
#HUTP-93/A003

1/93

Effective Field Theory∗†‡

Howard Georgi

Lyman Laboratory of Physics

Harvard University

Cambridge, MA 02138

∗Research supported in part by the National Science Foundation under Grant #PHY-8714654.

†Research supported in part by the Texas National Research Laboratory Commission, under Grant #RGFY9206.

‡To appear in Annual Review of Nuclear and Particle Science, vol. 43.



Contents

Prologue 3

1 Effective Field Theory 3
1.1 The principles of effective field theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Wilson versus continuum EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Why continuum effective field theory? . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Roots 10
2.1 Chiral Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Gauge model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Renormalization logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Mass independent schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Back to Appelquist-Carazone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Witten, Gilman-Wise, and heavy quarks . . . . . . . . . . . . . . . . . . . . . . . . 19

3 “Integrating Out” versus “Matching” 19
3.1 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 The operator product expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Applications 28
4.1 Symmetries at low energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Composite Higgs bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Above the Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Resumming large radiative corrections . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Nonperturbative matching corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Acknowledgements 43

References 43



Prologue

When I agreed to write this review article (in a moment of weakness) in 1991, I didn’t really realize

how poorly suited I am to this kind of activity. As I gathered ideas and materials for the article

over the next year, it dawned on me that I hadn’t even read a review article in 25 years. I’m not

quite sure what they are good for. Obviously, I cannot summarize all the work that has gone on in

the field in any detail. I could try to give a guide to the literature, but it is easy to summarize the

proper approach to the old literature on this (or almost any) subject. Two words suffice. Ignore

it! With rare exceptions, old papers are difficult to read because the issues have changed over the

years.

The model that I will use instead is my “textbook” on Weak Interactions, [1] which was originally

intended as a thinly disguised monograph on effective field theory. There will be more words than

formulas. I will concentrate on what I think are the critical ideas from which all the applications

flow, illustrating the technical issues in just a few important and rather new examples. I will refer

to many of the old papers on the subject in section 2, but usually in the hope that people will not

actually go back and read them.

I introduce the effective field theory idea in 1. Section 2 contains a brief review of some of the

history of effective field theory. In section 3 I discuss the process of matching from on effective field

theory to the next in some detail. Finally in section 4 I discuss a few applications of the effective

field theory idea. These are illustrative, but not at all exhaustive. For example, I do not mention

the beautiful example of heavy quark effective theory [2] at all because it is reviewed elsewhere in

this volume. I end this section with a frankly speculative discussion of nonperturbative matching

corrections.

1 Effective Field Theory

One of the most astonishing things about the world in which we live is that there seems to be

interesting physics at all scales. Whenever we look in a previously unexplored regime of distance,

time or energy, we find new physical phenomena. From the age of universe, about 1018 sec, to

the lifetime of a W or Z, a few times 10−25 sec, in almost every regime, we can identify physical

phenomena worthy of study.

To do physics amid this remarkable richness, it is convenient to be able to isolate a set of
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phenomena from all the rest, so that we can describe it without having to understand everything.

Fortunately, this is often possible. We can divide up the parameter space of the world into different

regions, in each of which there is a different appropriate description of the important physics. Such

an appropriate description of the important physics is an “effective theory.” The two key words

here are appropriate and important.

The word “important” is key because the physical processes that are relevant differ from one

place in parameter space to another.

The word “appropriate” is key because there is no single description of physics that is useful

everywhere in parameter space.

The common idea is that if there are parameters that are very large or very small compared

to the physical quantities (with the same dimension) that we are interested in, we may get a

simpler approximate description of the physics by setting the small parameters to zero and the

large parameters to infinity. Then the finite effects of the parameters can be included as small

perturbations about this simple approximate starting point.

This is an old trick, without which much of our current understanding of physics would have

been impossible. We use it without thinking about it. For example, we still teach Newtonian

mechanics as a separate discipline, not as the limit of relativistic mechanics for small velocities. In

the (familiar) region of parameter space in which all velocities are much smaller than the speed

of light, we can ignore relativity altogether. It is not that there is anything wrong with treating

mechanics in a fully relativistic fashion. It is simply easier not to include relativity if you don’t

have to.

This simple example is typical. It is not necessary to use an effective theory, if you think that

you know the full theory of everything. You can always compute anything in the full theory if

you are sufficiently clever. It is, however, very convenient to use the effective theory. It makes

calculations easier, because you are forced to concentrate on the important physics.

In the particle physics application of effective theories, the relevant parameter is distance scale.

In the extreme relativistic and quantum mechanical limit of interest in particle physics, this is the

only relevant parameter. The strategy is to take any features of the physics that are small compared

to the distance scale of interest and shrink them down to zero size. This gives a useful and simple

picture of the important physics. The finite size effects that you have ignored are small and can be

included as perturbations.
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Again, this process is very familiar. We use it, for example, in the multipole expansion in elec-

trodynamics, or in replacing a physical dielectric with a uniform one. However, in a relativistic,

quantum mechanical theory, in which particles are created and destroyed, the construction of an

effective theory (now an effective quantum field theory — EQFT) is particularly interesting and use-

ful. An EQFT is particularly useful, because among the short distance features that can be ignored

in an effective theory are all the particles too heavy to be produced. Eliminating heavy particles

from the effective theory produces an enormous simplification. An EQFT is particularly interesting

because of the necessity of ultraviolet regularization. This makes the process of constructing the

effective theory nontrivial because the limit in which the small distance scales are taken to zero

must be handled carefully. One consequence of the ultraviolet behavior is the renormalization group

running of coupling constants with the renormalization scale, µ. Going to the effective theory actu-

ally changes the running of coupling constants by trading logarithmic dependence on heavy particle

masses for scale dependence. I will have much more to say about this issue below.

The result of eliminating heavy particles is inevitably a nonrenormalizable theory, in which the

nontrivial effects of the heavy particles appear in interactions with dimension higher than four. In

the full theory, these effects are included in the nonlocal interactions obtained by “integrating out”

the heavy particles. These interactions, because of their nonlocal nature, get cut off for energies large

compared to the heavy particle masses. However, in the effective theory, we replace the nonlocal

interactions from virtual heavy particle exchange with a set of local interactions, constructed to give

the same physics at low energies. In the process, we have modified the high energy behavior of

the theory, so that the effective theory is only a valid description of the physics at energies below

the masses of the heavy particles. Thus the domain of utility of an effective theory is necessarily

bounded from above in energy scale.

Likewise, as least if the effective theory itself describes light particles with nonzero mass, the

domain of utility of the effective theory is bounded from below. At sufficiently small energy scales,

below the masses of the heaviest particles in the effective theory, it is possible, and useful to change

theories yet again to a new effective theory from which the heaviest particles have been removed.

While the upper bound is an absolute, this lower bound is simply a convenience.

In the extreme version of the effective-field-theory language, we can associate each particle mass

with a boundary between two effective theories. For momenta less than the particle mass, the

corresponding field is omitted from the effective theory. For larger momenta, the field is included.
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The connection between the parameters in the effective theories on either side of the boundary is

now rather obvious. We must relate them so that the description of the physics just below the

boundary (where no heavy particles can be produced) is the same in the two effective theories. In

lowest order, this condition is simply that the coupling constants for the interactions involving the

light fields are continuous across the boundary. Heavy-particle exchange and loop effects introduce

corrections as well as new nonrenormalizable interactions, which we will discuss in detail below.

The relations between the couplings imposed by the requirement that the two effective theories

describe the same physics are called “matching conditions”. The matching conditions are evaluated

with the renormalization scale µ in both theories of the order of the boundary mass to eliminate

large logarithms.

The process of matching is sometimes thought of as a two-step process. In the first step, you

integrate out the heavy particles and produce non-local interactions among the light particles. In

the second step, you perform an operator product expansion on the non-local interactions to produce

the local interactions in the effective theory. In fact, however, this two step picture is not quite

right. I will show where it breaks down in section 3.2 below. But even where the picture is valid,

it is not really very useful. The reason is that the process of doing the operator product expansion

is not really very different from the process of computing the matching corrections. You might as

well do the matching in a single step. We will see how this works in detail below.

If we had a complete renormalizable theory at high energy, we could work our way down to the

effective theory appropriate at any lower energy in a systematic way. Beginning with the mass M

of the heaviest particles in the theory, we could set µ = M and calculate the matching conditions

for the parameters describing the effective theory with the heaviest particles omitted. Then we

could use the renormalization group to scale µ down to the mass M ′ of the next heaviest particles.

Then we would match onto the next effective theory with these particles omitted and then use

the renormalization group again to scale µ down further, and so on. In this way, we obtain a

descending sequence of effective theories, each one with fewer fields and more small renormalizable

interactions than the last. This top down approach to effective field theory is a very convenient

way of organizing field theory calculations. We will discuss several examples of this procedure in

the sections to come.
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1.1 The principles of effective field theory

Effective field theory is more than a convenience. There is another way of looking at it, however,

that corresponds more closely to what we actually do in physics. We can look at this sequence

of effective theories from the bottom up. In this view, we do not know what the renormalizable

theory at high energy is, or even that it exists at all. Having seen it several times in the last 50 years,

we are now used to the idea that there are important interactions at many different energy scales,

some of them probably so large that we cannot see them directly. Certainly not now. Perhaps not

ever. Nevertheless, we can use an effective field theory to describe physics at a given energy scale,

E, to a given accuracy, ε, in terms of a quantum field theory with a finite set of parameters. We

can formulate the effective field theory without any reference to what goes on at arbitrarily small

distances.

The “finite set of parameters” part sounds like old fashioned renormalizability. However, the

dependence on the energy scale, E, and the accuracy, ε, is the new feature of effective field theory.

It arises because we cannot possibly know, in principle, what is going on at arbitrarily high energies.

However, we can parameterize our ignorance in a useful way. The effect of physics at high energy

on the physics at the scale, E, can be described by a tower of interactions, with integral mass

dimension from two to infinity, beginning with conventional renormalizable interactions, but going

on to include nonrenormalizable interactions of arbitrarily high dimension.

The principles that govern the tower of interactions are these:

1. there are a finite number of parameters that describe the interactions of each dimension, k−4;

2. the coefficients of each of the interaction terms of dimension k− 4 is less than or of the order

of
1

Mk
where E < M (1.1)

for some mass M , independent of k.

These two conditions are the principles of effective field theory. They ensure, at least in pertur-

bation theory, that only a finite number of parameters are required to calculate physical quantities at

an energy E to an accuracy ε, because the contribution of interactions of dimension k is proportional

to (
E

M

)k

(1.2)
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Thus we need only include terms up to dimension kε

(
E

M

)kε

≈ ε ⇒ kε ≈ ln(1/ε)

ln(M/E)
(1.3)

of which there are only a finite number.

Of course, as you go up in energy, the nonrenormalizable interactions for any fixed k become

more important. kε increases. This is a signal that you are getting close to new physics. Before

you reach energies of order M , the nonrenormalizable interactions disappear and are revealed as

renormalizable, or at least less nonrenormalizable interaction with a still higher scale, M ′. Then

you have a new effective theory, and you can start the process over again.

The philosophical question underlying old-fashioned renormalizability is: How does this pro-

cess end?

It is possible, I suppose, that at some very large energy scale, all the nonrenormalizable inter-

actions disappear, and the theory is simply renormalizable in the old sense. This seems unlikely,

given the difficulty with gravity.

It is possible that the rules change dramatically, as in string theory.

It may even be possible that there is no end, simply more and more scales as one goes to higher

and higher energy.

Who knows?

Who cares?

In addition to being a great convenience, effective field theory allows us to ask all the really

scientific questions that we want to ask without committing ourselves to a picture of what happens

at arbitrarily high energy.

Renormalizability has been replaced by the constraints, 1 and 2, on the tower of interactions in

the effect theory.

1.2 Wilson versus continuum EFT

Within the general framework of the effective field theory idea, there are two rather different ap-

proaches, which I will call the Wilson approach, and the continuum effective field theory approach.

It is the second of these that I will discuss in detail here. But I should start by explaining why I think

that they are different. I will argue that the two take a very different approach to renormalization.
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In Wilson effective theory, the fundamental question is How does the full theory change

as you integrate out high momentum modes and look at it at larger distances? This

question fits in nicely with a physical renormalization scheme such as momentum space subtraction

and physical renormalization.

In what I call continuum effective field theory, the question is How do we modify the theory

to allow the use of a mass independent scheme and still get the physics right? The idea

is to put in by hand as much as possible of the dependence on distance scale. The more of the

physics of distance scale that is put in by hand, the easier it becomes to extract the physics that

your really care about.

1.3 Why continuum effective field theory?

One of my motivations in agreeing to write this article was a question that my colleague Sidney

Coleman asked me: What’s wrong with form factors? What’s wrong with just integrating

out heavy particles and large momentum modes, ala Wilson and using the resulting

nonlocal theory as your interaction?

The answer of course is Nothing — but this is not an effective field theory calculation.

It is just a way of doing the full theory calculation. But the fact that one of the world’s

greatest field-theorists would ask such a question convinced me that the idea of continuum effective

field theory is not universally understood.

The real answer to the question Why continuum effective field theory?, is Because it is

easier! The advantages are

1. Concentration on relevant physics: It allows us to deal just with the particles that we actually

know about, and interactions that we already see, and postpone speculation about higher

energies.

2. Consistency with a mass independent renormalization scheme: It allows us to use a convenient

scheme like MS and still get the physic right. I will say much more about this below.

3. Dealing efficiently with IR divergences: As I will show you, the effective theory calculations can

be organized to explicitly avoid infrared divergences. In particular, calculations of matching

corrections are automatically infrared finite.
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Of course, the real answer to Coleman’s question is that it is the wrong question. The right

question is How is just integrating out heavy particles and using the resulting nonlocal

theory as your interaction different from a real effective field theory calculation? It is

this difference that I think is not as widely appreciated as it should be. This is what I want to

describe in some detail.

2 Roots

First, however, I will trace a few of the historical roots of the modern view of continuum effective

field theory. Of course, Ken Wilson’s work in the 60’s lies at the root of much of the effective field

theory idea. I will not discuss this, because I want to concentrate on the developments that were

uniquely related to the continuum theory.

2.1 Chiral Lagrangians

Chiral Lagrangian techniques were developed by Weinberg, Dashen and others in the late 60’s as

a short-cut to current-algebra derivations. [3] The struggle to extricate chiral Lagrangians from

current-algebra (see [4]) and to make sense of loop calculations in these theories was one of the im-

portant spurs to the development of the effective field theory machinery. [4, 5] The chiral Lagrangian

has also grown, at the hands of Gasser and Leutwyler, into the most nontrivial and important exam-

ple of the use of effective field theory. [6] In modern language, the point is simply that there exists a

limit of QCD in which the pions, Ks and η are massless Goldstone bosons of spontaneously broken

SU(3)×SU(3) chiral symmetry. In this limit, and at low momenta, the properties of these particles

should be severely constrained by the chiral symmetry. The simplest and most systematic way to

impose these constraints is to build a chiral Lagrangian describing only the Goldstone bosons, but

incorporating the full chiral symmetry of QCD, nonlinearly realized. [7]

If the chiral symmetries of QCD were exact, we could extract arbitrarily precise predictions

from the chiral Lagrangian. The chiral Lagrangian can be organized in powers of the Goldstone

boson momenta, p. The leading term, of order p2, depends on only a single parameter, fπ. At very

low energies, all Goldstone boson scattering processes are determined by this one parameter, up to

corrections of the order of p2/Λ2, where Λ ≈ 1 GeV is a parameter that I call the chiral symmetry

breaking scale and that measures the convergence of the momentum expansion.
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In the real world, where the chiral symmetries are broken by the quark masses and by the

electromagnetic interactions, we cannot get rid of the higher terms in the chiral Lagrangian by going

to arbitrarily low energy in physical processes, because the particles are stuck on their mass shells.

Nevertheless, we can extract approximate relations in the sense described in the principles of effective

field theory enunciated above. We can presumably describe the physics to any given accuracy in

terms of a finite number of parameters. Unfortunately, the number of unknown parameters grows

rapidly as we go beyond lowest order in the momentum expansion.

2.2 Gauge model building

In the early 70’s, after Gerhard ’t Hooft’s explanation [8] of the renormalizability of spontaneously

broken gauge theories, but before the ascendancy of the standard model, many physicists engaged in

model building, exploring the huge new space of renormalizable models that ’t Hooft opened up to

us. This now seems a little naive, but a tremendous amount of effort was expended understanding

the range of possibilities for spontaneous symmetry breaking with elementary scalar field. Much of

this effort was devoted to two goals:

1. to determined the precise form of the gauge structure of the partially unified theory of elec-

troweak interactions;

2. to further unify the electroweak interactions by incorporating its gauge structure into some-

thing more comprehensive and simpler.

The first goal, as it turned out, was bootless. Somehow, Glashow, Weinberg and Salam [9, 10, 11]

had written down the right electroweak gauge group the first time. The second goal turned out to

be more interesting, leading to SU(5) and the idea of GUTs. [12] This development was very pretty

and influential, although we still do not know how close we have actually come to anything related

to the real world.

All of the effort in model building had two profound effects on the development of the idea

of effective field theory. The obvious consequence was that GUTs made it respectable to think

about truly enormous energy scales. I will describe the effect of this on the understanding of the

renormalization group and related issues in the next three sections. Here I want to mention a less

obvious connection. Many workers developed what were actually effective field theory techniques to

deal with the complicated scalar potentials that appeared in theories with several different scales.
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I will describe two related examples of this. The first concerns the so-called hierarchy problem.

The issue was whether the large ratios of vacuum expectation values required in GUT models were

stable under radiative corrections. [13] The answer was yes. A fine tuning is required to maintain

the large ratio, but the required fine tuning is no worse after radiative corrections that before. The

physics of this is an effective field theory. The fine tuning required is a matching condition onto

the low energy effective field theory — the condition (which requires a fine tuning to implement) is

that there must exist a very light Higgs multiplet.

The other example concerns the Glashow-Weinberg condition. [14] Glashow and Weinberg dis-

covered that there was a relatively simple way to suppress flavor changing neutral current effects in

SU(2) × U(1) models with more than one scalar doublet. People worried that if there were more

than one scalar doublet in the theory, the GIM mechanism [16] would not operate. But Glashow

and Weinberg realized that if the doublet that couples to the right-handed charge 2/3 quarks is

distinguished from the doublet that couples to the right-handed charge −1/3 quarks by some sym-

metry (discrete or softly broken to avoid Goldstone bosons), then the GIM mechanism remains in

force even with the extra doublets.

Unfortunately, perhaps because the authors are two of the greatest physicists of the last third of

the 20th century, too many readers of the Glashow-Weinberg paper mistook the Glashow-Weinberg

condition as a necessary condition on theories with more than one scalar doublet. The common

confused argument went something like this. If the Glashow-Weinberg symmetry is not imposed,

the neutral components of the two scalar doublets will (in general) have GIM violating couplings

that can produce flavor changing neutral current effects. Without the symmetry, an unnatural fine

tuning would be required to suppress such couplings. But the neutral components also cannot be

very heavy, because like the neutral Higgs field in the standard model with a single fundamental

scalar doublet, their masses come from their vacuum expectation values and therefore cannot be

much larger than MW . The flaw in this reasoning is the last sentence. If there is no symmetry

that distinguishes the two (or more) scalar doublets in an SU(2)×U(1) model, then we can always

choose a basis in the space of the scalar fields so that only one linear combination of the fields

gets a non-zero vacuum expectation value (VEV). This one doublet is the only thing that any

sensible person could call a “Higgs doublet” in the theory. The other linear combinations of the

doublets are simply ordinary scalar fields with positive mass-squared terms, having nothing to do
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with SU(2) × U(1) breaking in the model. They are not “Higgs” fields.1 Nothing prevents them

from having masses much larger than MW . From the effective field theory point of view, it is obvious

that flavor changing neutral current effects in such a theory can be made arbitrarily small by taking

the masses of the extra doublets very large. [15] The effective field theory below the scale of the

heavy doublet masses is precisely the one-doublet model, with a GIM mechanism.

You might ask whether this situation requires some special fine tuning. If you think about the

scalar doublets in the low energy theory in an arbitrary basis, then it might seem unnatural that

the linear combination that gets a VEV should be an approximate mass eigenstate much lighter

than all the rest. But from an effective field theory point of view, what you should really do is to

work your way down from the higher scales that surely exist in the theory. In this way of thinking,

the situation is reversed. Suppose we look at the matching onto the low energy theory (low like a

TeV, say) from the next higher scale, M , wherever it is. To have any light scalar doublet requires

a special fine tuning. But if you want to have spontaneous symmetry breaking at low scales you

are forced to do one such special fine tuning. If you make one such fine tuning at the large scale,

M , you will typically end up with one light scalar and lots of heavy scalars with mass of order M .

Of course, it is the light one that gets the VEV, because it is the only one that survives into the

low energy theory in which SU(2) × U(1) is spontaneously broken. In other words, you actually

have to tune to get a small negative mass-squared for the light doublet, while keeping all the other

mass squares positive, to avoid VEVs or order M . The others doublet will get small VEVs of order

v3/M2, induced by quartic couplings involving three light doublets and one heavy doublet. You

can do additional fine tunings to make more doublets light and end up with a theory with multiple

doublets and no symmetry, but then you are doing more ugly fine tunings than necessary to get

the right physics. So the situation in which the doublet with the VEV is nearly a mass eigenstate

is, in some sense, the most natural possibility.

2.3 Renormalization logs

A primary reason that effective field theory machinery is nontrivial and useful is the necessity of

renormalization in quantum field theory. Indeed, renormalization and effective field theory are

closely related ideas. Underlying both is the independence of physics at long distances of the details

of physics at short distances. The history of the ideas of regularization and renormalization, the

1I like to say that in a theory of this kind, the term “charged Higgs” is an oxymoron.
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renormalization group, renormalization schemes, and effective field theory are closely tied together.

Some of these connections are pretty obvious. For example, the way that cut-off dependence in a

regularized theory gets absorbed into renormalized parameters is closely related to the Appelquist-

Carrazone “decoupling theorem” [17] in effective field theory. After all, a cut-off is just a type

of new physics at short distances (fake physics, to be sure, because it often violates some of the

standard rules and because we do not take it seriously as physical reality). Cut-off dependence gets

incorporated into renormalized parameters in exactly the same way in which dependence on a large

particle mass gets incorporated into the low-energy parameters of the effective field theory describing

physics at scales much smaller than the particle mass. Most of this dependence (typically that which

goes with a positive power of the cut-off or the heavy particle mass) is completely absorbed by the

low energy parameters and disappears from the low energy physics without a trace, because it

involves only the physics at large scales. The important exception is the logarithmic dependence

on large scales associated with processes that contribute at all scales. The quantitative upshot of

this is that renormalization always involves a dimensional parameter, the renormalization scale, µ,

that marks the arbitrary boundary between short distance physics and long distance physics in such

processes.

Suppose that you integrate out particles with mass m and study physics at E ¿ m. The

situation is complicated because of renormalization. You must choose some renormalization scheme.

The scheme must contain additional dimensional parameters, at least the renormalization scale, µ

(it could just be a particle mass, but you always need some dimensional scale to renormalize the

processes that contribute at all scales). Then there may be terms like

ln
E

µ
. (2.4)

To avoid large logs, from (2.4), you should calculate as much as possible at the renormalization

scale µ ≈ E. The trouble is that the renormalization scheme can introduce large logarithms, all by

itself, of order ln m
µ . To do accurate calculations, you must find a “good” renormalization scheme,

that avoids these things.

In the full theory, one way to do this is to use a so-called physical renormalization scheme

that incorporates the Appelquist-Carrazone theorem. [17] Then there will be no dependence on

unphysical parameters. A simple example of a physical renormalization scheme is momentum space

subtraction in which physical parameters are fixed at particular values of the momenta.

The momentum space subtraction scheme, like any physical renormalization scheme, is mass
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dependent. This means that anomalous dimensions and β functions must explicitly depend on

µ/m. This is what allows the Appelquist-Carrazone theorem to operate. Consider, for example,

the Georgi-Quinn-Weinberg (GQW) [18] calculation of coupling constant renormalization in SU(5)

(where mX is the mass of the superheavy gauge bosons). In a renormalization scheme that incor-

porates the Appelquist-Carrazone theorem, the gauge couplings at scales much larger than mX will

be approximately equal, because the breaking of the SU(5) gauge symmetry has a negligible effect

when all the energies in the process are very large compared to mX . But at energy scales much

smaller than mX , the gauge couplings of the SU(3), SU(2), and U(1) subgroups are very different,

each running with a β-function determined by low energy physics. GQW realized that to leading

order, the couplings at low energies could be related by assuming that they all came together at

some large energy scale of order mX . This gives the familiar coupling constant renormalization of

figure 1.

µ (in GeV) →
1 1010 1020

0

0.1

↑
αn(µ)

...................................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................





Figure 1: Coupling constant renormalization in SU(5).

The details of the transition from large scales (µ À mX) to small scales (µ ¿ mX) are entirely

scheme dependent. However, their effect on the low energy couplings is higher order in α5(mX)

because they are important only in a small transition region around µ = mX .
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2.4 Mass independent schemes

Some years after the GQW calculation, attempts to improve on it provided a major impetus to the

development of continuum effective field theory. Because it seemed necessary to incorporate the

Appelquist-Carrazone theorem, [19] the first attempts involved two-loop calculations in a momen-

tum space subtraction scheme. [20]

Physical renormalization schemes are very intuitive, and of course, “physical.” However, in

practice, they are difficult to use beyond one-loop in a theory with very disparate scales. These

difficulties are related to the fact that the renormalization group β-functions depend explicitly on

the renormalization scale, µ, as well as on the physical parameters.

It is much easier to use a scheme in which all the β-functions are independent of µ, and thus

depend only on the physical parameters. Such is scheme is called a “mass independent subtraction

scheme.”2 The most familiar and useful examples of mass independent schemes are dimensional

regularization (DR) with minimal subtraction (MS) and its even more useful relative, MS. There

are many advantages of MS. I list a few here and will discuss them in more detail below:

1. easier calculations (simpler expressions);

2. automatic “subtraction” rather than “renormalization”;

3. dimensional analysis works.

In spite of these practical advantages, some people still mistrust dimensional regularization because

it seems unphysical. In fact, I do not think that there is anything to worry about, so long as DR is

used properly. I will, therefore, begin by explaining in what sense DR is a regulator at all.

The physical idea of a regularization scheme is that it is a modification of the physics of the

theory at short distances that allows us to calculate the quantum corrections. If we modify the

physics only at short distances, we expect that all the effects of the regularization can be absorbed

into the parameters of the theory. That is how we chose the parameters in the first place. However,

it is not obvious that DR is a modification of the physics at short distances. To see to what extent

it is, consider a typical Feynman graph in the unregularized theory in Euclidean space. In one loop

(which I discuss for simplicity), all graphs ultimately reduce to sums of objects of the following

2I believe that this is the most general definition of a mass independent scheme. It applies even in the nonrenor-

malizable theories that are required for an effective theory.
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form:

I =
∫

[dx]
d4`

(2π)4

1

(`2 + A2)α
, (2.5)

α is some integer

In DR, these get replaced by integrals over 4 + δ dimensional momentum space. I am going to

think of ε = −δ as being negative. This doesn’t really matter, because everything is defined by

analytic continuation anyway, but it makes things easier to talk about. The regularized integrals

have the form

Iδ = c(δ)
∫

[dx]
d4+δ`

µδ (2π)4+δ

1

(`2
δ + `2 + A2)α

, (2.6)

where c(δ) → 1 as δ → 0, and where I have explicitly separated out the “extra” δ dimensions, so

that `2 is the 4 dimensional length.

In practice, we would do the whole n dimensional integral at once, using

∫ dn`

(2π)n

(`2)β

(`2 − A2)α

=
i

(4π)n/2
(−1)α+β(A2)β−α+n/2

·Γ(β + n/2) Γ(α− β − n/2)

Γ(n/2)Γ(α)

. (2.7)

However, to see what is happening, I am going to split the integral up into an integral over the

usual 4 dimensions and the extra δ dimensions. Rewrite the integral as follows:

c(δ)
∫

[dx]
dδ`

(2πµ)δ

d4`

(2π)4

1

(`2
δ + `2 + A2)α

, (2.8)

Now do integral over δ extra dimensions

Iδ =
∫

[dx]
d4`

(2π)4

1

(`2 + A2)α
r(δ)

(
`2 + A2

4πµ2

)δ/2

, (2.9)

where

r(δ) = c(δ)
Γ(α− δ/2)

Γ(α)
. (2.10)

The factor r(δ) → 1 as δ → 0. The important factor is

ρδ/2 where ρ =
`2 + A2

4πµ2
. (2.11)

This also → 1 as δ → 0, but here convergence depends on ` and A.

ρδ/2 = e(δ ln ρ)/2 , (2.12)
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ρδ/2 ≈ 1 for | ln ρ| ¿ 1

δ
. (2.13)

You can see from (2.13), that for very small δ, we have not changed the physics for ` (the loop

momentum) and A (which involves external momenta and masses) of the order of µ, but that there

are significant differences if either ` or A is much larger than µ for fixed δ, or if they are both

much smaller than µ. The first is exactly what we want. This is just a modification of the physics

at short distances. The second is the problem. DR can modify the physics at large distances as

well, so that, in general, it is not a sensible regulator.

However, we are OK so long as we avoid IR divergences. I will argue below that effective field

theory calculations are very naturally done in MS because IR divergences are naturally kept at bay.

In particular, when a calculation of a matching correction to an effective field theory is properly

organized (as outlined below), it is automatically infrared finite. To each order, the matching

correction is a difference of two Feynman integrals, one in the high energy theory and one in the

low energy theory. The IR contributions are the same and cancel in the difference.

2.5 Back to Appelquist-Carazone

The decoupling theorem doesn’t work in a mass independent scheme. For example, all the gauge

couplings in SU(5) evolve in the same way. This must be true in the SU(5) theory because at

scales large compared to the GUT scale, there is only one coupling. Since the β-functions are

independent of µ, this must be true at all scales, even scales much smaller than the GUT scale. The

renormalization scale dependence of the Feynman graphs are the same whether there is a gluon or

an X particle inside. Thus
12π

αn(µ)
≈ (55− 2f) ln

µ2

Λ2
. (2.14)

Thus in MS, there are large logarithms in low energy calculations in perturbation theory. They

must be there to incorporate the physical differences between the different couplings at low energies.

But while the renormalization group in a physical renormalization scheme add up the right infinite

set of logarithmic terms to describe this difference, the renormalization group in MS does not. It

adds up the wrong infinite set of logs.

There are ad hoc ways of dealing with this problem, but the best solution is to use effective

field theory. Here the decoupling theorem is not expected to come out — it is put in by hand in

matching between the high energy theory and the low energy theory. In each of the two regimes,
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you can use MS, but the theories are different, so you get different renormalizations of the different

couplings in the low energy theory. This idea was clearly implied by Ed Witten in [22] and stated

directly by Steve Weinberg in [23]. It was used by Lawrence Hall to improve the GQW calculation

in [24].3 It was Weinberg’s work that really converted me. It is the putting in the physics of

Appelquist-Carrazone by hand in switching from one effective theory to another that is the heart

of continuum effective field theory.

2.6 Witten, Gilman-Wise, and heavy quarks

At the same time that the elaboration of continuum effective field theory into a useful calculational

scheme was taking place in the electroweak and GUT arena, something similar was happening in

the field of perturbative QCD. Here the motivations were to understand the implications of the

(what seemed at the time to be) heavy charmed quark, [25, 22] and to have a systematic treatment

of the QCD corrections to the electroweak interactions. [26]

Witten extended the understanding of the Appelquist-Carazone theorem by showing in detail

how a heavy particle could simply be left out of the low energy theory. Gilman and Wise used this

idea and combined it with MS to put the theory of QCD corrections to the electroweak interactions

(pioneered by Lee and Gaillard [27] and Altarelli and Maiani [28]) on a simple and firm theoretical

footing.

3 “Integrating Out” versus “Matching”

The most interesting and least trivial of the advantages of DRMS that I mentioned above is that

dimensional analysis works. I want to illustrate what I mean by this in some detail.

In the full theory, the nonlocal result of integrating out heavy particles has funny properties

with respect to dimensional analysis. In particular, you can’t just Taylor expand in p/m, where p

is the momentum and m is the heavy particle mass. The problem is that light particle loops can

give extra powers of large mass, m. This causes a breakdown of simple dimensional counting. [29]

For example, imagine that mt À MW . Of course, there are some phenomenological reasons to

believe this is not true, but it is fun to think about it nevertheless. Consider the b6Zb coupling

induced by integrating out a heavy t.

3It was also used by Gilman and Wise in their analysis of the weak Hamiltonian (see next section).
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Figure 2: Integrating out the t.

If you just integrate out the t, you get a bWZWb term ∝ 1/m2
t , as shown in figure 2. You

might guess, using dimensional analysis that all the effects of this graph are of order 1/m2
t . But

dimensional analysis does not work, because closing the W loop, as shown in figure 3, gives terms

∝ m2
t .

b b
tt

..............................................................................................................................................................................................................................
........................................

.........................................
.......................................
..............................
...........

..............................................................................................................................

Z

Figure 3: Closing the W line.

However, the m2
t term in figure 3 comes from large momentum in the loop. Therefore, it can be

simulated by a local term in the low energy theory. In effective theory, the high momentum physics

of figure 2 is modified so dimensional analysis works, and the m2
t part of figure 3 is put in explicitly

by matching.

3.1 Matching

The general form of a matching calculation is illustrated in figure 4. It goes like this. You start at

a very large scale, that is with the renormalization scale, µ, very large. In a strongly interacting

theory or a theory with unknown physics at high energy, this starting scale should be sufficiently

large that nonrenormalizable interactions produced at higher scales are too small to be relevant. In

a renormalizable, weakly interacting theory, you start at a scale above the masses of all the particles,

where the effective theory is given simply by the renormalizable theory, with no nonrenormalizable
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Large Scale
φj, χ

?

renormalization
groupLH(χ, φ) + L(φ)

µ = M
particle mass MATCHING

?

renormalization
groupL(φ) + δL(φ)

Low Energy
φj

Figure 4: The general form of a matching calculation.

terms.

In this region, the physics is described by a set fields, χ, describing the heaviest particles, of

mass M , and a set of light particle fields, φ, describing all the lighter particles. The Lagrangian has

the form

LH(χ, φ) + L(φ) , (3.15)

where L(φ) contains all the terms that depend only on the light fields, and LH(χ, φ) is everything

else. You then evolve the theory down to lower scales. As long as no particle masses are encountered,

this evolution is described by the renormalization group. However, when µ goes below the mass,

M , of the heavy particles, you should change the effective theory to a new theory without the

heavy particles. In the process, the parameters of the theory change, and new, nonrenormalizable

interactions may be introduced. Thus the Lagrangian of the effective theory below M has the form

L(φ) + δL(φ) , (3.16)
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where δL(φ) is the “matching correction” that contains all the changes.

Both the changes in existing parameters, and the coefficients of the new interactions are com-

puted by “matching” the physics just below the boundary in the two theories.4 It is this process

that determines the sizes of the nonrenormalizable terms associated with the heavy particles. Be-

cause matching is done for µ ≈ M , the rule for the size of the coefficients of the new operators is

simple for µ ≈ M . At this scale, all the new contributions scale with M to the appropriate power

(set by dimensional analysis) up to factors of coupling constants, group theory or counting factors

and loop factors (of 16π2, etc.). Then when the new effective theory is evolved down to smaller µ,

the renormalization group introduces additional factors into the coefficients. Thus a heavy particle

mass appears in the parameters of an effective field theory in two ways. There is power dependence

on the mass that arises from matching conditions. There is also logarithmic dependence that arises

from the renormalization group.

Generally, the only way we have of calculating matching corrections is in perturbation theory

in some small parameter. We will analyze it in a loop expansion which if there are no factors of h̄

hidden in the parameters of the Lagrangians is equivalent5 to an expansion in powers of h̄,

δL =
∞∑

n=0

δLn . (3.17)

Now we want to choose the matching correction, δL(φ), so that the physics of the φ particles is the

same in the two theories at µ = M , just at the boundary.

The strongest form of this equivalence that we might impose is that all one-light-particle irre-

ducible (1LPI) functions with external light particles are the same. By 1LPI, I mean a graph that

cannot be disconnected by cutting a single light particle line. We can describe this in terms of the

equality of the light particle effective actions in the two descriptions. The light particle effective

action in the low energy theory is just the effective action. In the high energy theory, the light

particle effective action is defined as follows. Construct the generating functional for connected

Feynman graphs with light particle external lines, and then Legendre transform it. This gives the

4In a sense, the renormalization group is simply the “matching” of the theory at the scale µ to the theory at the

scale µ− dµ without changing the particle content.

5There are a number of options here. I will regard the Lagrangian in the high energy theory, including the

non-renormalizable terms, as a zero loop effect, with no internal h̄s. However, one could equally well keep track of

where the non-renormalizable terms come from, in which case the Lagrangian in the high energy theory would also

have a nontrivial loop expansion.
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generating functional for 1LPI graphs. Then the matching condition is6

SLH+L(Φ) = SL+δL(Φ) . (3.18)

Formally, let’s denote the light particle effective action produced by an arbitrary Lagrangian, L
(in the relevant effective theory), by

SL(Φ) =
∞∑

n=0

Sn
L(Φ) , (3.19)

where n is the number of loops.

At tree level, the light particle effective action in the low energy theory is just the Lagrangian

itself, thus

S0
L(Φ) =

∫
L0(Φ) (3.20)

S0
L+δL(Φ) =

∫
L0(Φ) +

∫
δL0(Φ) . (3.21)

In the high energy theory, the light particle effective action is the sum of all 1LPI tree graphs.

Thus it is a sum of the Lagrangian plus all trees with external light particles and only internal

heavy particle lines:

S0
LH+L(Φ) =

∫
L0(Φ) +

∫ {
virtual heavy
particle trees

}
(Φ) . (3.22)

Thus

∫
δL0(Φ) = S0

LH+L(Φ)− S0
L(Φ)

=
∫ {

virtual heavy
particle trees

}
(Φ) .

(3.23)

This is rather trivial, but you already see the fact that the matching correction is a difference

between a calculation in the full theory and one in the low energy effective theory.

The notation here is slightly imprecise. The change in the “Lagrangian”,
∫

δL0(Φ), is still

nonlocal, in general because it depends on p/M through the virtual heavy particle propagators.

However, it is analytic in p/M everywhere in the region relevant to the low energy theory. Thus

it can be expanded in powers with the higher order terms steadily deceasing in importance. It can

then be dealt with, to any finite order in the momentum expansion, as a local Lagrangian. In fact,

6A weaker condition could be imposed — that the S-matrix for light particle scattering is the same in the two

theories. In this case the light particle effective actions are not equal, but are related by some redefinition (in general

nonlinear) of the fields. I am grateful to Steve Weinberg for emphasizing this. For a good recent discussion, see [30].
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in the low energy theory we always interpret it as if it is expanded to some finite order

— that is as a local Lagrangian.

In the example of integrating out the t, the tree diagram of figure 2 in the full theory gives

nonrenormalizable interactions of the form shown in figure 5. In going to the effective theory and

replacing figure 2 by figure 5, we have changed the high energy behavior. Dimensional analysis now

works. All the effects of figure 5 are of order 1/m2
t .

b b

W W

..............................................................................................................................

Z

r............................................................................................................................
............................................................................................................................

Figure 5: Higher dimension operators from trees.

You might well ask whether we are going to get into trouble because we have modified the high

energy behavior in going over to the low energy theory. In particular, effects from the integration

of loop momentum that in the full theory are cut off at momentum of order M are now not cut

off at all. The way it works is the following. Power law divergences are thrown out in the low

energy theory by MS, but they appear explicitly as terms in the matching corrections, as we will

see below. Logarithmic divergences in the low energy theory are associated with renormalization

group running of the parameters. This running starts at µ = M . Thus the renormalization group

running in the low energy theory incorporates the log M terms from the full theory. However, not

only are these effect easy to calculate in the low energy theory, because they involve only the infinite

renormalization parts of the Feynman graphs, but the renormalization group automatically adds

up an infinite sequence of logs in the most effective way. Rather than getting us into trouble,

this change in the high energy behavior gives us a more efficient way of dealing with

the log M effects.

This situation is even more interesting at one loop. From the general properties of the effective

action, we can write

S1
L+δL(Φ) = S1

L+δL0(Φ) +
∫

δL1(Φ) . (3.24)

This is because the one loop term, δL1(Φ), can appear only as a tree diagram. A loop graph with an

inclusion of δL1(Φ) would give a contribution even higher order in h̄. Thus the matching condition
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to one loop can be written

S1
LH+L(Φ)− S1

L+δL0(Φ) =
∫

δL1(Φ) . (3.25)

Let us pause to consider what (3.25) means. Both S1
LH+L(Φ) and S1

L(Φ + δL0) are nonlocal

functions of Φ in which the nonlocality is determined by the long distance physics. If there are

massless particles in the theory, the 1PI functions may not even be analytic in the momenta, p as

p → 0. However, in the difference, all the long distance physics that gives rise to this nonanalyticity

cancels. All the remaining nonlocality is due to the propagation of the heavy particles and the result

can be expanded in powers of p/M with no large coefficients to give the infinite tower of terms in

the effective theory. This gives the one loop contribution to the change in the effective Lagrangian.

Note, in particular, that the matching calculation is IR finite. An infrared divergence always

arises from a loop integration over small momenta. But for small momentum, the full theory and

the effective theory give the same physics, by construction. Indeed, if we kept the an infinite

number of terms in the effective theory, the physics would be exactly the same and there would

be no contribution at all from the loop integral for momenta smaller than M . In

practice, we cannot include an infinite number of terms in the low energy theory. To compute

the one loop matching corrections to some order in the momentum expansion, it is only necessary

to include enough terms to eliminate all the IR divergences in the loop integral for

the matching correction. If you still have an IR divergence at one loop to some order in the

momentum expansion, it simply means that you have not included enough terms in the tree level

matching corrections — you have not gone far enough in the momentum expansion of the tree

level matching. This argument works to each order in the loop expansion. The matching that

you have already done in the previous order is sufficient to eliminate IR divergences. Matching

calculations are always completely IR finite.

Note that the same argument implies that the matching corrections are analytic in the

parameters of the low energy theory, even light particle masses. Nonanalyticity in the light

masses arises from infrared divergences in loop graphs that arise when the result is differentiated

enough times with respect to the light particle mass. As we just argued, such divergences cannot

arise in a matching calculation. No matter how many times you differentiate with respect to the

light particle masses, if you include enough terms in the momentum expansion at tree level, you

will get an IR finite matching contribution at one loop. Thus no nonanalyticity in the low energy

parameters can ever arise. All nonanalyticity comes from loop effects in the low energy EQFT.
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For example, the b6Zb term is the contribution of the full theory diagram of figure 3 minus the

diagram of figure 6. All the nonanalyticity associated with the “small” W mass (such as ln MW /mt

effects) cancels in the difference. This difference, the one loop matching contribution, is the missing

piece of the full theory calculation, figure 5, that we threw out when we changed the high energy

behavior to make dimensional analysis work.

b b

.........................
...................................

...........................................
...........................................................................................................................................................................................................................................................................................................................................
.......................................
.................................
.......

r

..............................................................................................................................

Z

Figure 6: One loop diagram in the low energy theory.

It is straightforward to go beyond one loop. The only subtlety is that now the lower order

changes in δL can also contribute to the long distance physics, and must be subtracted. This can

be done using the following:

Sn
L+δL(Φ) = Sn

L+δLn−1
(Φ) +

∫
δLn(Φ) (3.26)

where

δLk ≡
k∑

n=0

δLn . (3.27)

matching condition to n loops can be written
∫

δLn(Φ) = Sn
LH+L(Φ)− Sn

L+δLn−1
(Φ) , (3.28)

or in terms of 1LPI functions,

δγn,j = Γn,j
LH+L − Γn,j

L+δLn−1
. (3.29)

As usual in perturbation theory, we need the lower order results to compute the higher order results.

3.2 The operator product expansion

As promised in section 1, I now discuss what happens if you first integrate out the heavy fields.

Formally, we can define the nonlocal effective Lagrangian that results from integrating out the heavy

quarks as follows: ∫
[dχ] ei

∫
LH(χ,φ) ≡ ei

∫
LNL(φ) . (3.30)
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This is formal, because we have not discussed regularization. However, it makes perfect sense in

the regularized theory with all counterterms explicitly included. Like δL(φ), LNL(φ) is a nonlocal

function of the field, φ, with the nonlocality determined by the heavy particle Compton wavelength,

1/M . The difference is in the interpretation of the high energy behavior. As discussed in the previous

section, δL(φ) is interpreted as if it is expanded to some finite order in the momentum expansion.

Thus δL(φ) has very bad high energy behavior. But LNL(φ), is genuinely nonlocal. It falls off for

momenta larger than M .

In terms of LNL, the matching condition is

SL+LNL
(Φ) = SL+δL(Φ) . (3.31)

To see what this means in detail, expand LNL(φ) in number of loops,

LNL =
∞∑

n=0

Ln
NL . (3.32)

Now the analog of (3.22) is ∫
δL0(Φ) =

∫
L0

NL(Φ) . (3.33)

In other words, except for the different interpretation of the high energy behavior, L0
NL is just the

tree level matching correction. At low energies, there is no difference. The difference in the high

energy behavior, however, is crucial. Because we interpret δL0 as truncated after some arbitrary

by finite number of terms in the momentum expansion, we can treat δL0(φ) as a contribution to a

local Lagrangian, while L0
NL is nonlocal.

In next order, the matching condition looks like

∫
δL1(Φ) = S1

L+L0
NL+L1

NL
(Φ)− S1

L+δL0(Φ)

=
∫ L1

NL + S1
L+L0

NL
(Φ)− S1

L+δL0(Φ) .

(3.34)

The breakdown of the operator product expansion analogy can be seen in the last two terms of

(3.34). There can be terms involving more than one power of L0
NL that contribute to

∫
δL1(Φ).

Only the linear terms are associated with the operator product expansion of L0
NL.
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4 Applications

4.1 Symmetries at low energies

As a trivial example of the utility of the effective Lagrangian language, we will interpret and answer

the following question: What are the symmetries of the strong and electromagnetic interactions? [31]

This question requires some interpretation because the strong and electromagnetic do not exist in

isolation. Certainly the electromagnetic interactions, and probably the strong interactions as well,

are integral parts of larger theories that violate flavor symmetries, parity, charge conjugation, and

so on. The effective-field-theory language allows us to define the question in a very natural way.

Suppose we look at the effective theory at a momentum scale below the W and Z masses and

below the masses of whatever particles (besides the longitudinal components of the W and Z) are

associated with SU(2) × U(1) breaking. Then only the leptons, quarks, gluons, and the photon

appear in the theory. The only possible renormalizable interactions of these fields consistent with

the SU(3)×U(1) gauge symmetry are the gauge invariant QED and QCD interactions with arbitrary

mass terms for the leptons and quarks. All other interactions must be due to nonrenormalizable

couplings in the effective theory and are suppressed at least by powers of 1/MW . Thus it makes

sense to define what we mean by the strong and electromagnetic interactions as the QED and QCD

interactions in this effective theory. Indeed, this definition is very reasonable. It is equivalent to

saying that the strong and electromagnetic interactions are what is left when the weak interactions

(and any weaker interactions) are turned off (by taking MW →∞).

Now that we have asked the question properly, the answer is rather straightforward. If there

are n doublets of quarks and leptons, the classical symmetries of the gauge interactions are an

SU(n) × U(1) for each chiral component of each type of quark. These SU(n) symmetries of the

gauge interactions do not depend on any assumptions about the flavor structure of the larger theory.

They are automatic properties of the effective theory.

Now the most general mass terms consistent with SU(3)× U(1) gauge symmetry are arbitrary

mass matrices for the charge- 2
3

quarks, the charge- −1
3

quarks, and the charged leptons and an

arbitrary Majorana mass matrix for the neutrinos.

The Majorana neutrino masses, if they are present, violate lepton number conservation. In fact,

such masses have not been seen. If they exist, they must by very small. It is not possible to explain

this entirely in the context of the effective SU(3) × U(1) theory, because nothing, except lepton
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number itself forbids such mass terms. Lepton number violation can be imposed, but it does not

follow from the structure of theory below MW . However, if we go up in scale and look at the

SU(3) × SU(2) × U(1) symmetric theory above MW and MZ and if the only fields are the usual

fermion fields, the gauge fields, and an SU(2) doublet Higgs fields, the renormalizable interactions

in the theory automatically conserve lepton number.7 Thus, there cannot be any neutrino mass

terms induced by these interactions. If neutrino mass terms exist, they must be suppressed by

powers of an even larger mass. Perhaps this is the reason they are so small. It would, of course be

a spectacular discovery to unambiguously measure a nonzero neutrino mass. Then we would have

some indication of where such a higher scale actually is.8

The quark and lepton masses can be diagonalized by appropriate SU(n) transformations on the

chiral fields. Thus, flavor quantum numbers are automatically conserved. Strong and electromag-

netic interactions, for example, never change a d quark into an s quark. This statement is subtle,

however. It does not mean that the flavor-changing SU(2) × U(1) interactions have no effect on

the quark masses. It does mean that any effect that is not suppressed by powers of MW can only

amount to a renormalization of the quark fields or mass matrix, and thus any flavor-changing effect

is illusory and can be removed by redefining the fields.

With arbitrary SU(n) transformations on the chiral fields, we can make the quark mass matrix

diagonal and require that all the entries have a common phase. We used to think that we could

remove this common phase with a chiral U(1) transformation so that the effective QCD theory

would automatically conserve P and CP . We now know that because of quantum effects such as

instantons this U(1) is not a symmetry of QCD. A chiral transformation changes the θ parameter.

Thus, for example, we can make a chiral U(1) transformation to make the quark masses completely

real. In this basis, the θ parameter will have some value. Call this value θ̄. If θ̄ = 0, QCD conserves

parity and CP . But if θ̄ 6= 0, it does not.

Experimentally, we know that CP is at least a very good approximate symmetry of QCD. The

best evidence for this comes from the very strong bound the neutron electric dipole moment, less

7Classically, they conserve lepton number and baryon number separately. The quantum effects of the SU(2)×U(1)

instantons produce very weak interactions that violate lepton number and baryon number but conserve the difference.

Conservation of B − L is enough to forbid neutrino masses.

8Note, however, that the relation between the higher scale and the neutrino masses depends dramatically on the

nature of SU(2)×U(1) breaking. In a technicolor theory, for example, the neutrino masses are typically much smaller

because they arise from higher dimension operators in which fermion bilinears replace the Higgs doublets.
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than 6 × 10−25e cm and going down. This implies that θ̄ is less than about 10−9, a disturbingly

small number. This situation is sometimes referred to as the strong CP puzzle. The puzzle is: why

is θ̄ so small if the underlying theory violates CP?

4.2 Composite Higgs bosons

As in the previous section, we must first decide on a point of nomenclature. What is a composite

Higgs boson? Well, what is a Higgs boson? While the term is sometimes loosely applied to any

random scalar meson, as discussed in section 2.2, this is not very appropriate. I will begin by

discussing the issue in the simplest version of standard model, with a single fundamental doublet

of scalar fields and comparing it with the simplest technicolor model. Part of the confusion stems

from the fact that Peter Higgs’s name is associated with two phenomena that do not always go

together.

The “Higgs mechanism” is the process in which a Goldstone boson produced by the spon-

taneous breaking of a continuous symmetry and the massless gauge particle associated with the

gauge unbroken symmetry fuse into a massive gauge boson. The Higgs mechanism occurs any time

a gauged continuous symmetry is spontaneously broken. The Higgs mechanism exists and is rele-

vant to the world. We have seen the Higgs mechanism in action in the massive W and Z. But the

very generality of the Higgs mechanism implies that its existence does not tell us anything about

the mechanism of spontaneous symmetry breaking. We know that SU(2) × U(1) symmetry has

been spontaneously broken, but we do know what the physics of that breaking is. We do not know

what the Goldstone bosons eaten by the Higgs mechanism are made of.

The “Higgs boson”, on the other hand, is one possible answer the question of what breaks

the SU(2) × U(1) symmetry. If the Goldstone bosons are part of a complete SU(2) doublet that

develops a vacuum expectation value, then a neutral scalar survives after the Higgs mechanism as an

observable state in the low energy theory. The Higgs boson has several precisely defined properties

because it is part of a doublet with the Goldstone bosons. For example, its coupling to longitudinal

gauge boson pairs is fixed. In fact, in a theory with more than one doublet, the Higgs boson may

not be a mass eigenstate. The scalar that couples to ZµZµ may be a linear combination of several

mass eigenstates. Nevertheless, it is this linear combination that is really the Higgs boson. It’s

coupling to ZµZµ is fixed. Each of the neutral mass eigenstates can be regarded as a well-defined

fraction of a Higgs boson, with the fraction being the absolute square of the ratio of the coupling
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of the particle to ZµZµ to the coupling of the Higgs boson in the one-doublet model.

To talk about a Higgs boson at all, you must be able to identify the transformation properties

of the Goldstone bosons under the full SU(2) × U(1) symmetry. This is not always possible. For

example, in a technicolor model, it need not make any sense. Very likely, the bound states of the

technifermions cannot be classified according to their transformation properties under SU(2)×U(1)

any more than the light hadrons in QCD can be classified under their transformation properties

under chiral SU(2) × SU(2).9 In such a technicolor model, there is no Higgs boson. The

Higgs mechanism operates as usual. The Goldstone bosons are bound states of technifermion and

antitechnifermion. But it makes no sense to classify the Goldstone bosons as part of a multiplet of

the unbroken symmetry. There is no scalar state in the theory with anything like the properties of

the Higgs boson.

There is an possibility intermediate between the fundamental scalar doublet that leads to a

fundamental Higgs boson and technicolor that gives no Higgs boson at all. There is a class of

theories in which there is a Higgs boson with much the same properties as the fundamental Higgs

boson, but they are composite states. To construct such a theory, you must have the SU(2)×U(1)

symmetry survive below the scale of the new strong interactions that bind the Goldstone bosons.

Models of this kind were first constructed many years ago by David Kaplan and me. [33] We called

the new strong interactions “ultracolor,” and we showed that we could construct such models with

ultracolor that was just an ordinary strong gauge interaction like QCD.

The effective field theory idea enters in two ways into these models. Firstly, the Higgs doublet is

a pseudoGoldstone boson associated with a spontaneously broken chiral symmetry of the ultracolor

model. In the simplest model, the ultracolor model is analogous to QCD with three light quarks,

SU(2) × U(1) is analogous to the isospin × hypercharge subgroup of Gell-Mann’s SU(3), and the

Higgs doublet is the analog of the K meson doublet. Because the Higgs doublet is a pseudoGoldstone

boson, we could use a chiral Lagrangian approach to study its properties. In particular, we could

show that with suitable explicit chiral symmetry breaking interactions, we could produce a light

doublet with a λφ4 interaction.

The second place where the effective field theory idea enters in these models is to show that when

the chiral symmetry breaking dynamics is fine-tuned to produce a scalar doublet that is very light

9This is obvious if the chiral symmetry breaking phase transition is first order. The situation is a little cloudy if

the chiral symmetry breaking transition is second order. See [32].
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compared to the compositeness scale, the effective field theory at low energies looks approximately

like the standard model. For example, even if the ultracolor dynamics does not have a custodial

SU(2) symmetry, [34] the effective low energy theory still does, at least approximately, because it

is just the standard model with small nonrenormalizable corrections.

More recently, the idea of composite Higgs bosons has been rediscovered in the context of models

in which the Higgs boson is a bound state of t and t̄. [35] These models are superficially attractive

because the Higgs boson is a bound state of particles that are expected to exist for other reasons,

rather than of completely new states. Unfortunately, the nature of the ultracolor dynamics is not

as well understood as in [33] (see, however, [36]). However, in all these models, as in the original

composite Higgs models, the low energy dynamics is simply the dynamics of the standard model

with the effects of the high energy dynamics that binds the Higgs doublet put in as a boundary

condition. [37]

4.3 Above the Z

One of the most important applications of effective field theory technology today is to the issue

SU(2)× U(1) breaking. The general question here is the following: What does the physics we

see at scales up to and just above the masses of the W and Z tell us about higher scales

that we cannot see directly? Even before the discovery of the W and Z, the observed properties

of the weak interactions of quarks and leptons convinced almost all particle physicists that they

must exist, as the massive gauge bosons of spontaneously broken SU(2) × U(1). Amazingly, this

history seems to have been forgotten by some. One still occasionally sees papers in which the

properties of the W and Z are discussed without proper regard to the constraints of SU(2)×U(1)

symmetry. Thus it may be useful to recount the important issues.

The story of the weak interactions was based on a effective field theory from the beginning.

The nonrenormalizable 4-fermion interactions that accurately describe the charged current weak

interactions at low energies contain the dimensional parameter

v =

√
1√
2GF

≈ 250 GeV , (4.35)

Thus it was clear that 4-fermion theory of the weak decays was an effective theory that would have

to be replaced by new physics a high energies.

The current-current form of the charged current weak interactions was an early clue that the
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new physics would have something to do with gauge invariance and the connection with the electro-

magnetic interactions suggested an SU(2)×U(1) with massive W and Z gauge bosons. [9] But the

theory of the massive W and Z coupled to the nonconserved weak currents is still not renormaliz-

able. It still contains the dimensional parameter, v, now hidden in the couplings of the longitudinal

spin component of the W and Z. In a modern effective field theory language, we would say that the

appearance of v in the effective theory is a signal that there must be new physics at some higher

scale, Λ <∼ 4πv. [4, 38] The same result was obtained in other ways in the 70’s. [39]

Weinberg [23], Salam [11] and ’t Hooft [8] showed us how to incorporate the Higgs mechanism to

make sense of the electroweak interactions at scales above 4πv. In the 70’s, experimenters collected

a tremendous body of experimental evidence for the simplest embedding of quarks and leptons into

SU(2) × U(1). While the picture will not be complete until the experimental discovery of the t

quark and the experimental clarification of the mechanism of CP violation, we can be reasonably

confident that physics above the Z is a spontaneously broken SU(2)× U(1) gauge theory with all

left handed quarks and leptons in doublets and all right handed quarks and leptons in singlets at

least up to scales of the order of a few TeV.

The joke in this description of physics above the Z is that the existence of spontaneously broken

SU(2) × U(1) does not tell us what actually breaks the SU(2) × U(1) symmetry. So long as the

physics of SU(2) × U(1) breaking preserves a custodial SU(2) symmetry, we get the same zeroth

order picture of the electroweak interactions. [40, 34]

Why do I say that this picture works up to scales of order 4πv, a few TeV, even though we

have only observed it directly up to scales of order 100 GeV? The reason is that if there were new

physics at some scale, M , much less than 4πv, we would expect it to modify the predictions of the

standard model at energies of the order of MW by terms of order

M2
W

M2
À e2

16π2 sin2 θ
. (4.36)

In other words, if M ¿ 4πv, the effects of the new physics will be much greater than the typical

size of radiative corrections in the standard model. Because we do not see any dramatic departures

from standard model physics at this level, we can reasonably assume that there is no important

new physics besides SU(2) × U(1) breaking below a few TeV. If there were new physics in this

region with significant couplings to the fields of the standard model, there would be no reason for

the large, complicated and beautiful picture of the standard model to hang together as it does.

Note that it is only because the gauge coupling is small that we can give a detailed description
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of the properties of the massive vector bosons without a similarly detailed account of the physics of

SU(2)×U(1) breaking. It is the fact that e2

16π2 sin2 θ
is much less than one that implies that there is

a large gap between the mass of the W and Z and the scale by which the physics of SU(2)× U(1)

breaking must appear. Because of this large gap, dependence on the details of SU(2)×U(1) breaking

is suppressed. Of course, this is really just the statement that we know in detail what is going on

only in perturbation theory. For large coupling, the typical radiative corrections are large and it is

much less meaningful to say that a vector boson is associated with a spontaneously broken gauge

symmetry.

Nevertheless, it should be clear that the statement that the W and Z are the massive gauge

bosons associated with spontaneous SU(2) × U(1) breaking is not at all trivial. It certainly does

not follow from general principles of effective field theory. It is true that one can formally write any

vector boson field as the massive gauge boson associated with a spontaneously broken symmetry,

nonlinearly realized. [41] However, to make a physically meaningful statement, rather that something

that is empty mathematics, you need much more. You must be able to identify the gauge coupling,

and it must be small, so that the gap between the mass of the vector particle and the scale of

symmetry breaking is large. Furthermore, the structure of spontaneously broken gauge symmetry

must persist all the way to the scale of spontaneous symmetry breaking. These requirements are

apparently satisfied in the electroweak interactions.

Of course, it is logically possible that there is some other new physics just above the Z besides

the physics of electroweak symmetry breaking that has been carefully fine-tuned to avoid detection

in all experiments done to date. But it is probably not necessary to try to imagine all the ways in

which this might be done unless some evidence for new physics actually emerges from experiment.

Instead, we should concentrate on pushing on beyond the scale 4πv.

4.4 Resumming large radiative corrections

The application of effective theory technology to the issue of SU(2) × U(1) breaking has become

a huge industry in the last few years. [44] Here I want to give only one simple illustration of the

power of effective field theory in dealing with the standard model at a scale µ ≈ MZ . I will focus

on the issue of “resummation” of large radiative corrections. [51, 52] I must begin by making more

precise the discussion of the physics of electroweak symmetry breaking in section 4.3. I assume that

whatever the new physics may be, it shows up only at energies larger than the W and Z masses,
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so that it is not directly included in the effective field theory at µ ≈ MZ . Thus the effective theory

will contain only the quarks and leptons and the massive gauge bosons. I make two assumptions

about the physics of the SU(2)× U(1) breaking scale that are crucial in determining the structure

of the effective theory.

1. The light quarks and leptons do not participate directly in the physics of SU(2) × U(1)

breaking, except through the interactions that give rise to their masses. In particular, I assume

that there are no 4-fermion operators involving only the light quarks and leptons coming from

physics at this scale, except those proportional to powers of the masses. The success of the

standard model so far suggests strongly that any 4-fermion operators not proportional to the

masses arise, if at all, from a considerably larger scale.

2. The SU(2) × U(1) breaking interactions have a custodial SU(2)C interaction in the limit in

which the SU(2)×U(1) gauge couplings are turned off. The U(1) gauge boson, Bµ, transforms

like the neutral component of an SU(2)C triplet, and thus breaks the SU(2)C in a specific way

for nonzero gauge coupling. Furthermore, I assume that there is no larger global symmetry of

these interactions than the SU(2)L × SU(2)C , so that there are no pseudoGoldstone bosons.

Thus I assume that the symmetry structure of the low energy theory is that of

SU(2)L × SU(2)C

SU(2)L+C

(4.37)

This assumption can be easily relaxed, as was done in references [45], [46] and [47], to include

the effects of additional pseudoGoldstone bosons and more interesting embeddings of SU(2)×
U(1) into a technicolor global symmetry group. Indeed, one of the advantages of the effective

field theory formalism is that these generalizations can be organized in a systematic way.

However, I will not discuss them here. In the interests of clarity, I will stick to the minimal

possible assumptions.

These assumptions are satisfied in the simplest version of the standard model, with either a single

light doublet of spinless bosons, [48] or the simplest sort of technicolor theory with the left handed

technifermions transforming as a single doublet under SU(2)L, or some other theory with the same

symmetry structure.

Sometimes, when it is important to keep the symmetries of the theory manifest, or when es-

timating the size of higher dimension terms in the effective Lagrangian, I will keep the Goldstone
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boson fields explicitly in a nonlinear realization of (4.37), described by the unitary field,10

U ≡
√

2

v


 Φ̃†

Φ†


 , UU † = U †U = 1 , (4.38)

with Φ̃ = iΦ∗τ2 and v ≈ 250 GeV is the SU(2) × U(1) breaking vacuum expectation value. The

nonlinear field U transforms under SU(2)L × SU(2)C as

U → C U L† , (4.39)

where C and L are the unitary 2 × 2 matrices defining the SU(2)C and SU(2)L transformations.

The nonlinear field Φ then transforms under SU(2) × U(1) like a conventional Higgs doublet, but

it satisfies

Φ†Φ =
v2

2
. (4.40)

In this notation, the leading terms in the effective Lagrangian look exactly like the renormalizable

couplings in the standard model with a fundamental Higgs doublet, except that the scalar potential

is not there.

However, we will also need to identify the physical states in the theory, and for this purpose, it

is more convenient to work in unitary gauge, which corresponds to U = I. As we will see, it is easy

to go back and forth from one description of the effective theory to the other.

In the analysis of the effective theory, we will concentrate on the dependence on mt, the t quark

mass. The fermions are singlets under the custodial SU(2)C symmetry. The quark and lepton mass

terms, including mt, break the separate flavor symmetries of the quark and lepton kinetic energy

term. That is their function. However, they break the flavor symmetries in a very specific way.

They also break the custodial SU(2)C symmetry.

If mt ≈ MZ , then a reasonable strategy is that of Jenkins and Manohar [49], to eliminate

the t and the W and Z from the theory at the same scale. However, if mt À MZ , this scheme

misses important physics. Likewise, the Jenkins-Manohar scheme is inappropriate for dealing with

custodial SU(2) violation from very heavy multiplets. Thus we consider the effect of explicit

custodial SU(2) violation in the effective theory below mt as an example of the effect of another

mass scale on the on the effective field theory formalism. Now there are additional contributions

10I will use the notation of Gasser and Leutwyler, [6] who have done the most careful and systematic study of the

application of chiral Lagrangian techniques to QCD.
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to the parameters that appear to leading order in the derivative expansion. The most important

of these is the contribution to the W3 mass that arises when the t quark is integrated out of the

effective theory. We can incorporate this effect by including spurion fields, P±, that project onto

the T3 = ±1/2 components of the SU(2)C index of the U field. The largest effect is on the custodial

SU(2) violating W3 mass term, from the operator

1

2
δM2

3

1

16π2

[
tr P+ U Dµ U †]2

(4.41)

where

P+ =
1 + τ3

2
. (4.42)

We expect δM2
3 from the integration out of the t to be of order m2

t (or in general, of the order of

the mass-squared of the particle that is integrated out to produce the custodial SU(2) violation).

The contribution to the ρ parameter from the t in the conventional effective field theory language

is [50] (with s2 = sin2 θW , where θW is the weak mixing angle)

δρ =
3αm2

t

16πs2M2
W

(4.43)

which implies

δM2
3 = −m2

t

3

4
(4.44)

Note that although this is a radiative correction in the sense that it come from a one-loop diagram

(the t-quark loop), there is no sense in which the contribution is order α, for a heavy t.

When doing precise calculations of radiative corrections, it helps to identify the largest potential

contributions to whatever you are calculating and deal with them nonperturbatively, if possible.

The effective field theory allows us to do this with the ρ parameter. The important point is that

not only can δρ be large compared to most radiative corrections, but it enters into the effective

theory in a very special way — as a term in the gauge boson mass matrix.

In the limit of keeping only δρ, the relevant oblique11 terms in the effective field theory renor-

malized at the Z scale can be written (in unitary gauge) as

−1

4
W µν

a Waµν − 1

4
BµνBµν

+
(1 + δρ)

2
M

2
Z

[
c2 W µ

j Wjµ + (cW µ
3 − sBµ)(cW3µ − sBµ)

]

−1

2
δρ M

2
Z (cW µ

3 − sBµ)(cW3µ − sBµ)

(4.45)

11Oblique in this context means contributing only to the gauge boson propagators. [51, 45]
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where the sum over a runs from 1 to 3 and the sum over j from 1 to 2. The parameter MZ is the

Z mass parameter renormalized at µ ≈ MZ . The parameters s and c (s2 + c2 = 1) are defined

in terms of the running SU(2) and U(1) gauge couplings, g2 and g1, renormalized in MS at MZ :

g2 = e/s, g1 = e/c. From the form of (4.45), we see that up to small, finite corrections

M2
Z = M

2
Z , M2

W = c2 (1 + δρ)M
2
Z , e(MZ) = e(MZ) . (4.46)

While this is very simple, it actually contains an important nonperturbative insight. To see

this, imagine what happens to this effective theory when the t quark gets very heavy (of course,

the conventional wisdom is that this leads to phenomenological problems but ignore that for now).

Now, in the Higgs model of SU(2)×U(1) breaking, the Yukawa coupling of the t, ft, is large, and we

cannot ignore the effect of Higgs exchange in the calculation of radiative corrections. Nevertheless,

the only place we get a contribution to any oblique correction that is proportional to

αt ≡ f 2
t /4π2 with no extra factor of α, is from the coefficient δρ. This follows from the

argument of Cohen et al. [50]. The main result of that work was the effective field theory explanation

of the large correction to the ρ parameter in electroweak interactions from a heavy t quark. It follows

from dimensional analysis that the dimension 2 operator, (4.41), can get a contribution proportional

to m2
t when the t quark is integrated out of the effective theory. This is the leading contribution to

custodial SU(2) violating oblique effects because it is a contribution of order

αt · F (αt) (4.47)

where F (αt) describes the effects of the multiple scalar exchange. All other contributions are

nonleading, of order
α

s2π
·G(αt) . (4.48)

or smaller. If suitably normalized, the function F describes a ratio, the full nonperturbative con-

tribution to ρ over the leading one-loop contribution. This ratio is expected to be of order 1, but it

could just as well be 2 or 0. This is the sense in which we incorporate nonperturbative information

by working directly with the parameter δρ in the effective low energy theory. Although we can-

not reliably calculate F (αt) or G(αt) in perturbation theory for large αt, we can collect

all the leading contributions into the parameter δρ and guess the size of other contributions.

This is the power of the effective field theory.

To get something out of this, we need to set the scale by comparing with the strength of the low

energy weak interactions. When the W is integrated out of the theory at the W scale, it produces
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a set of four-fermion operators with a coefficient proportional to

e2

8s2(1 + δρ)M2
W

≈ e2

8s2c2(1 + δρ)M2
Z

(4.49)

where e2 is the electromagnetic coupling renormalized at the Z scale.12 The contribution to µ decay

gets further modified by finite radiative corrections at low energies, so we have a relation of the

form
GF√

2
=

e2

8s2c2(1 + δρ)M2
Z

(4.50)

Thus

s2c2 =
πα∗√

2GF (1 + δρ)M2
Z

(4.51)

where α∗ = α(MZ), or

c2 =
1

2

(
1 +

√
1− 4A

(1 + δρ)M2
Z

)
(4.52)

where

A ≡ πα∗√
2GF

(4.53)

Putting (4.52) into (4.46), we find the “nonperturbative” relation

M2
W =

(1 + δρ)M2
Z

2

(
1 +

√
1− 4A

(1 + δρ)M2
Z

)
(4.54)

Except for small corrections, this is the relation found by Lynn, Peskin and Stuart in [51] and

reviewed by M. Consoli, in reference [52]. We now see that this “conjecture” was actually proven

implicitly in reference [50]. It follows rather trivially from the fact that δρ is the largest correction

term in the effective field theory for large mt.

Note also that the discussion does not involve any complicated discussions of schemes. The usual

apparatus of renormalization has been taken apart into two steps. First the infinities are removed

by the automatic procedure of MS renormalization, making no reference to physical parameters,

but incorporating all the right dependence on the scales in the process, because we are in the right

the effective field theory. Then the MS parameters are related to physical parameters.

For large mt, we must also worry about the non-oblique corrections. Let us find all the terms

in the effective Lagrangian that can be enhanced by powers of mt in the sense that the leading,

largest contribution to the term is proportional to a positive power of mt. We have already seen

12In principle, we could distinguish between the W and Z scales in all of this, but because c2 is close to 1, this

doesn’t matter very much, and we ignore the distinction.
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one example of such a term in (4.41), the t quark contribution to ρ. We will now give the complete

list of such terms in the effective theory. The important point is that from the point of view of the

effective low energy Lagrangian, the t mass term is a coupling of the Goldstone bosons to the tR

and the left handed doublet containing the tL. For each Goldstone boson field we expect a factor

of the Yukawa coupling, of order mt/v. Then the overall scale of the term is set by dimensional

analysis using the mass scale mt, and we must include appropriate loop factors. But we must not

forget the symmetry structure. Each appearance of the Yukawa coupling is accompanied by the

spurion field that describes the breaking of the flavor symmetry and custodial SU(2)C symmetry

by the mass term. Several simple but important remarks can be made.

When the t quark is integrated out of the theory, the fact that it was part of an SU(2)× U(1)

doublet with the b′L quark (where b′ =
∑

q=b,s,d Vtqq is the appropriate CKM linear combination)

is reflected in the structure of the effective theory. In a gauge in which the SU(2) symmetry is

manifest, and in the basis in which we label the left handed quark doublets by their charge 2/3

quark components, the “doublet”, ψtL, containing the b′L must transform nonlinearly. The field

satisfies the nonlinear constraint,

P+ U ψtL = 0 . (4.55)

or

P− U ψtL = U ψtL . (4.56)

that, in unitary gauge, just reduces to the statement that the t is absent. Any coupling to quarks

that is enhanced by factors of mt and not suppressed by other quark or lepton masses

must involve only the left handed doublet ψt, that contained the t quark.

In this basis, the counting of powers is relatively simple. The combinations U ψtL or U alone

appear with a factor of mt, because the mass term had the form mtψtRU ψtL. The field, ψtL by

itself appears with a factor mt/v, because U depends on the combination Φ/v so we get an extra

factor of 1/v when we integrate our the Goldstone boson field, or equivalently, because the Yukawa

coupling is of order mt/v. We get the maximum enhancement from a contribution to an operator

with the lowest dimension, because extra dimensional factors in the numerator are compensated by

factors of mt in the denominator. We can organize the terms in terms of number of ψtL’s.

• 4 ψtL’s: The lowest dimension term possible is the GIM violating 4-fermion interaction

m4
t

v4

1

16π2

1

m2
t

ψtLγµψtL ψtLγµψtL , (4.57)

40



where I have shown all the relevant factors in the coefficient explicitly – one mt/v for each

of the 4 ψ’s, a 1/16π2 loop factor, and a 1/m2
t required by dimension counting. This is the

usual GIM violating term from the box diagram. Evidently, it just manages an enhancement

of m2
t . All higher dimension operators involving 4 ψtL’s are not enhanced because they have

additional m2
t factors from dimension counting. Note that the U plays no role here, because

the matrix U is unitary. It is only relevant when differentiated (this is another way of saying

that it describes a Goldstone boson field with only derivative interactions), but derivatives

increase the dimension of the operator and kill the m2
t enhancement. Of course, extra factors

of mtU don’t help you anyway, because each such factor increases the dimension and the extra

mt is compensated by a 1/mt from dimension counting. Also, there are no enhanced operators

with more than 4 ψtL’s, because the dimension of the operators is too high.

• 2 ψtL’s: Since we have only two factors of mt to play with, no factors of mt can be tolerated

in the denominator, and thus only operators of dimension 4 or lower can be enhanced. But

there are no operators with dimension less than 4 and two ψtL’s. There are two dimension 4

operators involving two ψtL’s. One is the kinetic energy term. But this already has an order

1 contribution, so the m2
t dependence is not leading. However, the term

m2
t

v2

1

16π2
tr

[
P+ (DµU) U †] ψtL γµ P− ψtL (4.58)

is enhanced. In unitary gauge, this is a custodial SU(2) and GIM violating coupling of the

Z to bb. It is clear that the contribution of this term to the hadronic width of the Z can be

used to provide additional bounds on large mt, and that it will require two miracles, rather

than only one, to live with a very large mt in the nonperturbative regime.

• 0 ψtL’s: Here must have at least two mtD
µU ’s, so to get enhancement, we must stop at

dimension 4 (as before, extra mtU ’s don’t help). There are two terms, the SU(2)C invariant

kinetic energy term, which is a nonleading contribution, and the term of (4.41) that contributes

to ρ.

These three operators contain all the leading m2
t dependence in the effective theory below mt. The

nonleading contributions will also depend on mt, because their coefficients will, in general, be some

power series in the t quark Yukawa coupling, mt/v, like (4.48). But these are the only effects that

begin with a term proportional to m2
t .
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4.5 Nonperturbative matching corrections

It seems likely to me that the formal picture of matching presented in section 3.1 in the loop

expansion can be extended to give information about nonperturbative contributions to matching.

The basic idea is that for nonperturbative as well as perturbative matching, the contribution will

be a difference between a full theory calculation and an effective field theory from which all low

momentum contributions cancel. Thus, like the perturbative contributions, the nonperturbative

will look local at distances below the matching scale, and can therefore be incorporated into local

matching corrections.

To see how this works in more detail, consider the functional integral representations for the

vacuum to vacuum amplitudes in the two theories. Nonperturbative effects are associated with non-

trivial field configurations — with fields that are far from zero in the functional integral. Because

only large momentum physics will contribute to the matching corrections, the relevant nontrivial

field configurations in the matching corrections will be small almost everywhere, with the nontrivi-

ality confined to small regions of size 1/M or smaller. Thus we can use the dilute gas approxima-

tion. [53] In this approximation, the leading contributions to the light particle effective action come

from single, isolated small field configurations integrated over relevant zero-mode parameters.

In the language of section 3.1, we can distinguish two possibilities for nontrivial field configura-

tions.

1. If the heavy fields, χ, are nontrivial, then the size of the nontrivial field configurations will be

set by M . Such field configurations contribute directly to the matching corrections. Obviously,

there are no corresponding configurations in the low energy theory to subtract, because the

heavy fields do not exist in the low energy theory. In this case, it is obvious that only small

configurations contribute to matching, because only small configurations contribute at all.

2. If the nontrivial field configuration involves only the light fields, φ, then there are correspond-

ing large nonperturbative effects in the high energy and low energy theories. This is the

situation, for example, in QCD when a heavy quark is integrated out of the theory. The

nontrivial gluon field configurations contribute in both the high energy and the low energy

effective theories. This requires further discussion.

For large light field configurations of size greater than 1/M , the contribution in the high energy

and low energy theory are the same, so there is no contribution to the matching correction. How-
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ever, the small field configurations have completely different properties in the high and low energy

theories.

In the low energy theory, the functional integral has the form

∫
[dφ] ei

∫
(L+δL) . (4.59)

The nonrenormalizable terms in δL have bad high energy behavior for momenta greater than M .

The action is large and rapidly varying for light field configurations of size smaller than 1/M . Thus

in the low energy theory, there are no important nonperturbative contributions from

field configurations of size smaller than 1/M .

In the high energy theory, the functional integral has the form

∫
[dφ] ei

∫
(L+LNL) . (4.60)

The physics of the heavy particles in LNL makes a large contribution only for momenta of order

M . The contribution of large field configurations is that same as in the low energy theory and, as

expected, cancels from the matching correction. The leading nonperturbative contribution to the

matching correction thus comes only from configurations of size less than 1/M .

For example, in QCD at a heavy quark mass, m, the above argument implies that the non-

perturbative matching correction is the conventional instanton contribution from instantons of size

smaller than 1/m. It can be reliably calculated in the dilute gas approximation.
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