2
ab = ξ〈ΦT 〉gaTagbTb〈Φ〉 = ξM2

ab, (8.1.15)

where M2
ab is the gauge–boson mass–squared matrix.

Now consider the ca dependence of a gauge–invariant Green’s function, (1b.2.12). Clearly there
isn’t any, because the whole point of the Faddeev-Popov construction is that when ∆ is properly



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 137

chosen, it is irrelevant which gauge–fixing term we choose. Both W and G are independent of ca,
so long as g is gauge–invariant. Thus, in particular, we can multiply W and G by the quantity∫

exp
{
− 1

2ξ

∫
c2
a(x)d4x

}
[dca] (8.1.16)

without changing anything. But then interchanging integration orders, we can do the integration of
ca and eliminate the δ functions. The result is a description of the theory in terms of a Lagrangian
with the same ghost term (8.1.14), but with a gauge–fixing term of the form (in the Lagrangian)

− 1
2ξ

(
∂µA

µ
a + iξ〈ΦT 〉gaTaΦ′

)2
. (8.1.17)

Notice that we can write (8.1.17) in terms of the shifted field Φ′ because of the antisymmetry of
Ta:

〈ΦT 〉gaTa〈Φ〉 = 0. (8.1.18)

Now finally, we can get to the physics. The cross term is (8.1.17) combines with the term
(2.7.21) from the Higgs meson kinetic–energy term to form an irrelevant total–derivative term.
Thus, we have succeeded in eliminating the mixing between gauge bosons and Goldstone bosons.
The other terms in (8.1.17) fix the gauge and give mass to the Goldstone bosons. The mass matrix
for the Goldstone boson fields is the same as that of the ghosts, µ2

ab in (8.1.15). It sounds peculiar
to speak of Goldstone–boson masses, but remember that the Goldstone bosons are gauge artifacts.
With an appropriate choice of gauge, we can give them mass if we choose, or even eliminate them
entirely as in unitary gauge. To underscore this point, I will usually refer to the Goldstone bosons
in ξ–gauges as “unphysical Goldstone bosons”.

The quadratic terms in the gauge fields are now

1
4(∂µAaν − ∂νAaµ)(∂µAνa − ∂νAµa)

− 1
2ξ (∂µAµa)2 + 1

2M
2
abA

µ
aAbµ.

(8.1.19)

This gives a propagator [
−gµν + (1− ξ)kµkν/(k2 − ξM2)

]
[k2 −M2]

(8.1.20)

or equivalently

=
[
−gµν + kµkν/M2

]
k2 −M2

− kµkν/M2

k2 − ξM2
. (8.1.21)

(8.1.21) is extremely suggestive. The first term is simply the propagator for the massive vector
fields. The second term modifies the longitudinal part of the gauge–boson propagator to make it
well-behaved at large k2. But this second term by itself looks as if it is related to propagation
of derivatively coupled scalars with mass µ2 = ξM2, the same mass as the unphysical Goldstone
bosons and the Faddeev-Popov ghosts. Indeed, the effects of these three gauge artifacts conspire
to cancel in all physical processes so that unitarity is maintained in these gauges.

Practically speaking, the advantage of the ξ–gauges is that all gauge artifacts have nonzero
masses. The simplest such gauge corresponds to ξ = 1, for which the gauge–boson propagator is
just

− gµν

k2 −M2
(8.1.22)
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and the unphysical Goldstone bosons and ghosts have the same masses as the corresponding gauge
particles. This is the ’t Hooft-Feynman gauge. For many purposes, it is the most convenient gauge
for explicit calculations in a model like SU(2) × U(1). Some physicists prefer to keep ξ arbitrary,
however, because the cancellation of all ξ dependence provides a useful check for complicated
calculations.

Note that, as promised, these gauges interpolate between the Landau gauge (ξ = 0) and unitary
gauge (ξ = ∞). The unitary–gauge limit is obtained by simply pushing all the gauge artifacts up
to infinite mass.

Finally, note that the whole issue of gauge fixing is really not dependent on the assumption
that a fundamental Higgs boson exists. It does depend on the Higgs mechanism, that describes
how the Goldstone bosons associated with the spontaneous breaking of SU(2) × U(1) become
the longitudinal components of the W and Z gauge bosons. But only the Goldstone bosons are
directly involved — not the Higgs boson. The Goldstone bosons are always there whenever a
continuous symmetry is spontaneously broken. But the existence of the Higgs boson depends on
the dynamics of symmetry breaking. While the simplest weak-coupling version of this dynamics
(that we described in chapter 2) involves a fundamental Higgs boson, we will argue later that in
some strong-coupling models of symmetry breaking, there is no Higgs boson at all, while in others,
the Higgs boson exists, but is a composite state.

8.2 Effective Field Theories

Before we try to apply the results of the previous section to actual calculations, we will introduce
some more machinery, the idea of an effective field theory. We have already used parts of the
idea in Chapters 5 and 6 on chiral Lagrangians. There we used it in desperation and ignorance
in order to concentrate on that part of the physics that we could hope to understand. Beginning
with this section, we will sharpen the idea to the point where it will become an extremely useful
calculational tool. It will make hard calculations easy and impossible calculations doable. In fact,
however, the effective–field–theory idea is much more. It is one of the great unifying concepts in
modern quantum field theory. Learn the language and it will serve you well.

The effective–field–theory idea is important because physics involves particles with very dis-
parate masses and because we study physics in experiments involving various energies. If we had
to know everything about all the particles, no matter how heavy, we would never get anywhere.
But we don’t.

Quantum electrodynamics, for example, describes the properties of electrons and photons at
energies of the order of 1 MeV or less pretty well, even if we ignore the muon, quarks, the weak
interactions, and anything else that may be going on at high energy. This works because we
can write an effective field theory involving only the electron field and the photon field. With a
completely general quantum field theory involving these fields, including arbitrary renormalizable
interactions, we could describe the most general possible interactions consistent with relativistic
invariance, unitarity of the S–matrix, and other general properties like TCP symmetry. Thus, we
do not give up any descriptive power by going to an effective theory.

It might seem that we have given up predictive power because an arbitrary effective theory has
an infinite number of nonrenormalizable interactions and thus an infinite number of parameters.
But this is not quite right for two reasons, one quantitative and one qualitative. Quantitatively, if we
know the underlying theory at high energy, then we can calculate all the renormalizable interactions.
Indeed, as we will discuss, there is a straightforward and useful technology for performing these
calculations. Thus, quantitative calculations can be done in effective theory language.
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The qualitative message is even more interesting. As we will see in detail, so long as the
underlying theory makes sense, all of the nonrenormalizable interactions in the effective theory
are due to the heavy particles. Because of this, the dimensional parameters that appear in the
nonrenormalizable interactions in the effective theory are determined by the heavy particle masses.
If these masses are all very large compared to the electron mass and the photon and electron
energies, the effects of the nonrenormalizable interactions will be small, suppressed by powers of
the small mass or momenta over the large masses.

Thus, not only do we not lose any quantitative information by going to the effective–field–theory
language, but we gain an important qualitative insight. When the heavy particle masses are large,
the effective theory is approximately renormalizable. It is this feature that explains the success of
renormalizable QED.

To extract the maximum amount of information from the effective theory with the minimum
effort, we will renormalize the theory to minimize the logarithms that appear in perturbation theory.
In practice, we will use a mass–independent renormalization scheme such as the MS scheme, and
choose the renormalization scale µ appropriately. If all the momenta in a process of interest are of
order µ, there will be no large logarithms in perturbation theory. The standard technology of the
renormalization group can be used to change from one µ to another.

In the extreme version of the effective–field–theory language, we can associate each particle
mass with a boundary between two effective theories. For momenta less than the particle mass, the
corresponding field is omitted from the effective theory. For larger momenta, the field is included.
The connection between the parameters in the effective theories on either side of the boundary is
now rather obvious. We must relate them so that the description of the physics just below the
boundary (where no heavy particles can be produced) is the same in the two effective theories. In
lowest order, this condition is simply that the coupling constants for the interactions involving the
light fields are continuous across the boundary. Heavy–particle exchange and loop effects introduce
corrections as well as new nonrenormalizable interactions. The relations between the couplings
imposed by the requirement that the two effective theories describe the same physics are called
“matching conditions”. The matching conditions are evaluated with the renormalization scale µ in
both theories of the order of the boundary mass to eliminate large logarithms.

If we had a complete renormalizable theory at high energy, we could work our way down to
the effective theory appropriate at any lower energy in a totally systematic way. Starting with the
mass M of the heaviest particles in the theory, we could set µ = M and calculate the matching
conditions for the parameters describing the effective theory with the heaviest particles omitted.
Then we could use the renormalization group to scale µ down to the mass M ′ of the next heaviest
particles. Then we would match onto the next effective theory with these particles omitted and then
use the renormalization group again to scale µ down further, and so on. In this way, we obtain a
descending sequence of effective theories, each one with fewer fields and more small renormalizable
interactions than the last. We will discuss several examples of this procedure in the sections to
come.

There is another way of looking at it, however, that corresponds more closely to what we
actually do in physics. We can look at this sequence of effective theories from the bottom up.
In this view, we do not know what the renormalizable theory at high energy is, or even that
it exists at all. We can replace the requirement of renormalizability with a condition on the
nonrenormalizable terms in the effective theories. In the effective theory that describes physics at
a scale µ, all the nonrenormalizable interactions must have dimensional couplings less than 1/µ
to the appropriate power (1/µD−4 for operators of dimension D). If there are nonrenormalizable
interactions with coupling 1/M to a power, for some mass M > µ, there must exist heavy particles
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with mass m <∼ M that produce them, so that in the effective theory including these particles,

the nonrenormalizable interactions disappear. Thus, as we go up in energy scale in the tower of
effective field theories, the effects of nonrenormalizable interactions grow and become important on
the boundaries between theories, at which point they are replaced by renormalizable (or, at least,
nonrenormalizable) interactions involving heavy particles.

The condition on the effective theories is probably a weaker condition than renormalizability.
We can imagine, I suppose, that this tower of effective theories goes up to arbitrarily high energies
in a kind of infinite regression. This is a peculiar scenario in which there is really no complete
theory of physics, just a series of layers without end. More likely, the series does terminate, either
because we eventually come to the final renormalizable theory of the world, or (most plausible)
because at some very large energy scale (the Planck mass?) the laws of relativistic quantum field
theory break down and an effective quantum field theory is no longer adequate to describe physics.

Whatever happens at high energies, it doesn’t affect what we actually do to study the low–
energy theory. This is the great beauty of the effective–field–theory language.

8.3 The Symmetries of Strong and Electroweak Interactions

As a trivial example of the utility of the effective Lagrangian language, we will interpret and answer
the following question: What are the symmetries of the strong and electromagnetic interactions?
This question requires some interpretation because the strong and electromagnetic interactions
do not exist in isolation. Certainly the electromagnetic interactions, and probably the strong
interactions as well, are integral parts of larger theories that violate flavor symmetries, parity,
charge conjugation, and so on. The effective–field–theory language allows us to define the question
in a very natural way. If we look at the effective theory at a momentum scale below the W
and Higgs mass, only the leptons, quarks, gluons, and the photon appear. The only possible
renormalizable interactions of these fields consistent with the SU(3)×U(1) gauge symmetry are the
gauge invariant QED and QCD interactions with arbitrary mass terms for the leptons and quarks.
All other interactions must be due to nonrenormalizable couplings in the effective theory and are
suppressed at least by powers of 1/MW . Thus it makes sense to define what we mean by the strong
and electromagnetic interactions as the QED and QCD interactions in the effective theory. Indeed,
this definition is very reasonable. It is equivalent to saying that the strong and electromagnetic
interactions are what is left when the weak interactions (and any weaker interactions) are turned
off (by taking MW →∞).

Now that we have asked the question properly, the answer is rather straightforward. If there
are n doublets of quarks and leptons, the classical symmetries of the gauge interactions are an
SU(n) × U(1) for each chiral component of each type of quark. These SU(n) symmetries of the
gauge interactions do not depend on any assumptions about the flavor structure of the larger theory.
They are automatic properties of the effective theory.

Now the most general mass terms consistent with SU(3)×U(1) gauge symmetry are arbitrary
mass matrices for the charge 2

3 quarks, the charge −1
3 quarks, and the charged leptons and an

arbitrary Majorana mass matrix for the neutrinos.
The Majorana neutrino masses, if they are present, violate lepton number conservation. In

fact, such masses have not been seen. If they exist, they must by very small. It is not possible to
explain this entirely in the context of the effective SU(3) × U(1) theory. However, if we go up in
scale and look at SU(3)×SU(2)×U(1) symmetric theory above MW and MZ and if the only fields
are the usual fermion fields, the gauge fields, and SU(2) doublet Higgs fields, the renormalizable
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interactions in the theory automatically conserve lepton number.1 Thus, there cannot be any
neutrino mass terms induced by these interactions. If neutrino mass terms exist, they must be
suppressed by powers of an even larger mass. Presumably, this is the reason they are so small.

The quark and lepton masses can be diagonalized by appropriate SU(n) transformations on the
chiral fields. Thus, flavor quantum numbers are automatically conserved. Strong and electromag-
netic interactions, for example, never change a d quark into an s quark. This statement is subtle,
however. It does not mean that the flavor–changing SU(2) × U(1) interactions have no effect on
the quark masses. It does mean that any effect that is not suppressed by powers of MW can only
amount to a renormalization of the quark fields or mass matrix, and thus any flavor–changing effect
is illusory and can be removed by redefining the fields.

With arbitrary SU(n) transformations on the chiral fields, we can make the quark mass matrix
diagonal and require that all the entries have a common phase. We used to think that we could
remove this common phase with a chiral U(1) transformation so that the effective QCD theory
would automatically conserve P and CP . We now know that because of quantum effects such as
instantons this U(1) is not a symmetry of QCD. A chiral transformation changes the θ parameter
defined in (5.5.2), Thus, for example, we can make a chiral U(1) transformation to make the quark
masses completely real. In this basis, the θ parameter will have some value. Call this value θ. If
θ = 0, QCD conserves parity and CP . But if θ 6= 0, it does not.

Experimentally, we know that CP is at least a very good approximate symmetry of QCD. The
best evidence for this comes from the very strong bound the neutron electric dipole moment, less
than 6 × 10−25e cm and going down. This implies that θ is less than about 10−9, a disturbingly
small number. This situation is sometimes referred to as the strong CP puzzle. The puzzle is: why
is θ so small if the underlying theory violates CP?

8.4 The ρ Parameter

An interesting and important application of effective field theory ideas arises because the t quark is
very heavy. It is observed in high-energy collider experiments to have a mass nearly twice that of
the W and Z, about 175 GeV. Since the heavy t is not present in the effective theory below MW ,
its only possible effect would be to change the structure of the theory at the W scale.

At this point, it is important to distinguish between fermions like the quarks and leptons that
get mass due to their couplings to the Higgs field and fermions that have SU(2) × U(1) invariant
masses. The latter might include, for example, a heavy Dirac doublet, in which both the left-
and right-handed fields are SU(2) doublets. Such heavy particles do not affect the low–energy
theory very much. Their SU(2) × U(1) invariant masses ensure that they are removed from the
effective theory in complete, degenerate SU(2)×U(1) multiplets. This does not affect the structure
of the low–energy SU(2) × U(1) invariant theory, except to renormalize parameters and produce
nonrenormalizable terms that are suppressed by powers of the large mass. Certainly, there are no
effects of such particles that grow as their masses increase.

The situation is entirely different for the t quark or other particles with SU(2)×U(1)–breaking
mass terms. Below mt, but above MZ , the theory looks very peculiar. The SU(2) × U(1) gauge
invariance is explicitly broken in the couplings of the W and Z to quarks because the t has been
removed from the (t, b) doublet. And because the gauge invariance is broken, the other couplings
in the effective theory are not constrained by it!

1Classically, they conserve lepton number and baryon number separately. The quantum effects of the SU(2)×U(1)
instantons produce very weak interactions that violate lepton number and baryon number but conserve the difference.
Conservation of B − L is enough to forbid neutrino masses.



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 142

The most interesting terms in the effective Lagrangian from this point of view are the mass
terms for the W± and W3 gauge bosons that determine the relative strength of neutral– and
charged–current weak interactions. They are interesting because they are dimension–2 operators
and their coefficients can be proportional to the large m2

t . A term that is the same for W± and W3

is not interesting because it can be absorbed into a renormalization of the VEV of the Higgs field.
But a difference between the W± and W3 mass term is a real physical effect. When the t quark
is removed from the theory, exactly such an effect is produced in the matching condition onto the
theory below mt. The difference is

m2
W± −m

2
W3

= δM2
W ≡

3α
16π sin2 θ

m2
t . (8.4.1)

This is an effect of the heavy particle that actually grows with the heavy mass! It is easiest to
interpret (8.4.1) as an additional correction to the W± mass, because the W3 mass term gets mixed
up with the X mass in the spontaneous symmetry breaking, so this is what we will do.

Another way to understand (8.4.1) is to notice that since mt arises from a Yukawa coupling

ft =
√

2mt

v
, (8.4.2)

we can write (8.4.1) as
m2
W± −m

2
W3

m3
W±

=
3f2
t

32π2
. (8.4.3)

This shows that the effect is a radiative correction that depends on the Yukawa coupling.
(8.4.1) is phenomenologically important (as well as theoretically interesting) not only because

it affects the W and Z masses, but because it changes the relative strength of neutral– to charged–
current processes. It is conventional to define a parameter ρ that is the measured ratio of the
coefficient of jα3 j3α to jα1, 2 j1, 2α (see (2.8.6)) in the effective weak Hamiltonian for neutrino interac-
tions. ρ is known to be very close to 1 in neutrino–hadron scattering. Actually, there is a negative
contribution to ρ because of the QED renormalization of charged–current scattering (Figure 8–4
and (8.6.2)). The heavy t gives a positive contribution to ρ (in all processes):

∆ρ =
3α

16π sin2 θ

m2
t

M2
W

. (8.4.4)

It is interesting to note that for a doublet (t′, b′) in which the t′ and b′ were heavy and degen-
erate, there would be no such effect. Removing the t′ and b′ from the theory produces a common
renormalization of mW± and mW3 that is not physically interesting. Even though the t′ and b′

masses break the SU(2) × U(1) symmetry, they do not break the custodial SU(2) symmetry, see
(2.8.7), that keeps ρ = 1. However, there are other interesting effects of this doublet that grow like
ln(mt′,b′/MW ). We will return to these below.

The analysis of the ρ parameter was done (in a different language) by M. B. Einhorn, D. R. T. Jones,
and M. Veltman (Nuclear Physics B191, 146–172, 1981), who also noticed that contributions to
ρ of this kind all have the same sign, no matter how the heavy particles transform. This puts an
interesting constraint on possible heavy weakly interacting matter.
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8.5 MW and MZ

In Chapter 2, we learned that the W and Z masses are predicted in the SU(2) × U(1) model. In
the tree approximation, we find from (2.8.1) and (2.7.28)

M2
W =

√
2 e2

8GF sin2 θ
, MZ = MW / cos θ. (8.5.1)

We have discussed the experiments that determine the parameters in (8.5.1). We know from QED
that

α =
e2

4π
=

1
137.036

(8.5.2)

We can determine GF from the µ decay rate,

τ−1
µ =

G2
Fm

5
µ

192π3
, (8.5.3)

which for measured τµ and mµ gives

GF = 1.164× 10−5 GeV−2. (8.5.4)

Finally, sin2 θ as measured in neutral–current experiments (from a more sophisticated version of
(7.5.5)), is

sin2 θ ' 0.23 (8.5.5)

Putting (8.5.2), (8.5.4), and (8.5.5) into (8.5.1) gives

MW = 77.8 GeV, MZ = 88.7 GeV. (8.5.6)

The tree level predictions, (8.5.6), are significantly off from the measured values in the particle
data book:

MW = 80.33 GeV, MZ = 91.187 GeV. (8.5.7)

We would like to calculate the leading radiative corrections to (8.5.6) to see whether they account
for this discrepancy. By far the easiest way to do this is to adopt an effective–field–theory language.
One important correction is the contribution from the heavy t that we discussed in the previous
sections. The other dominant effects can be understood as follows. Below MW the effective theory
involves QCD and QED, with the weak interactions appearing only as nonrenormalizable four–
fermion interactions. In lowest order, the matching condition that determines these four–fermion
interactions comes from single W and Z exchanges. That means that in leading order, GF , e2,
and sin2 θ should be interpreted as parameters renormalized at µ 'MW and the coefficients of the
various four–fermion operators are given by the tree–approximation formulae discussed in Chapters
2 and 3 (including the effect of the t quark on the W mass). Higher–order contributions will be a
power of series in the SU(2) and U(1) coupling constants, of order

α

4π sin2 θ
,

α

4π cos2 θ
. (8.5.8)

These effects are less than 1%.
There are, however, much more important effects. The most important is that the α that

appears in (8.5.1) is not given by (8.5.2). It should be interpreted as α(MW ), where α(µ) is the
running coupling constant in the effective QED theory renormalized at µ. The other effects are
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similar. The effective four–fermion operators obtained from the matching condition are renormal-
ized at MW , but the experiments that are used to determine the parameters are done at smaller
momentum. The renormalization group must be used to find the form of four–fermion operators
renormalized at the µ appropriate for each experiment.

Actually, the renormalization group is an affectation in these calculations. The important point
is that these corrections involve large logarithms,

α

4π
ln
MW

µ
, (8.5.9)

and that all flavors of quarks and charged leptons give contributions. The renormalization group
automatically adds up the higher powers of α lnMW /µ, but here α is small enough to make the
higher–order terms negligible. The terms proportional to (8.5.9) can be extracted directly from
one–loop diagrams.

We will first consider the renormalization of α. The conventional α given in (8.5.2) is renormal-
ized on the electron mass shell. However, the difference between this definition and a reasonable
running coupling (like the MS scheme) evaluated with µ = me is not very large because it has no
large logarithm in it. Thus, to a good approximation, we can take

α(me) = 1/137. (8.5.10)

.................
.......................

...................................................................................................................................................................................................................................................................................................................
......................

................
..............................................................................................................................................................................................................................................................................................................................................

γγ

light charged particles

Figure 8-1:

Now we can follow α(µ) up to µ 'MW . The µ dependence comes from the vacuum polarization
diagram, as shown in Figure 8–1. All charged particles that have masses less than µ contribute in
this process (Figure 8–1) because these are the charged particles in the effective QED theory at
the scale µ. A standard calculation gives

α(µ2) = α(µ1) ·
[
1 +

2α
3π

∑
i

Q2
i ln

µ2

µ1

]
, (8.5.11)

where the sum runs over all light fermions in the effective theory. Thus, we find

α(MW ) = α(me)

[
1 +

2α
3π

∑
i

Q2
i ln

MW

mi

]

' 1/129.

(8.5.12)

Here I have used constituent masses for the quarks (because quarks should not be in the effective
theory for momenta much smaller than the mass of the bound states containing those quarks).



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 145

This is a 6% increase in α(MW ) compared to (8.5.2), which translates to a 3% increase in MW and
MZ in (8.5.1).

The Fermi constant GF is determined from the µ decay rate, so we must look at the renormal-
ization of the four–fermion operator

GF√
2
νeγ

µ(1 + γ5)e−µ−γµ(1 + γ5)νµ. (8.5.13)

For convenience, we will work in Landau gauge where the fermion–wave–function renormalization

........................................................................................................................................................................................................................................................................................................................................
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....................................

..........................................
.................................................

...............................................................................................................................................................................................

Figure 8-2:

from the diagram seen in Figure 8–2 has no µ dependence. Then the renormalization of (8.5.13)
comes only from the diagram in Figure 8–3 where the arrows indicate the direction in which the
lepton number “flows”. That is, the e− line with the arrow pointing towards the vertex means
either an incoming electron or outgoing positron. In this case, because only left-handed fields are
involved in (8.5.13), the arrows could also indicate the flow of left-handedness. The photon can
couple only as shown because the neutrinos have no electric charge. But the diagram in Figure 8–3
gives no lnµ dependence. The diagram is finite.
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νe e− ..................................................................................................................................................................................................................

Figure 8-3:

We can see this by direct calculation or note that we could have used Fierz transformations
(Problem 2–3) to write (8.5.13) in so-called charge retention form:

GF√
2
νeγ

µ(1 + γ5)νµµ−γµ(1 + γ5)e−. (8.5.14)

Here it is clear that the µ and e fields appear only in the form of the left chiral current, which
is conserved in the limit that the µ and e masses vanish. But a conserved current does not get
multiplicatively renormalized. It is related by Noether’s theorem to a charge that is a physical
observable.

Thus, there are no corrections of order α lnMW /µ to (8.5.13). That means that the GF deter-
mined by the µ decay rate is the same as the GF that appears in (8.5.1).

We can now put these corrections together to get one test of the standard model that incorpo-
rates the leading radiative corrections. We will use the measured values of MZ , mt and GF , and
the corrected α(MW ) of (8.5.12) to predict MW . We begin by incorporating the corrections we
have discussed, into (8.5.1), and using this to determine sin2 θ:

cos2 θM2
Z + δM2

W =
√

2 e2

8GF sin2 θ
. (8.5.15)
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Solving for sin2 θ gives
sin2 θ = 0.228 (8.5.16)

Then
MW = MZ cos θ = 80.1 GeV (8.5.17)

which agrees with the measured value to within a fraction of a percent!

8.6 Neutrino-hadron scattering

In this section, we will briefly discuss the radiative corrections to low-energy neutrino hadron
scattering. The operator that contributes to charged–current neutrino hadron scattering is

GF√
2
µ−γµ(1 + γ5)νµUγµ(1 + γ5)D. (8.6.1)

It gets renormalized because of the diagram in Figure 8–4 that gives for the coefficient
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νµ µ− ..................................................................................................................................................................................................................

Figure 8-4:

C(µ) =
GF√

2

(
1 +

α

π
ln
MW

µ

)
. (8.6.2)

Note that there is an effect only when the photon is exchanged between legs with the same outgoing
handedness. Otherwise, as discussed above, there is no large logarithmic renormalization.

The four–fermion operator relevant in neutral–current neutrino scattering is

GF√
2
νfγ

µ(1 + γ5)νf(∑
j 6=f

ψjγµ
(
T3(1 + γ5)− 2 sin2 θQ

)
ψj + fγµ

(
1
2

(1 + γ5) + 2 sin2 θ

)
f

) (8.6.3)

where the sum runs over all flavors of leptons and quarks, and the f refers to the lepton flavor, e,
µ or τ . The f is necessary because there is a contribution from W exchange as well as the contri-
bution from Z exchange (see problem (2-5)). This is like (8.5.13) in that there is no multiplicative
renormalization. Here, however, there is a new effect produced by the diagram in Figure 8–5.

One might think (for a fleeting moment) that the photon operator would produce a pole for
momentum transfer q2 = 0, which would give rise to a long–range neutral–current momentum
interaction. This cannot happen, because the subdiagram shown in Figure 8–6, where × is the
electromagnetic current, must vanish as the momentum transfer goes to zero because the neutrino
has zero electric charge. Thus, in (8.6.3) the Feynman integral produces a factor of q2 that kills
the pole.
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The result is a four–fermion interaction that is a product of the neutrino current times the
electromagnetic current. In other words, it simply renormalizes sin2 θ in (8.6.3):

sin2 θ = sin2 θMW

·
[
1 +

α

3π

(∑
j 6=f

Qj

(
T3

1
sin2 θMW

− 2Qj

)
lnMW /max(µ, mj)

−
(

1
2 sin2 θMW

+ 2
)

lnMW /max(µ, mf )

)]
(8.6.4)

The renormalization group interpretation of (8.6.4) is slightly subtle. The diagram (Figure 8–5)
is not one–particle irreducible, so it would not normally be included in the analysis of operator
mixing. In fact, the relevant diagram is seen in Figure 8–7, which produces mixing between (8.6.3)
and the dimension–6 operator

1
e
νγµ(1 + γ5)ν∂λFλµ. (8.6.5)

But ∂λFλµ/e is related to the electromagnetic current by the equations of motion. In general, it
is not true that the equations of motion can be used to replace one operator with another. The
classical equations of motion are not as true as operator statements. But we can use the equations
of motion to evaluate physical, on–shell matrix elements of the operators.
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Figure 8-7:



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 148

The net effect of the corrections to the four–fermion operators for neutrino–hadron scattering
is to reduce the value of sin2 θ relevant in (8.5.1). The neutral–current expression (8.6.4) reduces
sin2 θ by a few percent if the experiments that determine sin2 θ have q2 of a few GeV2. The result
agrees well with the value of sin2 θ extracted from MZ in the previous section.

8.7 Technicolor

We have seen that the leading radiative corrections to the standard model give rather good agree-
ment with the measured values of the W and Z masses and the weak mixing angle. We could go
on and calculate W and Z partial width and other measurable quantities with similar success. As
discussed in the introduction to this chapter, one can do even better by doing a complete analysis
of all the radiative corrections, and the result agrees beautifully with the simplest version of the
standard model, with a relatively light, fundamental Higgs boson (for a review available on the
web, see G. Altarelli et al, hep-ph/9712368). In my view, however, one should be wary of inter-
preting this success as evidence that the Higgs boson actually exists. The really important moral
of the radiative corrections to the standard model is precisely that the most important radiative
corrections are independent of most of the details of electroweak symmetry breaking. In fact, in
our analysis above, the only really important constraint on this physics is that it must preserve a
custodial SU(2) symmetry in the limit that the U(1) gauge coupling is turned off. Otherwise, we
would not be able rule out large corrections to the relation MW = MZ cos θ. All other contributions
from the physics of symmetry breaking are generically of the size of matching corrections to the
low energy theory below the weak scale, at the level of fractions of a percent.

Because the physics of electroweak symmetry breaking is so difficult to see in the low energy
physics of the standard model, it is very useful to separate the two and define what we mean by
the standard model to be the physics of the quarks and leptons, the SU(3)× SU(2)× U(1) gauge
interactions, and the Goldstone bosons that are eaten to become the longitudinal components of
the W and Z. As we have seen, essentially the only thing we have to know about the Goldstone
bosons is that the spontaneous breaking that produces them preserves a custodial SU(2) symmetry.
Then the standard model emerges, including the large radiative corrections. In this language, we
distinguish between the “Higgs mechanism” and the “Higgs boson.” The Higgs mechanism is a
crucial part of the standard model. It is the process by which the Goldstone bosons that must
arise because of the Goldstone theorem from the spontaneous breaking of SU(2) × U(1) combine
with the gauge degrees of freedom to become the massive W and Z. We see these Goldstone
bosons when we produce the W and Z. The Higgs boson, on the other hand, is still a hypothetical
particle. Whether or not anything like a Higgs boson exists depends on what the Goldstone bosons
are actually made of. If the Goldstone bosons are fundamental particles, then they must be part
of Higgs multiplet that transforms linearly under the SU(2) × U(1) symmetry. In this case, the
Higgs boson exists, and is the partner of the Goldstone bosons. However, if the Goldstone bosons
are composite states, like the pions in QCD, then there may be nothing like a Higgs boson at all.

Consider the situation in QCD with two massless flavors. The Goldstone bosons appear in
the effective theory below the symmetry breaking scale in a 2 × 2 version of the U field that we
used to describe the pion interactions in the effective chiral theory in chapter 5. They transform
nonlinearly. Above the symmetry breaking scale, the appropriate language to describe the theory
is the language of the constituents (quarks) and the force that binds them (QCD and gluons).
Neither the Goldstone bosons nor anything like a Higgs boson appears in the high energy theory.
Note that in QCD, there is an analog of custodial SU(2) — it is simply isospin symmetry.

One can imagine that a similar thing happens for the electroweak interaction. If the Goldstone
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bosons of SU(2)× U(1) breaking are bound states of constituent “techniquarks” bound by a very
strong gauge interaction, “technicolor”, then we can describe the low energy theory in terms of a
2×2 unitary U field that contains the Goldstone bosons. It is very easy to see that in leading order
in the momentum expansion, this exactly reproduces the standard model masses and couplings of
the gauge bosons, so long as the technicolor dynamics preserves a custodial SU(2). This follows
simply from the discussion following (2.8.7), where we showed that the Higgs doublet in Weinberg’s
original model of leptons could be rewritten in terms of a 2 × 2 Σ field, and that the theory then
automatically has a custodial SU(2) symmetry when the U(1) gauge interactions are turned off.
The relation between the Higgs doublet, Σ, and the U field is simply

Σ = (v + h)U (8.7.1)

where v is the vacuum expectation value of Σ, and h is shifted field associated with the Higgs
boson. Thus if we ignore h, the standard model kinetic energy of the Higgs doublet reduces to the
leading kinetic energy term for the Goldstone bosons.

The difficulty with technicolor models is not with the W and Z properties, which are well
described in a technicolor theory, but with the generation of masses for the matter particles. In
a model with a fundamental Higgs doublet, and thus a Higgs boson, these masses arise from
the Yukawa couplings of the Higgs doublet to the quarks and leptons, which is a renormalizable
interaction. No one has found a totally convincing alternative mechanism for mass generation in a
model without fundamental scalar fields. It is not clear whether this is a problem with technicolor
models, or simply the lack of imagination of theorists. It seems to be impossible to build models
based on simple rescaled versions of QCD, for a variety of reasons. But it is entirely possible that
Nature has other tricks up her sleeve.

Finally, it is worth mentioning that there is an intermediate possibility, in which the Higgs boson
exists, but is a composite state (see D. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984)). A
particularly interesting possibility is the idea that the constituents of the Higgs might include
the t quark. Work in this direction is continuing (see for example, B.A. Dobrescu and C.T. Hill,
hep-ph/9712319).

Problems

8-1. Derive (8.1.14).

8-2. Derive (8.1.20) and (8.1.21) from (8.1.19).

8-3. Write a nonrenormalizable SU(2)×U(1) invariant interaction between lepton doublets and
Higgs doublets that gives a Majorana mass to the neutrino after spontaneous symmetry breaking.

8-4. Calculate the diagrams in Figures 8-1, 8-4 and 8-5.



Chapter 9

— Nonleptonic Weak Interactions

9.1 Why We Can’t Calculate

Thus far, I have not said very much about the nonleptonic weak decays of light hadrons. The reason
is that theoretical understanding of the nonleptonic weak interactions is rather limited. We saw in
Chapter 7 that we can calculate certain interesting quantities in the decay of a state containing a
sufficiently heavy quark using the parton model, but we cannot discuss individual modes in this
way. For strange–particle nonleptonic decays, we can say very little that is quantitative, apart
from a few relations between different modes obtained from chiral Lagrangians or current algebra
considerations (see Section 5.11).

The reason for our ignorance is simple. We just do not understand the low–energy strong QCD
interactions in quantitative detail. Most of our understanding is based on symmetry arguments, as
in the chiral Lagrangian techniques of Chapters 5 and 6. Even when supplemented by dynamical
guesses, as in the chiral–quark model of 6.4, these techniques cannot be used to reliably calculate
nonleptonic decay rates. I will make this argument very explicit at the end of this section.

To begin with, I will formulate the discussion of nonleptonic decays in the effective Lagrangian
language. This will probably be the most convenient way to do calculations if anyone ever does
actually achieve a quantitative understanding of strong interactions. Like good scouts, we will be
prepared. The more serious reason for the effective Lagrangian analysis is that it allows us to
divide the problem into two parts, the first of which we understand. This will enable us to make
interesting qualitative statements, even without a detailed quantitative understanding.

The exchange of virtual W produces a variety of four–quark operators in the effective La-
grangian just below MW . All we have to do to construct the effective Lagrangian that is relevant
at low energies is to use the renormalization group to bring down the renormalization scale µ from
MW to the scale of interest. This produces an effective low–energy Lagrangian in which the orig-
inal four–quark operators appear along with other dimension–6 operators that are produced by
the renormalization group. Each coefficient (a coupling constant in the effective theory) is given
explicitly by the renormalization group in terms of the QCD coupling constant and the W and
quark masses. This is the part of the problem that we understand.

To use the effective Lagrangian to actually calculate a physical decay rate, we must calculate
the matrix element of the effective Hamiltonian between the relevant physical states. This is the
hard part. We do not know how to calculate the matrix elements of operators between physical
hadron states, even when the operators are renormalized at the appropriate small momentum scale.

We might try to calculate the matrix elements of the appropriate operators by appealing to
the chiral Lagrangian arguments of Chapter 5. This was very useful in the study of leptonic

150
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and semileptonic decays. But here it doesn’t help. In the effective Lagrangian for semileptonic
charged–current interactions, the part involving quarks is a flavor current. Thus, we know the
corresponding operator in the effective chiral Lagrangian by pure symmetry arguments. Both the
form and the normalization of the current operator are determined by the symmetry. But the
nonleptonic operators are not currents. They look like products of currents at MW , but all that
tells us is that they transform in a particular way under the flavor symmetries. We must choose the
corresponding operator in the chiral theory to transform the same way. But that only constrains
the form of the chiral operator. It tells us nothing about the normalization.

One might think that the situation would be better in a chiral–quark model. The quark fields
appear explicitly, so perhaps we can simply take over four–quark operators directly into the effective
chiral–quark Lagrangian. But this is cheating! In going from the QCD theory with light quarks to
the chiral theory with constituent mass quarks, we have changed the description of the theory, and
we must calculate the matching conditions. These can change the form and normalization of the
weak Hamiltonian. Indeed, we have seen an example of this in Section 6.5 in the renormalization
of the axial vector current for chiral quarks.

Although we don’t understand in detail how to do the calculations, it seems reasonable to
suppose that the renormalizations induced by the matching conditions in going to the chiral–quark
model are given by a power series in αs(ΛCSB). This parameter could be small enough to make the
renormalization factors manageable, like the 0.75 for gA, but there will clearly be large uncertainties
remaining.

Another promising direction in the calculation of these matrix elements is the development of
numerical methods in lattice gauge theories. Eventually the techniques developed there may lead
to direct evaluation of the weak interaction matrix elements. But don’t hold your breath.

For now we will content ourselves with a calculation of the coefficients, the coupling constants
of the effective theory. These already contain some interesting physics.

9.2 The Renormalization Group

Here I give a quick review of the renormalization group. We start by considering an effective
theory with many couplings gi with various physical dimensions. Now consider a set of physical
quantities g0

i . These may be scattering cross sections or particle masses. Or they may be more
derived quantities, such as the (suitably regulated) bare parameters in the Lagrangian. At any rate,
in perturbation theory, the quantities are functions G0

i (defined as a power series) of an arbitrary
renormalization scale µ and the couplings renormalized at µ, which we denote by gi(µ),

G0
i (g(µ), µ) . (9.2.1)

Any physical quantity behaves this way, but I have chosen a set of physical quantities g0
i in

one-to-one correspondence with the couplings gi because I want to use the measured values of the
g0
i to determine gi(µ). This is easy. Just find gi(µ) such that

g0
i = G0

i (g(µ), µ) . (9.2.2)

These equations implicitly define the gi(µ) that we can then use to calculate any physical quantity.
In principle, this works for any µ. But in practice, for a given set of physical quantities, some µ’s

will be more convenient than others. We want to choose µ to minimize the logarithms that appear
in perturbation theory. That, after all, is the whole point. Perturbation theory will work best for
the appropriate value of µ. After we have obtained gi(µ), we can choose µ to make the calculation



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 152

of any given physical quantity as convenient as possible. This also explains why we don’t actually
calculate gi(µ) by solving (9.2.2), which would require calculating G0

i (g(µ), µ) accurately for all µ.
Instead, we find differential equations for gi(µ), which we can determine by calculating G0

i in the
neighborhood of the most convenient µ.

We can write the µ dependence of gi(µ) in differential form as

µ
d

dµ
gi(µ) = βi (g(µ), µ) . (9.2.3)

To determine the β functions, we can differentiate (9.2.2) with respect to µ and use (9.2.3) to
obtain (

µ
∂

∂µ
+ βi

∂

∂gi

)
G0
i (g, µ) = 0. (9.2.4)

This is a renormalization group equation. It expresses the fact that a change in the renormalization
scale can be compensated by a corresponding change in the coupling constants, leaving physical
quantities unchanged. (9.2.4) allows us to determine the functions βi from the functional form of
G0
i . The important point is that to determine βi, we need to know G0

i only in a neighborhood of a
given µ.

It is often convenient to calculate the βi by studying not physical quantities, but Green’s
functions or one–particle–irreducible functions. These also satisfy renormalization group equations.
But here there are additional terms because of wave–function renormalization. The n point 1PI
function Γn for a multiplicatively renormalized field φ satisfies(

µ
∂

∂µ
+ βi

∂

∂gi
− nγφ

)
Γn = 0, (9.2.5)

where γφ is the “anomalous dimension” of the φ field.
Composite operators, such as those that appear in the weak Hamiltonian, also have anomalous

dimensions. However, in general, such operators are not multiplicatively renormalized but mix
under renormalization. Suppose Ox for x = 1 to k is a set of operators that mix with one another
under renormalization. Then we can write a renormalization group equation for an n point 1PI
function with an Ox insertion Γnx, as follows:(

µ
∂

∂µ
+ βi

∂

∂gi
− nγφ

)
Γnx + γxyΓny = 0, (9.2.6)

where γxy is the anomalous dimension matrix of the Ox operators. Note that the difference in
the sign between the nγφ term and the γxy term is due to the fact that we are studying a 1PI
function in which the φ legs have been amputated. In the renormalization group equation for the
corresponding Green’s functions, both would appear with a plus sign.

In general, βi will depend explicitly on µ. But for a class of particularly convenient renor-
malization prescriptions, there is no explicit µ dependence. These are the “mass–independent”
renormalization schemes, such as dimensional regularization with minimal subtraction. The im-
portant thing about these schemes is that the µ dependence is only logarithmic. Thus, βi(g) is a
polynomial in the g’s in which each term has the same physical dimension, the dimension of gi.

In the full field theory of the world, a mass–independent renormalization scheme is rather useless.
The problem is that heavy particles continue to influence the renormalization of coupling constants
even at scales much smaller than their masses. This leads at such scales to large logarithms in the
perturbation theory.

One alternative is to adopt a momentum subtraction scheme in which the scale µ is defined
directly in terms of momenta. This avoids the theoretical difficulty of large logarithms at small



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 153

scales, but it introduces a serious practical difficulty. The β functions have explicit µ dependence,
and it is much harder to solve and use the renormalization group equations. Beyond one–loop
order, it is practically impossible.

Fortunately, in the effective–field–theory language, a mass–independent renormalization scheme
does not cause problems. The physical requirement that heavy particles must not contribute to
renormalization at small scales is automatic because the heavy particles are simply removed from
the effective theory. The combination of the effective–field–theory idea with mass–independent
renormalization gives a scheme that is both physically sensible and practical. In what follows, we
will always assume that we are working in such a scheme, although to lowest order it will not make
very much difference. The real advantages of such schemes show up in two loops and beyond.

In the application of these ideas to the QCD corrections to the weak Hamiltonian, by far the
most important coupling is the QCD coupling g. We will seldom be interested in going beyond first
order in any other coupling constants. Thus, in the β function for g itself, we can ignore all other
couplings and write

µ
∂

∂µ
g(µ) = β(g(µ)). (9.2.7)

In lowest–order perturbation theory in QCD

β(g) = −Bg3

B = (11−2n/3)
16π2 .

(9.2.8)

where n is the number of quarks in the effective theory. If we ignore higher–order terms in β and
solve (9.2.7), we get

g(µ)−2 = 2B lnµ/Λ, (9.2.9)

or
αs(µ) =

2π
(11− 2n/3) lnµ/Λ

. (9.2.10)

This holds in any one effective theory. To obtain the coupling in the effective theory at a given
scale, we evaluate (9.2.10) with n equal to the number of quark species with mass smaller than µ
and choose Λ so that αs is continuous on the boundaries between regions. Thus, Λ changes from
region to region. In terms of the Λ appropriate at low energies (for the three light quarks), we can
write

αs(µ) = 6π/

27 lnµ/Λ− 2
∑
mq<µ

lnµ/mq

 , (9.2.11)

which automatically incorporates matching conditions at the quark threshold.
Having determined αs(µ), we can now proceed to look at the weak Hamiltonian. The dominant

contribution comes from dimension–6 operators, like the four–fermion operators induced by W
exchange at MW . At scales below MW , the effective weak Hamiltonian is a linear combination of
all of the operators that mix with the four–quark operators. Call these Ox. Then the effective weak
Hamiltonian has the form

hx(µ)Ox, (9.2.12)

where hx(µ) are the couplings.
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The βx functions that describe the µ evolution of the hx(µ)s must also have dimension m−2.
If we ignore quark masses (which is a sensible thing to do, because their effects are suppressed by
powers of mq/MW ), the only way that this can happen is to have βx of the form

βx(h, g) = γxy(g)hy, (9.2.13)

where the γxy(g) are dimensionless functions of g. Such β functions describe the renormalization
and mixing of the hxs under the influence of QCD. To lowest order,

γxy(g) = Axyg
2 + 0(g4). (9.2.14)

If we ignore the g4 terms, it is easy to solve the evolution equations

µ
d

dµ
hx(µ) = Axyg(µ)2hy(µ). (9.2.15)

If A∼ is the matrix with components Aij and h(µ) is a column vector, we can write the solution as

h(µ) = exp

{∫ µ

µ0

A∼g(µ′)2 dµ
′

µ′

}
h(µ0). (9.2.16)

Because

g(µ′)2 = −β(g(µ′))
Bg(µ′)

= − 1
Bg(µ′)

µ′
d

dµ′
g(µ′), (9.2.17)

we can do the integral in (9.2.16) and write

h(µ) = exp
{
−A
∼
/B ln

(
g(µ)
g(µ0)

)}
h(µ0). (9.2.18)

Linear combinations of the h’s corresponding to eigenvalues of A are multiplicatively renormal-
ized. That is, if ν is a fixed row vector such that

ν A
∼

= aν, (9.2.19)

then
νh(µ) = (g(µ)/g(µ0))−a/Bνh(µ0). (9.2.20)

Of course, (9.2.17)–(9.2.20) are valid in any one effective theory. Appropriate matching conditions
must be imposed at the boundaries.

9.3 Charm Decays

In the remainder of this chapter, we will ignore the mixing of the four light quarks with the b and
t quarks. In this limit, as in a world with only four quarks, the weak interactions depend on only
a single real parameter, the Cabibbo angle θc. The weak interactions do not violate CP . We will
return and discuss CP violation in the general six–quark world in Chapter 10.

The simplest process from the point of view of the effective field theory is the ∆S = +1 decay
of the c antiquarks, for which the effective coupling to lowest order at the W scale is

cos2 θc
GF√

2
cγµ(1 + γ5)sdγµ(1 + γ5)u. (9.3.1)
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The Hermitian conjugate is associated with c decay.
The renormalization of this coupling comes from the diagrams in which a gluon is exchanged

between the c and d legs or the s and u legs. This is analogous to the electromagnetic renormal-
ization of the charged–current semileptonic coupling that we discussed in Chapter 8 (see Figure
8–4), with photon exchange replaced by gluon exchange. Here, gluon exchange between legs with
opposite handedness does not produce a logarithmic renormalization. Gluon exchange between legs
of the same handedness increases the strength of the coupling as the scale decreases (that is, it
gives a negative β function) if it produces an attractive force, and it decreases the strength of the
coupling with decreasing scale for a repulsive force.

Gluon exchange in (9.3.1) is neither purely attractive nor purely repulsive because the fields of
the same handedness are not in states of definite color. To simplify the analysis, we can form the
combinations

2Oxy± = xγµ(1 + γ5)sdγµ(1 + γ5)y

±xγµ(1 + γ5)ydγµ(1 + γ5)s,

(9.3.2)

where x and y run over the various quark fields. Here we are interested in

2Ocu± = cγµ(1 + γ5)sdγµ(1 + γ5)u

±cγµ(1 + γ5)udγµ(1 + γ5)s.

(9.3.3)

If we put in explicit color indices, α, β = 1 to 3, and make a Fierz transformation, we can write

2Ocu± = cαγ
µ(1 + γ5)sαdβγµ(1 + γ5)uβ

±cβγµ(1 + γ5)sαdαγµ(1 + γ5)uβ,

(9.3.4)

which exhibits the symmetry (antisymmetry) of O+ (O−) in the color indices of the c and d fields.
Thus, in O+ the c and d are combined into a 6 of color SU(3) while in O− they are in a 3. Thus,
in O+ (O−), gluon exchange is repulsive (attractive).

Quantitatively, the anomalous dimension of (9.3.3) is proportional to

T caT
d
a + T saT

u
a , (9.3.5)

where TFa are the color SU(3) generators acting on the F field. The operators O± are eigenstates
of (9.3.5) with eigenvalues 2

3 for O+ and −4
3 for O−. Thus, to order g2, the operators O+ and O−

are multiplicatively renormalized.
If we write the effective couplings as(

h+(µ)Ocu+ + h−(µ)Ocu−
)

cos2 θcGF /
√

2, (9.3.6)
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the β functions for h+ are

β+ = 1
4π2 g

2h+

β− = − 1
2π2 g

2h−.

(9.3.7)

(9.3.1) gives the boundary condition h+(MW ) = h−(MW ) = 1. Then (9.2.20) and appropriate
matching conditions (for mt < MW ) gives

h+(mc) =
(
αs(mc)
αs(mb)

)−6/25 (αs(mb)
αs(mt)

)−6/23 ( αs(mt)
αs(MW )

)−6/21
,

h−(mc) =
(
αs(mc)
αs(mb)

)12/25 (αs(mb)
αs(mt)

)12/23 ( αs(mt)
αs(MW )

)12/21
.

(9.3.8)

For example, for Λ = 100 MeV, mc = 1.4 GeV, mb = 4.6 GeV, and mt = 30 GeV, this gives

h+(mc) ' 0.8

h−(mc) ' 1.5

(9.3.9)

Clearly, the QCD corrections enhance h− compared to h+. Thus, barring some accident in the
matrix elements, we would expect decays produced by the O− operator to be more important than
those produced by the O+ operator.

The O± operators are distinguished by their internal symmetry properties as well as their
color properties. They transform according to different irreducible representations of left–chiral
SU(3), O− as a (2, 0) (the 6) and O+ as a (1, 2) (the 15). Indeed, things had to work out this
way. Since the QCD interactions conserve the internal SU(3)L × SU(3)R symmetry, the operators
that are multiplicatively renormalized must transform like irreducible representations. Thus, here
and in general, the operators that are enhanced or suppressed by QCD effects will be distinguished
by different internal–symmetry properties. In this case, we expect a modest enhancement of the
SU(3)L 6. Because the momenta involved in charm decay are large, the chiral structure of the
operator is probably not terribly relevant. But O+ and O− also transform as 15 and 6, respectively.

The most striking thing about the O− operator is that it is a V –spin singlet. V –spin is the
SU(2) subgroup of SU(3) under which the u and s quarks form a doublet. The d and c are singlets
under V –spin, and in the O− the u and s fields are combined antisymmetrically into a V –spin
singlet. Thus, we expect the charm decays that do not change V –spin, so-called ∆V = 0 decays,
to be enhanced. The experimental situation is still obscure.

9.4 Penguins and the ∆I = 1
2 Rule

Now that we have seen the renormalization group in action in enhancing the ∆I = 0 decays of
charmed particles, we can go on to discuss the interesting and more complicated subject of strange–
particle decays. At the W scale, the four–fermion coupling that produces the nonleptonic s–quark
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decay has the form (ignoring mixing to the t and b)

sin θc cos θc GF√2
(dγµ(1 + γ5)uuγµ(1 + γ5)s

dγµ(1 + γ5)ccγµ(1 + γ5)s).

(9.4.1)

As we will see, the new feature here that makes it qualitatively different from (9.3.1) is the appear-
ance of quark fields (u, c) along with the corresponding quark field (u, c).

Under SU(3)L and ordinary SU(3), (9.4.1) transforms like a linear combination of a 27, which
contains both isospin-3

2 and isospin-1
2 terms, and an 8, which is pure isospin-1

2 . Phenomenologi-
cally, it is clear that there is a large enhancement of the isospin-1

2 decays. Consider, for example,
nonleptonic K decay. K0 decay into 2 π’s (as seen in the decay of the Ks, which is a linear super-
position of K0 and K

0) is much faster than K+ decay into 2 π’s. The two pions in the final state
are symmetric in their space wave functions (l = 0) and therefore symmetric in isospin. Thus the
isospin of the final state is either 0 or 2. But while the neutral final state in K0 decay can have
isospin 0, the charged final state in K+ decay cannot. Therefore the isospin in the final state in
K+ → π+π0 is 2, and the decay is pure ∆I = 3

2 . K0 decay, on the other hand, can be ∆I = 1
2 , and

indeed the ratio of π0π0 to π+π− is about 1 : 2, as one would expect if the isospin of the final state
is 0. Furthermore, the K0 → ππ is much faster than any semileptonic decays while the K+ → ππ
decay is smaller than the two–body leptonic decay. All this suggests that the ∆I = 3

2 decays are
suppressed while the ∆I = 1

2 decays are enhanced by a large factor.
The same pattern appears in the nonleptonic hyperon decays. The ∆I = 1

2 amplitudes are
consistently larger by at least an order of magnitude. There is also some evidence from the chi-
ral Lagrangian analysis of the nonleptonic decays that it is the SU(3) octet part of the weak
Hamiltonian that is enhanced (see Section 6.6). Let us try to understand this enhancement in the
effective–field–theory language.

For scales above the charmed quark mass, the analysis is precisely the same as the analysis
of charm decay. The reason is that in this region we ignore the charmed quark mass and the
effective theory has an SU(4) symmetry (of course, there are larger symmetries above the b and t
masses, but these don’t concern us because our operators do not involve b and t quarks). Under
this SU(4) symmetry both (9.3.1) and (9.4.1) transform as linear combinations of components of
20 and 84 dimensional irreducible representations of SU(4). The operators in SU(4) representation
are related by the SU(4) symmetry and so, of course, must be renormalized in the same way. The
Ocu± operators in (9.3.3) are in the 84 and 20, respectively. The corresponding operators here are
the symmetric and antisymmetric combinations:

2
(
Ouu± −Occ±

)
= dγµ(1 + γ5)uuγµ(1 + γ5)s

±dγµ(1 + γ5)suγµ(1 + γ5)u

−dγµ(1 + γ5)ccγµ(1 + γ5)s

±dγµ(1 + γ5)scγµ(1 + γ5)c.

(9.4.2)
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The coefficients of these operators satisfy the same renormalization group equations as the h+ in
Section 9.3. Thus, the coefficient of O− at µ = mc is enhanced while the coefficient of O+ is
suppressed. Notice that under SU(3)L, O+ is a linear combination of 27 and 8 while O− is pure
8. Thus, this mechanism already enhances the octet contribution, but not by an enormous factor.
Something more is required to explain the observed dominance of ∆I = 1

2 decays.
For scales below the charmed quark mass, the c quark is removed from the effective theory,

thus the structure of the effective ∆S = 1 Hamiltonian changes. In lowest order, the matching
conditions are that the coefficients of operators that do not involve c or c are continuous at µ = mc

while operators containing c or c fields are just dropped, their coefficients set to zero at µ = mc.
Thus, for µ = mc in the effective theory below mc, the ∆S = 1 effective Hamiltonian is(

h+(mc)Ouu+ + h−(mc)Ouu−
)

sin θc cos θcGF /
√

2, (9.4.3)

where the h±(mc) are given by (9.3.9). Above mc, (9.4.2) are the only dimension–6 operators
transforming like 84 and 20 of SU(4)L with appropriate quantum numbers. Thus, they must be
multiplicatively renormalized. The situation for the (9.4.3) in the effective theory below mc is more
complicated. The Ouu+ operator transforms like a linear combination of 27 and 8 under SU(3)L
while Ouu− is pure 8. The 27 part is multiplicatively renormalized, but the 8’s can mix with a variety
of other operators that transform similarly under SU(3)L. Any dimension–6, SU(3)L–octet (and
SU(3)R singlet), color–singlet operator is a linear combination of the operators

O1 = dγµ(1 + γ5)sqγµ(1 + γ5)q (9.4.4)
O2 = dγµ(1 + γ5)sqγµ(1− γ5)q (9.4.5)
O3 = dTaγ

µ(1 + γ5)sqTaγµ(1 + γ5)q (9.4.6)
O4 = dTaγ

µ(1 + γ5)sqTaγµ(1− γ5)q (9.4.7)

O5 =
1
8
dTaγ

µ(1 + γ5)s[DνGµν ]a, (9.4.8)

where qq means the SU(3) invariant sum uu + dd + ss, Ta are the color SU(3) charges, and Gµν

is the gluon–field strength. (9.4.4) and (9.4.6) have nonzero coefficients at µ = mc. But nonzero
coefficients for all of these are induced by renormalization. Note that the 1/g is included in (9.4.8)
because (9.4.6), (9.4.7), and (9.4.8) are related by the equation of motion

(DµG
µν)a = gqTaγ

νq. (9.4.9)

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
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.................
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..........................×

....................................................................................................................................................................................................................................................................................................................................

d u

G

Figure 9-1:

We will not discuss the β function in detail here (but see Problem 9–4). The important thing
is that all terms (9.4.4)–(9.4.8) are produced at low momenta. Thus, there are many sources of
∆I = 1

2 , SU(3)L octet decay. For example, O5 is produced from O3 by the diagram shown in figure
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9–1. If we hook the gluon in (Figure 9–1) onto a quark line and take the O3 vertex apart to indicate
that O3 is produced by W exchange, this becomes the so-called “Penguin” diagram (Figure 9–2).
This may be interesting as an example of capricious use of jargon, but what does it have to do with
the ∆I = 1

2? The hope is that the matrix elements of O2, O4, and O5 that involve gluon fields or
both the left-handed and right-handed quark fields are much larger than the corresponding matrix
elements of O1 and O3 that involve only left-handed quarks. There is no very good theoretical
reason to believe that this is true. But it is not unreasonable. The basis for the speculation is
called the “vacuum insertion approximation”. Consider, for example, the two operators

....................................................................................................................................................................................................................................................
......................

..................
................
................
................
.................
...................

...................................................................................................................

............................................................................................

..............................................................................................................................

....................................................................................................................................................................................................................................................................................................................................

......................
......................

......................
......................

..............................................................................................................................

Figure 9-2:

dγµ(1 + γ5)uuγµ(1 + γ5)s

d(1− γ5)uu(1 + γ5)s.

(9.4.10)

These are contained (in Fierzed form) in O3 and O4, respectively. Consider the matrix elements
between a K− and π− of these operators. In the vacuum insertion approximation, one inserts a
complete set of states in the middle of the operators (9.4.10). This is already a peculiar thing to
do, since the renormalized operator cannot really be considered as a product of two factors. But
then in the sum over states, only the vacuum state is kept. This is an even more peculiar thing to
do, but at least it makes the calculation easy:

〈π−|dγµ(1 + γ5)uuγµ(1 + γ5)s|K−〉

' 〈π−|dγµ(1 + γ5)u|0〉〈0|uγµ(1 + γ5)s|K−〉

= fπfKp
µ
πpKµ

(9.4.11)
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〈π−|d(1− γ5)uu(1 + γ5)s|K−〉 ' 〈π−|d(1− γ5)u|0〉〈0|u(1 + γ5)s|K−〉

= −〈π−|dγ5u|0〉〈0|uγ5s|K−〉

= − 1
(md+mu) ·

1
(mu+ms)

〈π−|∂µdγ5γ
µu|0〉 · 〈0|∂νuγ5γ

νs|K−〉

= −fπfK m2
π

(md+mu) ·
m2
K

(mu+ms)
.

(9.4.12)

If the quark masses are small, say ∼ 10 MeV for md and mu and ∼ 200 MeV for ms, (9.4.12) can
be significantly enhanced compared to (9.4.11),

Clearly, the vacuum insertion approximation does not make a great deal of sense. In fact, it is
inconsistent with chiral perturbation theory, which requires that the matrix element vanish as the
quark masses go to zero. The best we can say given our present level of theoretical understanding
is that short–distance renormalization effects provide some enhancement of the ∆I = 1

2 amplitude.
The rest must come from the enhancement of the matrix elements of one or more of the octet
operators. As we will see in the next chapter, it may be possible to test the idea that the “Penguin”
operator is the culprit by studying the detailed form of CP violation in the K mesons.

Problems

9-1. Derive (9.3.7). Work in Landau gauge.

9-2. Write (9.4.1) as a linear combination of terms which transform like a component of an
SU(3) 27 with I = 3/2, a component of a 27 with I = 1/2, and a component of an 8.

9-3. Below mc, the ∆S = 1 Hamiltonian has the form hx(µ)Ox, where the Ox are the operators
in (9.4.4-9.4.8). The β functions for the hx in lowest order have the form

βx = g2Axyhy

Find all the components of Axy.

9-4. Find h±(µ) for µ such that αs(µ) = 1.



Chapter 10

— The Neutral K Mesons and CP
Violation

10.1 K0 −K0
Mixing

We have postponed until now a detailed discussion of the neutral K mesons because we will need
most of the theoretical ideas we have discussed in the previous chapters to understand it. Indeed,
the study of the neutral K–meson system played a crucial role in the development of many of these
ideas.

The most striking feature of the neutral K mesons is the mixing of the K0 and K
0. The K0

mesons with strangeness S = 1 and K
0 with S = −1 are the states that are produced by the

strangeness–conserving QCD strong interactions. They are antiparticles of one another and there-
fore have identical mass terms because of CPT invariance. If strangeness were exactly conserved,
there would be no interactions that could cause mixing between K0 and K

0. The K0 and K
0

would be exactly degenerate mass eigenstates like the electron and positron. States that are lin-
ear combinations of K0 and K

0 would be forbidden by superselection rules, which simply means
that there would be no reason to consider such states. But the weak interactions do not conserve
strangeness. Thus, they can cause mixing between K0 and K

0. Of course, they also cause the K0

and K0 to decay. As we will see in detail, the amusing thing about this system is that the neutral
K mesons mix as fast as they decay.

In this section and the next, we will discuss K0-K0 mixing, ignoring the Kobayashi-Maskawa
mixing of the third family. In this theory, CP is conserved, and the mass eigenstates behave simply
under CP . In the most natural basis, K0 and K

0 are charge conjugates, thus

C|K0〉 = |K0〉, C|K0〉 = |K0〉. (10.1.1)

Then, because the K’s are pseudoscalar, the states with zero three–momentum satisfy

CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉. (10.1.2)

The mass eigenstates are therefore the CP even and odd states

|K1〉 =
|K0〉 − |K0〉√

2
, |K2〉 =

|K0〉+ |K0〉√
2

. (10.1.3)

These states have very different properties because their nonleptonic decay modes are radically
different. Two pions, π0π0 or π+π−, in an l = 0 state must be CP even. Thus, if CP is conserved,

161
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only K1 can decay into two π’s. In the simplified world we are considering, with no mixing of the
third family, this statement is exactly true. In the real world, CP violation is a very small effect,
thus, the picture that emerges in the limit of CP invariance will look very much like the real world.

The importance of the two–pion final states is simply that there is a much larger phase space
for it than for the three–pion final state. Thus, K1, which can decay into 2π’s, decays much faster
than K2, which cannot. The two mass eigenstates have very different lifetimes. This, of course, is
just what is observed. The Ks (S for short) and KL (L for long) are linear combinations of K0

and K0 with very different lifetimes. A beam of neutral K’s produces a splash of two–pion decays
and a trickle of three–pion decays farther downstream, where essentially only the KL component
survives.

When a KL beam passes through matter, the K0 and the K0 components behave differently.
This regenerates a Ks component of the beam, producing another splash of 2π’s. This phenomenon
can be used to make an accurate measurement of the mass difference between the Ks and KL. If two
regenerators (pieces of matter) are placed in a KL beam some distance apart, the Ks component
produced by the first regenerator interferes with the Ks component produced by the second. When
the distance between the regenerators is varied, the Ks amplitude and thus the 2π yield oscillates
with a wave number proportional to the mass difference between KL and Ks, The result of such
experiments is

∆m = mKL −mKs = 0.535± .002× 1010sec−1

= 3.52× 10−6eV.

(10.1.4)

It is the fact that the mass difference is so small that makes regeneration experiments interesting.
The quantum–mechanical interference effects are spread out over macroscopic distances.

Theoretically, the smallness of ∆m is equally interesting. It played an important role in the
prediction of the charmed quark. Today, it provides one of the most important constraints on
models in which the Higgs doublet of the standard SU(2)×U(1) model is replaced by a dynamical
symmetry–breaking mechanism and on other variants of the standard model.

It is useful to describe the mixing and decay of a neutral K meson in terms of a two–state wave
function

|ψ(t)〉 = A(t)|K0〉+B(t)|K0〉, (10.1.5)

where ψ(t) is a column vector

ψ(t) =
(
A(t)
B(t)

)
(10.1.6)

A(t), B(t) is the amplitude for finding the system as a K0(K0). The time development of the
system can now be described by a matrix Hamiltonian:

i
d

dt
ψ(t) = Hψ(t) (10.1.7)

H =
(

M − iΓ/2 M12 − iΓ12/2
M∗12 − iΓ∗12/2 M − iΓ/2

)
(10.1.8)

where M and Γ are real. The form of (10.1.8) may require some explanation. The anti-Hermitian
part of H describes the exponential decay of the K–meson system due to weak interaction processes.
Because the weak decay amplitudes are proportional to GF , all the Γ’s are of order G2

F . The
Hermitian part is called a mass matrix. If all the Γ’s were zero, the system would evolve without



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 163

decay, but the off-diagonal elements in the mass matrix would still cause mixing of K0 with K
0.

M is just the K0 mass. M12, however, is a ∆S = 2 effect. It must be of order G2
F , because the

weak interactions in lowest order change strangeness only by ±1 (once the GIM mechanism has
been incorporated). If this were not the case, the mass difference ∆m (which we will see below is
∼ 2M12) would be much larger than what is observed.

In (10.1.8), we have assumed CPT invariance by taking the two diagonal elements to be equal.
If we also, for the moment, impose CP invariance, we must take

M12 = M∗12, Γ12 = Γ∗12, CP. (10.1.9)

Then the K1 and K2 states correspond to wave functions

ψ1(t) =
1√
2

(
a(t)
−a(t)

)
, ψ2(t) =

1√
2

(
a(t)
a(t)

)
. (10.1.10)

They have masses M∓M12 and decay rates Γ∓Γ12. Thus, the fact that the K1 decays much faster
than the K2 implies

Γ12 ' −Γ. (10.1.11)

10.2 The Box Diagram and the QCD Corrections

We would like to calculate the parameters in (10.1.8) from the underlying SU(3) × SU(2) × U(1)
model of strong, weak, and electromagnetic interactions. In this, as in so many other applications,
we will be frustrated by our inability to deal with the low–energy strong interactions. But as usual,
we can gather most of our ignorance into a few strong interaction matrix elements. The new feature
here, compared with the analysis of Chapter 9, is that we must work to second order in the weak
interactions. The only parameter in (10.1.8) in which this new feature appears is M12.

Let us write the Hamiltonian of the world as a power series in GF ,

H = H0 +H1 +H2 + · · · (10.2.1)

where Hj contains all the interactions proportioned to GjF . The |K0〉 and |K0〉 states are eigenstates
of H0 because they are degenerate, stable particles when the weak interactions are turned off. For
zero–momentum states normalized to 1, perturbation theory gives

M12 = 〈K0|H2|K
0〉+

∑
n

〈K0|H1|n〉〈n|H1|K0〉
mK0 − En

. (10.2.2)

The leading contributions are both second order in GF because H1 only changes strangeness by
±1. In terms of states with the conventional relativistically invariant–continuum normalization,
the first term is

M12 '
1

2mK
〈K0|H2(0)|K0〉+ · · · (10.2.3)

where H2(0) is the second–order weak Hamiltonian density. We should be able to get some idea
of magnitude of this term by using the effective–field–theory technology and estimating the matrix
element. The second term in (10.2.2), however, depends even more sensitively on the details of
low–energy strong interactions because it involves a sum over all the low–lying S = 0 mesonic
states. Thus, even if we manage a reliable estimate of (10.2.3), we will still not know M12 very
well. Nevertheless, this estimate is interesting and important, as we will see.
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Figure 10-1:

At the scale MW and just below, there is no ∆S = 2 term in the effective Lagrangian in order
G2
F because of the GIM mechanism. To see how this works in detail, consider the box diagram

in Figure 10–1. The important point is that for large loop momentum, the contributions of the
u and c quarks cancel on each quark line. This is a consequence of the GIM mechanism. All
strangeness–changing interactions would disappear if the charge-2

3 quarks were degenerate. Thus,
each strangeness–changing interaction, each quark line in Figure 10–1, is proportional to m2

c −m2
u

and the diagram is quadratically convergent. Because of the extra convergence produced by the
GIM mechanism, (10.2.4) receives no order G2

F contribution from momenta much larger than mc.
For mt < µ < MW , the pieces of H1 get renormalized by the QCD interactions as discussed in
Chapter 9.

In the simplified theory with no mixing to the third family, nothing very exciting happens at
µ ' mt. As µ drops below the t and b quark thresholds, the β functions change, but no ∆S = 2
terms are introduced.

At µ ' mc, a ∆S = 2 term is induced. At this point, the c quark is removed from the theory,
and the GIM mechanism no longer operates. Thus, the box diagram and its QCD corrections
induce a ∆S = 2 term in the effective Lagrangian at µ ' mc. In other words, the ∆S = 2 term is
produced in the matching condition between the effective theories above and below the charmed–
quark mass. In the first, the ∆S = 1 Hamiltonian involves the operators Ouu± − Occ± [see (9.4.2)]
and the corresponding ∆C = ±1 operators Ocu± and Ouc± [see (9.3.2)]. The combinations

sin θc cos θc(Ouu± −Occ± ) + cos2 θcO
cu
± − sin2 θcO

uc
± (10.2.4)

retain the GIM structure. But in the effective theory below mc, the relevant ∆S = 1 operators are
sin θc cos θcOuu± , from which terms involving c quark fields have been expanded. In a second–order
calculation, the ∆S = 2 effect produced by squaring (10.2.4) is finite and proportional to m2

c −m2
u

because of GIM, but that produced by two Ouu± operators has no term proportional to m2
c (after a

quadratic divergence is removed by dimensional regularization). The ∆S = 2 term in the effective
theory below mc must be present to reproduce the finite result in the theory above mc. A simple
generalization of the box diagram calculation yields the result of the ∆S = 2 Hamiltonian density
renormalized at µ < mc (ignoring terms proportional to m2

u),

H = sin2 θc cos2 θcm
2
c
G2
F

16π2 η1

dγµ(1 + γ5)sdγµ(1 + γ5)s,

(10.2.5)

where

η1 =
[
αs(mc)
αs(µ)

]6/27

·
[

3
2
h+(mc)2 − h+(mc)h−(mc) +

1
2
h−(mc)2

]
. (10.2.6)



Weak Interactions — Howard Georgi — draft - March 25, 2010 — 165

Note that we have included in η1 a factor that incorporates the renormalization down to a scale
µ of the ∆S = 2 operator in the theory below mc. The operator is actually Ods+ . Here, as in the
undressed box diagram, the ∆S = 2 effect is proportional to m2

c (renormalized at µ ∼ mc). It was
this feature that led Lee and Gaillard to suggest in 1974 that the charmed quark and the hadron
states built out of it had to be relatively light. Otherwise, the contribution to M12 from (10.2.5)
would be too large. Such a statement requires some estimate of the matrix element of the ∆S = 2
operator. Gaillard and Lee used a version of the vacuum insertion approximation [see (9.4.11) and
(9.4.12)]. If we insert a vacuum state between all possible pairs of quark fields in Ods+ , we get

〈K0|Ods+ |K0〉 ' 8
3
f2
Km

2
K . (10.2.7)

To evaluate ∆m, we need to know η1 and thus decide what value of the renormalization scale
µ to take. Of course, if we really knew how to calculate the matrix elements, it would not matter
because the matrix element of Ods+ renormalized at µ would have an explicit µ dependence that
would cancel the µ dependence of η1. Here, all we can do is to guess what value of µ is most likely
to make (10.2.7) approximately correct. Presumably, we should choose some small µ such that
αs(µ) ' 1. To be definite (and for ease of comparison with the papers of Gilman and Wise), we
choose µ such that

α(µ) = 1.

Then
ηa ' 0.7 (10.2.8)

Combining (10.2.5), (10.2.7), and (10.2.8) gives a contribution to ∆m,

∼ (mc/1.4 GeV)2 × 1.7× 10−6 eV. (10.2.9)

This led Gaillard and Lee and others to believe that mc was less than a few GeV, well before there
was any clear experimental indication of the existence of charm.

In fact, it is possible to do a better job of estimating the matrix elements by using the measured
value of the ∆I = 3

2 decay rate ofK+ → π+π0. The argument goes as follows. The ∆I = 3
2 , ∆S = 1

part of the weak Hamiltonian density is

h+(µ)
3

(2Ouu+ −Odd+ ) sin θc cos θcGF /
√

2. (10.2.10)

The operator 2Ouu+ −Odd+ is an SU(3)L 27, like Ods+ . Both have the form

T jklmψ
jγµ(1 + γ5)ψlψkγµ(1 + γ5)ψm, (10.2.11)

where T is a traceless tensor, symmetric in upper and lower indices. For 2Ouu+ − Odd+ the nonzero
components of T are

T 12
13 = T 21

13 = T 12
31 = T 21

31 = 1
2

T 22
23 = T 22

32 = −1
2 .

(10.2.12)
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For Ods+ , the nonzero component is
T 22

33 = 1. (10.2.13)

From the measured K+ → π+π0 width, we can determine the magnitude of the matrix element

|〈π+π0|2Odd+ |K+〉| ' 3× 10−2GeV3

h+(µ)
. (10.2.14)

This estimate includes a small correction from η1 − π mixing.
To determine the matrix element of Ods+ , we compare the two matrix elements in an effective

chiral theory of the Goldstone bosons at low energies. Here the operator (10.2.11) can be represented
by a sum over all operators with the same SU(3)L × SU(3)R properties with coefficients that are
unknown (although in principle they could be determined by nonperturbative matching conditions).
But for the SU(3)L 27, there is a unique operator in the effective theory that involves only two
derivatives or one power of µM . Thus, all the matrix elements of (10.2.11) are determined in terms
of a single parameter. Explicitly, (10.2.11) becomes

aT jklm(Σ∂µΣ†)lj(Σ∂
µΣ†)mk . (10.2.15)

Then

|〈π+π0|2Ouu+ −Odd+ |K+〉| = 6|a|
√

2
m2
K −m2

π

f3
π

(10.2.16)

and
〈K0|Ods+ |K0〉 = 8am2

K/f
2
π . (10.2.17)

Note that only fπ appears, not fK , because we are working to lowest order in symmetry breaking
and our chiral theory doesn’t know the difference. Comparing (10.2.14), (10.2.16), and (10.2.17),
we find

|〈K0|Ods+ |K0〉| ' 4× 10−3 GeV4

h+(µ)
. (10.2.18)

Note that this argument does not determine the sign of the matrix elements. But it does have the
appropriate dependence on µ because it was determined consistently from a physical quantity. For
µ such that αs(µ) = 1, (10.2.18) is smaller than the vacuum insertion result by a factor of more
than 2.

With this estimate for the matrix element, (10.2.5) gives only a small fraction of the measured
value of ∆m. The mixing to the third family, which we have ignored so far, can give an additional
contribution. The rest must come from the second term in (10.2.2).

10.3 The Gilman-Wise ∆S = 2 Hamiltonian

1 When mixing with the third family is turned on, the discussion of the previous section must be
generalized. The general case has been studied by Gilman and Wise in a different language. In
this section, I explain and interpret their results in the effective–field–theory language.

In the standard six–quark model, the ∆S = 1 Hamiltonian density just below MW is

H = GF√
2

∑
x, y U

x
s U
†d
y xγ

µ(1 + γ5)sdγµ(1 + γ5)y

= GF√
2

∑
x, y U

x
s U
†d
y (Oxy+ +Oxy− ),

(10.3.1)

1F. Gilman and M. B. Wise, Phys. Rev. D27:1128–1141, 1983.
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where the sums run over the charge-2
3 quark fields, u, c, and t and where U is the KM matrix

(3.5.32). The ∆S = 2 Hamiltonian density produced to second order in U has the form

H = ξ2
cHc + ξ2

tHt + 2ξcξtHct, (10.3.2)

where

ξc = U csU
†d
c = −s1c2

(
c1c2c3 + s2s3e

iδ
)

ξt = U tsU
†d
t = −s1s2

(
c1s2c3 − c2s3e

iδ
)
.

(10.3.3)

The striking fact that the flavor structure of H2 depends only on the two parameters ξc and ξt can
be understood as follows. The terms in H1 with x = y have ∆S = 1 but do not change u, c, or t
number; thus, they can mix with each other and with other ∆S = 1 terms due to QCD interactions.
But they depend only on ξc and ξt because the unitarity of U implies

Uus U
†d
u = −ξc − ξt. (10.3.4)

The terms with x 6= y carry nonzero, u, c, and t number. Thus, to produce a ∆S = 2 term with
zero, u, c, and t number, Oxy± must appear together with Oyx± , so the ∆S = 2 effect depends on

(Uxs U
†d
y )(Uys U

†d
x ) = (Uxs U

†d
x )(Uys U

†d
y ), (10.3.5)

which in turn, depends only on ξc and ξt by virtue of (10.3.3) and (10.3.4).
Hc is the term that we have already calculated in the previous section, since it is all that survives

when s2 and s3 go to zero. In the limit s2 = s3 = 0, s1 = sin θc, ξc = − sin θc cos θc, and ξt = 0,
and comparing (10.2.5) and (10.3.3) we can write

H = m2
c

GF
16π2

η1O
ds
+ , (10.3.6)

where η1 is still given by (10.2.6).
Ht is a similar term. It would be the only term present if c and b formed a doublet that did not

mix with u, d, s, and t. When the t quark is removed at µ ' mt, a ∆S = 2 term is produced that
is analogous to (10.2.5), but proportional to m2

t . Below mt, the induced ∆S = 2 is renormalized by
the QCD interactions. In addition, the remaining ∆S = 2 terms, but because there are no t–quark
fields left, none are proportional to m2

t . Presumably, in the real world, ξt is much smaller than ξc.
The only reason that the Ht term is important at all is that there is a term proportional to m2

t .
Thus, we can safely neglect the terms in Ht that are not proportional to m2

t . Then we can write

Ht = m2
t

GF
16π2

η2O
ds
+ , (10.3.7)

where

η2 =
[
αs(mc)
αs(µ)

]6/27
·
[
αs(mb)
αs(mc

]6/25
·
[
αs(mt)
αs(mb

]6/23

·
[

3
2h+(mt)2 − h+(mt)h−(mt) + 1

2h−(mt)2
]
.

(10.3.8)

For αs = 1, η2 ' 0.6.
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The Hct term is very different from Hc and Ht. If we ignore QCD corrections, it comes from a
box diagram with one internal c and one t (plus GIM related graphs), and it is

Hct ' m2
c ln(m2

t /m
2
c)
G2
F

16π2
Ods+ . (10.3.9)

The logarithm and factor of m2
c (rather than m2

t ) indicate that this term is not produced by
the matching condition at µ = mt, but rather it evolves due to the form of the β functions for
mt > µ > mc. We expect QCD corrections to modify (10.3.9), so we write

Hct = m2
c ln(m2

t /m
2
c)
G2
F

16π2
η3O

ds
+ . (10.3.10)

Numerical evaluation of η3 (by Gilman and Wise) gives η3 ' 0.4 for αs(µ) = 1.
To get an idea of how the QCD corrections work for such a term, define the coupling constant

hct that is the coefficient of Ods+ in Hct at the scale µ. Note that this can be separated uniquely
from the coefficients in Hc and Ht, even though the operator structure is the same because its
ξc and ξt dependence is different. Explicit calculation of the one–loop MS matching condition at
µ ∼ mt yields hct(µ) ∝ ln(µ/mt), and thus

hct(mt) = 0, (10.3.11)

as expected. The renormalization group equation for hct in one loop has contributions not only
from QCD, but also from second–order weak interactions

µ
d

dµ
hct = βct =

g2

4π2
hct +

∑
j, k

λjkm
2
chjhk, (10.3.12)

where hj are the relevant ∆S = 1 couplings, m2
c is also treated as a µ–dependent coupling, and λjk

are constants that are nonzero in the region µ > mc. Notice that if QCD is turned off, the first
term in βct is absent and the second is constant so that (10.3.12) integrates trivially to a logarithm.
This is the origin (in the effective–field–theory language) of the ln(m2

t /M
2
c ) in (10.3.9).

With QCD turned on, part of (10.3.12) is intractable. The relevant couplings are the coefficients
of the operators Ocu± , O

uc
± , O

uu
± − Occ± , Ouu± , and the operators O1 through O4 of (9.4.4)–(9.4.8).

The last six mix with one another and make a complete analytic integration of (10.3.12) impossible.
But their contribution to hct is small because the combinations that appear in (10.3.12) are not
present at µ = mt. They are induced only by mixing. The remaining contribution can be integrated
analytically. It depends only on m2

c and the coefficients of Ocu± , O
uc
± , which are proportional to hct

[of (9.3.6)]. We find for this contribution

βct = −G
2
F

8π2
m2
c

[
3
2
h2

+ +
1
2
h2
− − h+h−

]
+

g2

4π2
hct. (10.3.13)

Integration of (10.3.13), using the explicit forms of h±(µ) and m2
c(µ), yields the analytic expression

found by Gilman and Wise.

10.4 CP Violation and the Parameter ε

In general, in the presence of CP violation in the weak interactions, M12 and Γ12 in (10.1.8) cannot
be made simultaneously real. By changing the relative phases of the K0 and K

0 states, which
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amounts to making a diagonal unitary transformation of (10.1.8), we can change the overall phase
of M12 and Γ12, but we cannot change the relative phase. In the real world, the relative phase is
nonzero, that is, M12Γ∗12 is complex, and CP violation shows up in the neutral K decays.

The eigenstates of H are not ψ1 and ψ2, but

ψL, S =
1√

2(1 + |ε|2)

(
(1 + ε)
±(1− ε)

)
, (10.4.1)

where ε is the so-called CP impurity parameter. The corresponding eigenvalues are

MKL, S −
i

2
ΓKL, S = M − i

2
Γ± ∆M − i∆Γ/2

2
. (10.4.2)

The parameters ε and ∆M − i∆Γ/2 satisfy

(1 + ε)
(1− ε)

= 2 · M12 − iΓ12/2
∆M − i∆Γ/2

=
1
2

∆M − i∆Γ/2
M∗12 − iΓ∗12/2

. (10.4.3)

Note that (10.4.1) and (10.4.3) depend on CPT invariance, which also makes H very easy to
diagonalize because the diagonal terms are equal. Note that the observable quantities ∆M and ∆Γ
depend only on the relative phase of M12 and Γ12, as they should. In fact,

∆M2 −∆Γ2/4 = 4|M12|2 − |Γ12|2, ∆M∆Γ = 4Re(M12Γ∗12). (10.4.4)

On the other hand, the parameter ε does depend on the choice of phase. The standard conven-
tion is to choose the phase of the K0 and K0 states to remove the phases from their ∆I = 1

2 decay
amplitudes except for the effect of the final–state interactions between the pions. Thus

〈ππ(I = 0)|HW |K0〉 = −〈ππ(I = 0)|HW |K
0〉 ≡ A0e

iδ0 . (10.4.5)

For A0 > 0, where δ0 is the I = 0, π − π phase shift. In this basis, M12 and Γ12 would be real if
there were no CP violation. Then because CP violation is a small effect, the phases of M12 and
Γ12 are small, and we can usefully work to first order in ε. Then (10.4.3) implies

ε ' i Im M12 + Im Γ12/2
∆M − i∆Γ/2

. (10.4.6)

In the standard basis, we expect Im Γ12 to be much smaller than Im M12. This follows because
(10.4.5) implies that the contribution to Γ12 from the 2π, I = 0 states that dominate the decay is
real. Thus, on top of the usual suppression of CP–violating effects, Im Γ12 should have an additional
suppression of at least a few hundred (the ratio of the 2π, I = 0 decay rate to everything else).
Thus, the phase of ε is determined by the phase of the denominator in (10.4.6),

arg(∆M − i∆Γ/2) ' 46.2
◦

(10.4.7)

By pure coincidence, this is close to 45
◦

because experimentally

∆M ' −∆Γ/2. (10.4.8)

It has become standard, if sometimes confusing, to use these empirical relations to simplify the
expression for ε,

ε ' eiπ/4

2
√

2
Im M12

Re M12
' eiπ/4 Im M12√

2∆M
. (10.4.9)
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One of the striking implications of (10.4.1), the form of the KL, S states, is that a KL beam
should decay into positively and negatively charged leptons at different rates. The decays into
positive leptons (antileptons actually) such as K0

L → π−e+νe, come only from the K0 component,
while the decays into negative leptons, such as K0

L → π+e−νe come only from the K0 component.
Thus, there is an asymmetry

δ =
Γ(+)− Γ(−)
Γ(+) + Γ(−)

=
|1 + ε|2 − |1− ε|2

|1 + ε|2 + |1− ε|2
' 2 Re ε. (10.4.10)

This asymmetry has been observed. The experimental value of δ, δ = 0.330± 0.012% gives

Re ε ' 1.65× 10−3. (10.4.11)

We can now use this measurement to get a potentially interesting constraint on the CP–violating
phase in the KM matrix.

Using the results of Sections 10.2 and 10.3, we find

Im M12 ' 1
2mK

G2
F

16π2

Im
{[
−ξ2

cm
2
cη1 + ξ2

tm
2
t η2 + 2ξcξtm2

c ln(m2
t /m

2
c)η3

]
· 〈K0|Ods+ |K

0〉
}
.

(10.4.12)

In Section 10.2, when we discussed the matrix element of Ods+ , we assumed that it was real. In the
presence of CP violation, as we will discuss in detail in the next section, that is not necessarily
true. Thus, we have allowed for the possibility that the matrix element is complex. We have also
assumed that the second term in (10.2.2) does not make a significant contribution to Im M12 in
this basis. This is reasonable because we might expect it to be real in the basis in which Γ12 is
real, since they are related by analyticity. Γ12 and the second term in (10.2.2) are related to the
absorptive and dispersive parts, respectively, of the matrix element∫

〈K0|T (H1(x)H1(0))|K0〉 d4x. (10.4.13)

Nevertheless, this is not a very strong argument because H1 involves several different operators
with different phases that could contribute differently to the absorptive and dispersive parts. But
it is probably the best we can do.

If we give the phase of the matrix element a name,

arg(〈K0|Ods+ |K
0〉) = 2ξ, (10.4.14)

we can combine (10.4.9), (10.4.11), and (10.4.12) with the numerical results found in Section 10.3
to find the constraint

10−3 ' Im
{
e2iξ

[
−0.7ξ2

c + 0.6(m2
t /m

2
c)ξ

2
t + 0.4 ln(m2

t /m
2
c)ξcξt

]}
. (10.4.15)

We do not yet know enough about the parameters ξ, the KM angles, and mt to check (10.4.15).
But as more information becomes available, (10.4.15) will become an increasingly important check
on this picture of CP violation.
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10.5 KL → ππ and the Parameter ε′

The parameter ε describes CP violation in the mixing of K0 and K0, which shows up experimentally
because of the form (10.4.1) of the eigenstates of H. One can also imagine that CP violation might
show up directly in the weak decays of K0 and K0. Consider, for example, the two–pion final state,
which is particularly important because of the ∆I = 1

2 enhancement. We have already chosen the
phase of the ∆I = 1

2 decay amplitude (10.4.5) as part of our definition of ε. But in principle, the
∆I = 3

2 might have a different phase. Define

〈ππ(I = 2)|HW |K0〉 = A2e
iδ2

〈ππ(I = 2)|HW |K
0〉 = A∗2e

iδ2 ,

(10.5.1)

where the form follows from CPT invariance and δ2 is the I = 2, ππ phase shift, incorporating the
effect of the final–state interactions. If A2 is complex in the basis in which A0 is real, then there is
CP violation in the decay. This effect is unlikely to be large. Not only is it CP–violating, but it
goes away in the limit in which the ∆I = 1

2 rule is exact.
To analyze the effect quantitatively in K → 2π decays, form the measurable quantities

η+− = 〈π+π−|HW |KL〉
〈π+π−|HW |KS〉

η00 = 〈π0π0|HW |KL〉
〈π0π0|HW |KS〉 .

(10.5.2)

Both are direct measures of CP violation, since they are proportional to the KL → 2π decay
amplitude. Evaluation (10.5.2) using (10.4.1) and (10.4.5), (10.5.1) and

〈π+π−| =
√

2
3〈2π(I = 0)|+

√
1
3〈2π(I = 2)|

〈π0π0| =
√

2
3〈2π(I = 2)| −

√
1
3〈2π(I = 0)|,

(10.5.3)

we find
η+− ' ε+ ε′, η00 ' ε− 2ε′, ε′ = i Im A2 e

i(δ2−δ0)/
√

2A0, (10.5.4)

where we have neglected terms of order ε′A2/A0 and smaller. Experiments so far are consistent
with ε′/ε from zero to a few percent, but experiments in progress should either see it or push the
bound on ε′/ε down well below the 1% level. The experimental measurement of the phase of η+−
agrees with the prediction (10.4.9) for the phase of ε.

The CP violation in the decays measured by ε′ vanishes trivially in so-called superweak models
of CP violation in which the CP violation is associated with an interaction that is of order G2

F in
strength. Such an interaction would be too small to show up anywhere except in the ∆S = 2 mass
mixing, M12. A superweak force can produce a nonzero ε, but it cannot produce CP violation in
decay amplitudes (because they are of order GF ).
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The six–quark SU(2) × U(1) model is not a superweak model, since CP violation appears in
the order GF interactions. However, for some time it was thought to be very nearly superweak.
The point is that in the four–quark interactions induced by W exchange at µ ∼MW , all phases can
be removed from the ∆S = 1 interactions involving only the light quarks (as is done in the usual
parametrization of the KM matrix). Then the weak decays are real (up to final–state interactions)
in the standard quark–model basis for the hadron states.

Gilman and Wise were the first to realize that this argument might be seriously wrong. While
the couplings of Ouu± are real at µ ∼MW , those of the ∆S = 1 operators Ott± and Occ± are, in general,
complex. QCD interactions mix Ott± and Occ± with the SU(3)L octet operators (9.4.4)–(9.4.8) that
involve only light quarks and gluons. Thus, nontrivial phases can occur in the low–energy ∆S = 1
weak Hamiltonian. Indeed, there is reason to expect their contribution to be important because
they are associated with the “Penguin” operator [O4 in (9.4.7)] whose matrix elements may be
large enough to produce much of the observed ∆I = 1

2 enhancement.
Explicitly, suppose we work in the quark basis. Then the K0 → 2π decay amplitudes are real

except for the effect of the “Penguin” operator. Assuming that it is O4 that has the large matrix
element and working to first order in CP–violating phases, we can write

AQ0 ' A0e
iξ, (10.5.5)

where
ξ ' (Im h4(µ))〈2π(I = 0)|O4|K0〉Q/A0, (10.5.6)

and the superscript Q indicates the quark basis. Note that ξ is proportional to s2s3 sin δ because
it depends on Im ξc = −Im ξt. This is the same small parameter that suppresses all CP–violating
effects.

The ξ defined in (10.5.5) and (10.5.6) is the same as that in (10.4.14) because the matrix element
〈K0|Ods± |K

0〉 is real in the quark basis, but to transform to the basis in which A0 is real, we must
redefine the states as follows:

|K0〉 → e−iξ|K0〉, |K0〉 → eiξ|K0〉. (10.5.7)

This multiplies the matrix element by e2iξ.
The A2 amplitude is not infested with “Penguins”. It comes purely from the ∆I = 3

2 part of
the weak Hamiltonian that has a real coefficient. Thus, it is real in the quark basis. But then the
transformation to the basis in which A0 is real introduces a factor of e−iξ, thus

A2 = e−iξ|A2|, (10.5.8)

and for small ξ, the parameter ε′ is

ε′ = −ξei(δ2−δ0)|A2|/
√

2A0 ' −eiπ/4ξ/20
√

2, (10.5.9)

where we have put in the experimental values of |A2|/A0 ' 1/20 and δ0 − δ2 ' π/4 (actually it is
53
◦ ± 6

◦
).

Eventually, data on ε′/ε and the KM angles will continue to improve, mt will be measured, and
perhaps we will even be able to calculate some strong–interaction matrix elements. Progress on
any of these fronts could transform (10.5.9) and (10.4.15) into crucial tests of the six–quark model
of CP violation. Perhaps the most exciting possible outcome of all this would be some evidence
that new physics is required to understand CP violation.
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Problems

10-1. Derive (10.2.5) and (10.2.6).

10-2. Reproduce (“derive” is too strong a term) (10.2.7). Note that there are four different
ways of inserting the vacuum state.

10-3. In the alternative SU(2)× U(1) theory of Problem 3-4, suppose that

U1 = c1u+ s1c , U2 = c1c− s1u

D1 = c2d+ s2s , D2 = c2s− s2d

In tree approximation, there is no flavor-changing neutral-current effect. But what about radiative
corrections? Calculate the leading contribution to the ∆S = 2 part of the effective Lagrangian just
below MW . Assume that all the quark masses are small compared to the W mass and keep only
the leading terms. You will probably find it easiest to calculate the appropriate Feynman diagrams
in ’t Hooft-Feynman gauge. Be sure to explain why the diagrams you calculate give the leading
contribution.

10-4. Integrate the renormalization group equation for hct, with βct given by (10.3.13).

10-5. Derive (10.4.3) and (10.4.4).

10-6. Relate (10.4.13) to Γ12 and the second term in (10.2.2).

10-7. Derive (10.5.4).

10-8. Suppose that some very weak interaction at a large scale MI produces a ∆S = 2,
CP-violating interaction of the form

i

M2
I

Ods+

Estimate how large MI would have to be in order for this term to produce all the CP-violating
effects that have been observed.

10-9. Consider the effect of the ρ parameter (see Section 8.5) of a doublet of very heavy quarks
h and l with usual SU(2) × U(1) properties but with masses mh, ml � MW . First show that if
both quarks are removed from the theory at the same large scale, µ ≈ mh,ml, the effect on ρ is a
matching correction that has the form

∆ρ =
eα

16π sin2 θM2
W

{
m2
h +m2

l −
2m2

hm
2
l

m2
h −m2

l

ln
m2
h

m2
l

}

Now consider the case mh � ml � MW , and remove the quarks from the theory one at a time.
You should find that the first and the second terms in the bracket are still matching corrections,
while the third arises from the form of the β function in the region ml < µ < mh. Calculate it
using the renormalization group, and show that it reduces to the result above when you turn off
QCD.
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Appendix A

Review of Dimensional Regularization

In dimensional regularization (DR), the quantum field theory of interest is extended to 4 − ε
dimensions.1 Because this extension changes the dimensions of the fields, if the couplings are
to retain their canonical dimension, appropriate fractional powers of a dimensional parameter, µ,
must be introduced into the couplings of the theory. We will discuss the physical significance of
this parameter, and the related question of “In what sense is dimensional regularization a sensible
regularization scheme?” However, before we get to these interesting questions, we will briefly review
the formalism.

A.1 n Dimensional Integration

Begin with the standard calculation of the n-dimensional volume:

πn/2 =
(∫ ∞
−∞

e−p
2
dp

)n
=
∫
e−p

2
dnp = Ω(n)

∫ ∞
0

e−p
2
pn−1 dp

=
1
2

Ω(n)
∫ ∞

0
(p2)

n
2
−1 e−p

2
d(p2) =

1
2

Ω(n) Γ
(
n

2

)

⇒ Ω(n) =
2πn/2

Γ(n/2)

(A.1.1)

Now use this to compute the canonical Feynman graph in κ dimensions:

∫ (p2)β

(p2 +A2)α
dκp

(2π)κ
=

Ω(κ)
(2π)κ

∫ ∞
0

pκ+2β

(p2 +A2)α
dp

p

=
Ω(κ)
(2π)κ

Aκ+2β−2α
∫ ∞

0

yκ+2β

(1 + y2)α
dy

y

(A.1.2)

1I will think of ε as a negative number. This makes no difference. The dimensionally regularized integrals are
defined by analytic continuation anyway. I simply prefer to think of the −ε dimensions as “extra” dimensions, beyond
the usual 4.
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Let

x =
y2

1 + y2
, y2 =

x

1− x
, 1 + y2 =

1
1− x

,

2 ln y = lnx− ln(1− x) ,

2
dy

y
= dx

(
1
x

+
1

1− x

)
=

dx

x(1− x)
.

(A.1.3)

Then (A.1.2) becomes

=
Ω(κ)
(2π)κ

Aκ+2β−2α 1
2

∫ 1

0
xβ+κ/2−1 (1− x)α−β−κ/2−1 dx

=
Ω(κ)
(2π)κ

Aκ+2β−2α 1
2

Γ(β + κ/2) Γ(α− β − κ/2)
Γ(α)

.

(A.1.4)

or ∫ (k2)β

(k2 +A2)α
dκk

(2π)κ

=
Aκ+2β−2α

(4π)κ/2
Γ(β + κ/2) Γ(α− β − κ/2)

Γ(κ/2) Γ(α)
.

(A.1.5)

Finally, taking κ = 4− ε, and dividing by µ−ε to get the dimensions right, we have the final result

∫ (k2)β

(k2 +A2)α
d4−εk

(2π)4−εµ−ε

=
A4+2β−2α−ε

(4π)2−ε/2µ−ε
Γ(β + 2− ε/2) Γ(α− β − 2 + ε/2)

Γ(2− ε/2) Γ(α)
.

(A.1.6)

Often, for example in calculations of anomalous dimensions, we are only interested in the µ
dependence of the diagram. In that case, the only relevant ε dependence at the one loop level comes
from the 1/µ−ε and the 1/ε pole in (A.1.6). In this case, we can rewrite (A.1.6) (for nonnegative
integer α and β such that β + 2 ≥ α) in the simpler form:

∫
d4−εk

(2π)4−εµ−ε
(k2)β

(k2 +A2)α

=
A4+2β−2α

(4π)2µ−ε
Γ(β + 2) Γ(α− β − 2 + ε/2)

Γ(α)
+ · · · .

=
A4+2β−2α

(4π)2

1
ε µ−ε

2 (−1)β−α(β + 1)!
(α− 1)! (β + 2− α)!

+ · · · .

(A.1.7)

where · · · are finite terms independent of µ. This piece has all the information about renormalization
in it.
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A.2 Regularization

The physical idea of a regularization scheme is that it is a modification of the physics of the theory
at short distances that allows us to calculate the quantum corrections. If we modify the physics
only at short distances, we expect that all the effects of the regularization can be absorbed into
the parameters of the theory. That is how we chose the parameters in the first place. However, it
is not obvious that DR is a modification of the physics at short distances. To see to what extent it
is, consider a typical Feynman graph in the unregularized theory in Euclidean space:2

I =
∫ 1

(p2 +A2)α
d4p

(2π)4
[dx] , (A.2.8)

where [dx] indicates the integration over Feynman parameter, and A2 is an function of the external
momenta and the particle masses, and of the Feynman parameters. α is some integer. All graphs
ultimately reduce to sums of objects of this form.

In DR, these objects are replaced by integrals over 4− ε dimensional momentum space:

Iε = c(ε)
∫ 1

(p2
ε + p2 +A2)α

d4−εp

µ−ε (2π)4−ε [dx] , (A.2.9)

where c(ε) is some function that goes to 1 as ε → 0. In (A.2.9), p2 retains its meaning as the 4
dimensional length. To see the relation between (A.2.9) and (A.2.8), rewrite (A.2.9) as follows

c(ε)
∫ 1

(p2
ε + p2 +A2)α

d−εp

(2πµ)−ε
d4p

(2π)4
[dx] , (A.2.10)

I have explicitly separated out the “extra” −ε dimensions, so that p2 is the 4 dimensional length
of p.

Now use (A.1.5) to do the integral over the −ε extra dimensions (of course this is not the way
we would actually calculate the graph – but it will help us to understand what is happening). The
result is

Iε =
∫ 1

(p2 +A2)α
r(ε)

(
p2 +A2

4πµ2

)−ε/2
d4p

(2π)4
[dx] , (A.2.11)

where
r(ε) = c(ε)

Γ(α+ ε/2)
Γ(α)

. (A.2.12)

The multiplicative factor, r(ε), goes to 1 as ε→ 0. The important factor is

ρ−ε/2 where ρ =
p2 +A2

4πµ2
. (A.2.13)

This factor also goes to 1 as ε→ 0, but here the convergence depends on p and A. Because

ρ−ε/2 = e−(ε ln ρ)/2 , (A.2.14)

it follows that
ρ−ε/2 ≈ 1 for | ln ρ| � 1

ε
. (A.2.15)

2We discuss one loop graphs, for simplicity. The extension to arbitrary loops is trivial.
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Equation (A.2.15) is the crucial result. It shows that when we compute quantum corrections
using dimensional regularization, we do not change the physics for p (the loop momentum) and A
(which involves external momenta and masses) of the order of µ. However, we introduce significant
modifications if either p or A is much larger than µ for fixed ε, or if they are both much smaller
than µ. The second is an important caveat. DR changes the physics in the infrared as well as
the ultraviolet region. If all the particles are massive and all momenta spacelike, that causes no
problems, because A2 is bounded away from zero. However, in general, we will need to keep our
wits about us and make sure that we understand what is happening in the infrared regime, in order
to use dimensional regularization. As long as the infrared region is under control, dimensional
regularization should be a perfectly good regularization technique.



Appendix B

Background Field Gauge

With (1b.2.12), the theory is well defined, but the gauge symmetry has been explicitly broken. That
is OK, because we know that gauge invariant Green functions are independent of the breaking,
however, it makes the analysis of theory more complicated. There is a way of choosing the gauge
that defines the theory, but nevertheless preserves the advantages of explicit gauge invariance. This
is the so-called “background field gauge” [Abbott 81]. The idea is to include a classical gauge field,
Aµ, and build the gauge fixing term as a function of the quantity

GL ≡ ∂µGµ − ∂µAµ − i[Gµ, Aµ] . (B.0.1)

The L is a reminder that this quantity depends on the longitudinal component of the gauge field.
The point is that while GL transforms inhomogeneously under (1b.2.5), it is covariant under the
simultaneous transformations of (1b.2.5) and

Aµ → ΩAµΩ−1 + iΩ∂µΩ−1 . (B.0.2)

Thus we can build a gauge fixing term, f(G,A), (in fact, a function of GL) that is invariant under
the simultaneous gauge transformations, for example,1

exp
(
−i
∫

tr
1
αg2

GL
2
)
. (B.0.3)

The Faddeev-Popov determinant defined with such a gauge-fixing term, f(G,A), is separately
invariant under (1b.2.5) and (B.0.2). The first follows from (1b.2.8) and (1b.2.9). The second follows
immediately from the simultaneous invariance of f(G,A). Thus the whole action in (1b.2.12) has
the simultaneous gauge invariance.

To see how this symmetry constrains the form of the Green functions of the theory, add a source
term,

2 trGµJµ , (B.0.4)

and use (1b.2.12) to construct the generating functional, W (J,A), that now depends on both the
source and on the classical gauge field. There is also dependence on sources for matter fields, but
we will not write this explicitly. The symmetry properties can be seen more readily if we rewrite
the source term as

2 tr (Gµ −Aµ)Jµ + 2 trAµJµ . (B.0.5)

1from here on, we assume the normalization, (1.1.14), unless explicitly stated to the contrary
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The first term in (B.0.5) is invariant under (1b.2.5), (B.0.2), and

Jµ → ΩJµΩ−1 . (B.0.6)

The second term, when exponentiated, simply gives a constant factor that can be taken outside
the functional integral. Thus we can write

W (J,A) = W̃ (J,A) + 2 trAµJµ , (B.0.7)

where W̃ (J,A) is invariant under (1b.2.5) and (B.0.6).
When we construct the generating functional for 1PI graphs, the effective action, we get

Γ(G, A) = W (J,A)− 2 trGµJµ = W̃ (J,A)− 2 tr (Gµ −Aµ)Jµ , (B.0.8)

where G is the classical field corresponding to the quantum gauge field, G, defined by

G =
δW

δJ
=
δW̃

δJ
+A . (B.0.9)

These two relations show that Γ(G, A) is invariant under the simultaneous gauge transformations,
(B.0.2) and

Gµ → ΩGµΩ−1 + iΩ∂µΩ−1 . (B.0.10)

Now even though the Γ function has the gauge symmetry, it is still not very useful, because
with two gauge fields, G and A, we can build many more invariant terms than with one alone.
However, we have not yet used the fact that the classical gauge field, A, is arbitrary, because it is
part of the gauge fixing. In particular, we can choose

Aµ = Gµ , (B.0.11)

and use
ΓBF (G) ≡ Γ(G,G) , (B.0.12)

which is invariant under (1b.2.5) alone.
Next, let us show that we can use the object, ΓBF (G), to calculate the gauge invariant physical

quantities of interest. We begin by including in our Lagrangian a set of sources, J , for gauge
invariant operators. These operators are constructed out of the quantum gauge field, G, and any
matter fields that are relevant. The advantage of including these sources is that we can then look
only at the vacuum energy in the presence of the sources, and by differentiation with respect to the
sources, reconstruct the matrix elements of gauge invariant operators. Any physical quantity can
be related to suitable matrix elements of gauge invariant operators, thus the vacuum energy in the
presence of arbitrary gauge invariant sources contains all the information we need to do physics.

The quantization of the theory proceeds in the same way in the presence of the sources. The
only difference is that now the Γ functions we construct depend on the sources, J . Now the object

Γ(G,A, J) (B.0.13)

has the property of independence of A at an extremum with respect to G because at such an
extremum, it a vacuum energy. Thus for example, if

Γ1(G0(A, J), A, J) = 0 (B.0.14)
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then Γ(G0(A, J), A, J) is independent of A. Thus

d

dA
Γ(G0(A, J), A, J) = 0 (B.0.15)

∂G0

∂A
Γ1(G0(A, J), A, J) + Γ2(G0(A, J), A, J) (B.0.16)

and therefore
⇒ Γ2(G0(A, J), A, J) = 0 . (B.0.17)

Now in particular, we can choose
A = g0(J) (B.0.18)

which is a solution to the equation

g0(J) = G0(g0(J), J) . (B.0.19)

Then
Γ(G0(A, J), A, J) = Γ(g0(J), g0(J), J) = ΓBF (g0(J), J) (B.0.20)

and
∂

∂A
ΓBF (A, J)|A=g0(J) (B.0.21)

= Γ1(g0(J), g0(J), J) + Γ2(g0(J), g0(J), J) = 0 . (B.0.22)

So the vacuum energy in the presence of gauge invariant sources is given by ΓBF at an extremum.
Thus we can use ΓBF to compute arbitrary vacuum matrix elements of gauge invariant operators,
from which we can construct any physical quantity.

In fact, the way the background field gauge is used in practice, is to compute anomalous dimen-
sions of gauge invariant operators. In such calculations, it is convenient to deal with objects that
are not gauge invariant, such as matrix elements of the gauge invariant operators with gauge fields
or matter fields. It is often easiest to find the renormalization group equations by studying these
gauge variant objects. But the anomalous dimensions of the gauge invariant operators obtained by
this procedure must be gauge invariant in background field gauge because they could have been
obtained by studying only the matrix elements of gauge invariant operators from ΓBF .

The only problem with ΓBF , as defined in (B.0.12), is that it is unnecessarily difficult to cal-
culate. We must evaluate diagrams with both external gauge field lines and with insertions of
the classical gauge field, A. We can calculate ΓBF much more easily by changing variables in the
original Lagrangian, and taking the quantum field to be

G̃µ ≡ Gµ −Aµ . (B.0.23)

In the effective action, the classical field gets translated in the same way,2

G̃µ ≡ Gµ −Aµ , (B.0.24)

and the effective action in the translated theory is

Γ̃(G̃, A) = Γ(G̃ +A,A) . (B.0.25)

Now clearly, we can calculate ΓBF as

ΓBF (A) ≡ Γ(A,A) = Γ̃(0, A) , (B.0.26)
2This is one of the great advantages of the effective action in the study of symmetry breaking – see [Coleman 73].
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This is a great improvement. Now we must calculate 1PI diagrams with insertions of the classical
gauge field, but we do not need to have any external quantum gauge field lines! We will use this
form. Our definitions have been chosen to agree with those of [Abbott 81], except that we have
normalized the fields so that the gauge transformations do not involve the gauge coupling, so that
the coupling appears in the coefficient of the kinetic energy term, (1b.2.2) and (B.0.3), and the
ghost kinetic energy term in the Faddeev-Popov determinant. The Feynman rules are shown below,
with gauge fields indicated by double lines and ghost fields by dotted lines. The external gauge

field is denoted by a double line ending in An. We have not shown any vertices with a single
quantum gauge field, because these do not contribute to the 1PI diagrams that we must calculate
to evaluate ΓBF .

a, µ b, ν

k −i g2 δab
k2 + iε

[
gµν −

kµkν
k2

(1− α)
]

(B.0.27)

q q q q q q q q q q q>a b

k i g2 δab
k2 + iε (B.0.28)
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nAa, µ
p

rq

b, ν c, λ

1
g2
fabc [gµλ(p− r − q/α)ν

+gνλ(r − q)µ

+gµν(q − p+ r/α)λ]

(B.0.29)
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a, µ

p

rq

b, ν c, λ

1
g2
fabc [gµλ(p− r)ν

+gνλ(r − q)µ

+gµν(q − p)λ]

(B.0.30)
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b, ν c, λ

a, µ d, ρ

and

−i
g2

[fabxfxcd(gµλgνρ − gµρgνλ)

+fadxfxbc(gµνgλρ − gµλgνρ)

+facxfxbd(gµνgλρ − gµρgνλ)]

(B.0.31)
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@
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@

Am

Am
b, ν c, λ

a, µ d, ρ

−i
g2

[fabxfxcd

· (gµλgνρ − gµρgνλ + 1
αgµνgλρ)

+fadxfxbc(gµνgλρ − gµλgνρ − 1
αgµρgνλ)

+facxfxbd(gµνgλρ − gµρgνλ)]
(B.0.32)

qqqqq
qqqqq
qqqqq
qq

∧

∧

q

p

b

a

Anc, µ − 1
g2
fabc (p+ q)µ

(B.0.33)

qqqqq
qqqqq
qqqqq
qq

∧

∧

q

p

b

a

c, µ
− 1
g2
fabc pµ

(B.0.34)
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An q q q q q q q<qqqq
qqq
∧

c, µ

d, ν

a

b −i
g2

facxfxdbgµν

(B.0.35)

An
An
q q q q q q q<qqqq
qqq
∧
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B.1 The β function

The normalization of the background gauge field, Aµ, is fixed, in our notation, by the form of
gauge transformations. The translated quantum field, G̃µ, transforms homogeneously under gauge
transformations and may be multiplicatively renormalized. However, in calculating the effective
action, ΓBF (A), using (B.0.26), we do not need to worry about renormalization of the quantum
gauge field, because we do not need to couple sources to it. It can be left unrenormalized.

Calculating in background field gauge still involves the gauge fixing parameter α, which is also
renormalized. Landau gauge, which corresponds to α = 0, does not requires such a renormalization,
but we cannot go to Landau gauge directly because of the 1/α factors in Feynman rules. One way of
dealing with this is to calculate with arbitrary α. In a calculation of any gauge invariant quantity,
in particular the background field effective action, all the 1/α terms cancel, because the gauge
dependence can appear only in the form of renormalizations of α, and then α can be set to zero.
Thus one can ignore the renormalization of α as well.3

The only remaining renormalizations, in a pure gauge theory, are the renormalizations of the
gauge couplings, defined by (1b.2.2). At tree level, the effective action looks just like (1b.2.2),

−
∑
a

1
4g2
a

AaµνA
µν
a . (B.1.1)

The β functions are determined by the infinite loop corrections to the effective action which can
3In practice, it may be easier to calculate in Feynman gauge, as in [Abbott 81], and include counterterms for α,

but it is not necessary.
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renormalize (B.1.1). At one loop, these are completely determined by the two point diagrams,

qqqqqqqqqqqqqqqq q q q q q q q qq
>

<

An An
(B.1.2)

'
&
$
%

#
"
 
!An An

(B.1.3)

Note that the fact that only 2-point functions are required to find β is a consequence of the explicit
gauge invariance of the effective action that guarantees that the infinite contributions will have the
form of (B.1.1). This makes the calculation of β in background field gauge much simpler than a
calculation in a standard covariant gauge.

Another way of saying this is that because the explicit gauge invariance fixes the normalization
of Aµ, the renormalization group equation satisfied by the effective action is(

µ
∂

∂µ
+ βg

∂

∂g

)
ΓBF (A) = 0 . (B.1.4)

Since (B.1.4) does not involve derivatives with respect to A, we can calculate β by looking at the
any n-point function, in particular the 2-point function. Including the one loop corrections from
(B.1.2) and (B.1.3), we have

Γµν2ab(p) = δab

[
1
g2
a

+ b ln

(
−p2

µ2

)
+ finite terms

] [
gµνp2 − pµpν

]
, (B.1.5)

where
b =

11
3

Ca
16π2

, (B.1.6)

with
Ca δab =

∑
de

fadefbde . (B.1.7)
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