
COMMENTARY

Energetics of collective movement in vertebrates
Yangfan Zhang* and George V. Lauder

ABSTRACT
The collective directional movement of animals occurs over both
short distances and longer migrations, and is a critical aspect of
feeding, reproduction and the ecology of many species. Despite the
implications of collective motion for lifetime fitness, we know
remarkably little about its energetics. It is commonly thought that
collective animal motion saves energy: moving alone against fluid
flow is expected to be more energetically expensive than moving in a
group. Energetic conservation resulting from collective movement is
most often inferred from kinematic metrics or from computational
models. However, the direct measurement of total metabolic energy
savings during collective motion compared with solitary movement
over a range of speeds has yet to be documented. In particular, longer
duration and higher speed collectivemotionmust involve both aerobic
and non-aerobic (high-energy phosphate stores and substrate-level
phosphorylation) metabolic energy contributions, and yet no study
to date has quantified both types of metabolic contribution in
comparison to locomotion by solitary individuals. There are multiple
challenging questions regarding the energetics of collective motion in
aquatic, aerial and terrestrial environments that remain to be
answered. We focus on aquatic locomotion as a model system to
demonstrate that understanding the energetics and total cost of
collective movement requires the integration of biomechanics, fluid
dynamics and bioenergetics to unveil the hydrodynamic and
physiological phenomena involved and their underlyingmechanisms.
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Introduction
Collective movement is a ubiquitous behaviour among vertebrates.
It involves active, directional forward movement where animals
move as a group along a common mean trajectory. Examples
include cyclists in a peloton (Blocken et al., 2018), elite human
runners moving in a group (Ito, 2007), migratory birds in
V-formation (Portugal et al., 2014), ducklings swimming in
formation (Fish, 1994, 1995), fish schools (Weihs, 1973) and long-
distance movement of mammals, such as the dramatic migration of
wildebeest (Williamson et al., 1988) (Fig. 1). Complex ecological and
behavioural factors certainly underlie the evolution of collective
locomotor behaviours, but understanding the energetic cost of
movement as a group is also of considerable importance, as energy
savings are proposed to be a key benefit of collective motion.
Despite the fact that energy saving is one of the most quoted

functional benefits of collective movement (Weihs, 1973; Parker,
1973; Fish, 1995; Weimerskirch et al., 2001; Portugal et al., 2014;
Abrahams and Colgan, 1985), we are not aware that the published

literature contains any direct measurements that compare the total
energy expenditure of a coordinated animal group versus that of a
solitary individual when moving over a range of speeds. The notion
of energy conservation during collective movement is often inferred
from indirect indicators (such as appendage movement frequency) or
based on calculations from computational fluid dynamic models (e.g.
Weimerskirch et al., 2001; Usherwood et al., 2011; Portugal et al.,
2014; Li et al., 2020; Kelly et al., 2023). Both approaches are indirect
estimates of locomotor cost, and neither can capture both whole-
animal aerobic metabolism and glycolysis, which simultaneously
support the energetic cost of movement. Energy saving by collective
movement has also been inferred from physiological measurements
such as heart rate (Weimerskirch et al., 2001). However, heart rate is
only one of four parameters of the Fick equation (see Glossary) that
contributes to whole-animal oxygen (O2) uptake (a proxy of whole-
animal aerobic metabolic rate) (Farrell, 2007a,b; Haykowsky et al.,
2015; Scott and Milsom, 2006), and it does not respond only to
locomotor demands (Cygankiewicz and Zareba, 2013).

Some laboratory and field studies using indirect measurements
have suggested that moving in a group either has no impact on
energy expenditure or could actually increase energetic costs
(Partridge and Pitcher, 1979; Usherwood et al., 2011). Given the
lack of direct metabolic evidence for energy saving from collective
motion, andmixed results from indirect metrics, there is a clear need to
investigate whether and when collective group movement conserves
energy using approaches that allow direct quantification of metabolic
cost: aerobic, glycolytic and high-energy phosphate stores.

The objective of this Commentary is to highlight three core
questions that provide the broad framework to effectively investigate
the energetics of collective movement in vertebrates. (1) Why is it
important to understand the locomotor performance curve and to
compare group and individual performance? (2) Why is it important
to measure the total energy expenditure of collective movement in
comparison to energy use by individuals during solitary motion? (3)
What are the challenges of studying the energetics of collective
movement and what technical advancements are needed to address
these questions?

To answer these three questions requires knowledge of both
physiology and physics: addressing them will require a
multidisciplinary approach that includes biomechanics, bioenergetics
and fluid mechanics to bring collective motion and fluid dynamics
together in three-dimensional (3D) analyses. Energy consumption then
becomes the bridge connecting physiology and biomechanics to fluid
dynamics. Becausewater is 50 timesmore viscous than air and contains
5 times less O2 per unit volume, the benefits of optimizing locomotor
costs are likely to be far greater for aquatic vertebrates than for aerial and
terrestrial vertebrates. Thus, here we focus on fish as a model system to
illustrate these fundamental questions related to moving as a group.

Why is it important to understand the locomotor
performance curve?
Performance curves show some aspect of animal function
(‘performance’, usually plotted on the y-axis), such as metabolic
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rate, in relation to an independent variable (such as movement
speed, on the x-axis). A wide variety of performance curves have
been measured over the years (Fry, 1947; Fry and Hart, 1948;

Glossary
Cost of transport (COT)
Energy expended for moving per unit of distance travelled (sometimes
also presented as mass-specific, per kg body mass). Aerobic energy
expenditure only includes the energy generated by aerobic
metabolism (oxidative phosphorylation). O2 consumption is the most
common measurement used to calculate COT. However, the total cost
of transport (TCOT; see below) should be calculated using both
aerobic and non-aerobic energy use (substrate-level phosphorylation
and high-energy phosphate stores), the latter measured by
quantifying EPOC (see below), and adding the non-aerobic cost to
the aerobic cost (at each speed) as a function of movement speed to
calculate TCOT.
Computational fluid dynamics (CFD)
Numerical simulation of fluid flow patterns to allow analysis and
reconstruction of flow physics.
Excess post-exercise oxygen consumption (EPOC)
The non-aerobic cost induced by high-intensity movement at the
organismic level. EPOC is estimated by the total O2 consumed during
the recovery period after the prior high-intensity movement. The ideal
baseline of recovery is the lowest maintenance metabolic rate, which is
termed standard metabolic rate in ectotherms or basal metabolic rate in
endotherms. Often, the resting metabolic rate is used as a proxy of the
lowest maintenance metabolic rate for EPOC calculation to reduce the
likelihood of including the spontaneous activities that inflate EPOC.
Accurate measurement of EPOC can require recording post-exercise O2

consumption for ∼24 h.
Fick equation
In the whole animal, five Fick equations describe steady-state
O2 transport at each step in the O2 cascade system: ventilation,
diffusion at respiratory organs, perfusion, tissue diffusion and cellular
respiration. For example, O2 uptake by a vertebrate from the
surrounding environment can be related to internal O2 transportation
by O2 uptake=fH·Sv×(CaO2−CvO2), where fH is heart rate, Sv is stroke
volume, CaO2 is arterial O2 content and CvO2 is venous O2 content.
Fluid dynamic drag
When objects move relative to a surrounding fluid, fluid dynamic drag is
the force acting opposite to the direction of motion and is caused by
surface friction of the fluid on the body and by pressure changes around a
moving body.
Kinetic energy
The form of energy possessed by an object due to movement. The basic
equation for the calculation of kinetic energy is ½mv2, where m is the
mass of an object and v is the velocity of the object relative to a reference.
Particle image velocimetry
An optical methodology of visualizing fluid flow by tracking the
movements of small particles within a fluid. Fluid velocity is most often
calculated using cross-correlation of particle image intensity from images
at one time step to the next time.
Passive stability
A mode of stability control that does not require active kinematic
adjustment to maintain body position. As a result, but not necessarily by
definition, passive stability costs little energy to sustain.
Reynolds number (Re)
A dimensionless number that quantifies the patterns of fluid flow by
measuring the ratio of inertial forces to viscous forces within a fluid.
Reynolds number can be calculated as Re=ρuL/μ, where ρ is the fluid
density, u is flow speed, L is a characteristic linear dimension and μ is
fluid dynamic viscosity. Or Re=uL/ν, where u is flow speed, L is linear
dimension and ν is fluid kinematic viscosity.
Total cost of transport (TCOT)
Total metabolic energy (sum of aerobic and glycolytic metabolism)
expended for moving a unit mass per unit of distance travelled.
Measuring TCOT requires both measuring O2 consumption during
movement and quantifying O2 consumption during EPOC.
Total energy expenditure (TEE)
The total amount of metabolic energy contributed by both aerobic
metabolism (oxidative phosphorylation) and glycolytic metabolism
(substrate-level phosphorylation) in an animal.

A     Fish school in 3D

C     Mammal migration

B     Bird V-formation

Fig. 1. Schematic representations of collective movement in fish, birds
and mammals. The benefit of energetic conservation is likely to occur when
animals exhibit active and directional movement in a moving fluid where drag
(from either water or air) generates increased locomotor costs. (A) Indirect
estimates of energy expenditure – such as tail beat frequency or heart rate –

and computational models suggest that fish schools can save energy
relative to individual movement. (B) The V-formation of bird flocks is
proposed to save energy, which is inferred from the measurement of body
kinematics or physiological parameters such as heart rate. However, birds in
V-formation can also exhibit increased wing beat frequencies, indicating that
direct measurement of energy expenditure is needed to compare groups
with solitary birds flying at the same speed. (C) Movements of large mammal
collectives, such as the wildebeest migration in Africa, could involve energy
conservation when moving against the wind, but group energy savings
during terrestrial locomotion have yet to be demonstrated. Animal icons from
https://www.phylopic.org/.
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Brett, 1964; Hoyt and Taylor, 1981; Steinhausen et al., 2008; Lee
et al., 2003; Eliason et al., 2011; Claireaux and Chabot, 2016; Adams
et al., 2022; Zhang et al., 2021, 2022; Zhang and Farrell, 2022), and
such data are useful for characterizing animal function because they
often reflect fundamental and mechanistic aspects of anatomy or
physiology measured over a range of conditions. For example,
metabolic energy expenditure (y-axis) can be compared against fluid
velocity (x-axis) to understand how fluid dynamic drag forces (see
Glossary) affect the energetic costs of locomotion. The classic work
of Brett (1964) and Farrell (2007a), for example, generated numerous
swimming performance curves for fish species, showing their
locomotor and metabolic dynamics over a range of swimming
speeds and temperatures. Schematic examples of locomotor
performance curves measuring energy expenditure or power versus
speed are illustrated in Fig. 2. In addition to understanding interspecific
variation in the locomotor performance curve (Currier et al., 2021), a
fundamental question for many biological systems is whether
locomotor performance curves are linear, exponentially increasing or
take the form of a concave upward curve with an energetic minimum
situated higher than the lowest locomotor speeds (Fig. 2A).
Understanding the shapes of performance curves provides a
framework within which we can begin to hypothesize the benefits of
group movement in comparison to solitary motion (Figs 2C and 3B).
Because fluid drag scales as velocity squared (Vogel, 1981), we

would expect an exponential increase in movement cost as a
function of speed. However, some of the published individual
locomotor performance curves for fish are linear. Moreover,
animals are sometimes not tested over a wide speed range
(Fig. 2A). This partly reflects the challenges of testing vertebrates
at both the lowest and highest locomotion speeds. An energetic
study of locomotion in individual clearnose skate (Raja
eglanteria) demonstrated a concave upward performance curve
for O2 consumption (Fig. 2A; Di Santo et al., 2017), in which
swimming by individual fish at a slow speed is more energetically
expensive than swimming at a somewhat faster speed. After
the speed at which minimal cost is incurred, energetic costs
increase exponentially following the expected relationship of
drag force–fluid velocity. In addition, analyses of the power
required to both fly and hover in birds and aircraft (Fig. 2B)
demonstrate the concave upward power performance curve
(Tucker, 1975; Alexander, 1997; Dial et al., 1997; Tobalske
et al., 2003; Browning and Kram, 2005; Clark and Dudley, 2010;
Warrick et al., 2012).
Why might energetic performance curves for fishes be upwardly

concave? Perhaps both passive stability (see Glossary; which is
lower at low movement speeds) and the need to actively generate
stabilizing forces with fins and body motion contribute to increased
costs at slower swimming speeds. For example, in order to generate
lift during slow swimming, skates tilt their bodies at a positive angle
of attack to oncoming flow (Di Santo et al., 2017), which generates
lift forces that enable them to counteract the effect of gravity on their
negatively buoyant bodies. When the oncoming flow is very slow, a
higher body angle of attack is needed to generate lift (He and
Wardle, 1986); this requires increased force generation by fin and
body musculature to maintain position. Thus, animals moving at
their slowest speed can incur a higher cost of locomotion than when
they move at a slightly faster speed.
Knowledge of the shape and relative position of locomotor

performance curves is important when collective motion is compared
with the locomotion of solitary individuals (hypothesized curves
shown in Fig. 2C). This is a comparison for which there are no
published data yet available other than preliminary results from giant

danio comparing group versus individual energetic locomotor costs
(Zhang and Lauder, 2023 preprint). That study demonstrated a
concave upward performance curve with higher costs at the lowest

A     Fish: energy versus speed
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C     Fish: individual versus group locomotion
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Fig. 2. Locomotor performance curves in biological and engineered
systems. (A) Most published data for fish document a linear (or
exponentially increasing) energy–swimming speed relationship (black line),
but data for skates over a wide speed range demonstrate an upwardly
concave-shaped metabolism–speed curve (grey curve), where slow
movement increases whole-animal metabolic rate over movement at an
intermediate speed. (B) Data for birds (measured indirectly using pectoralis
muscle power) illustrate an upwardly concave performance curve as
demonstrated in cockatiels, magpies (Dial et al., 1997), doves (Tobalske
et al., 2003) and hummingbirds (Clark and Dudley, 2010). Helicopters
(Pritchard and Kunz, 2006) and fixed-wing aircraft (l’Anson, 1969) also
have an upwardly concave power–speed curve, where moving at a very
low speed requires more power. The skate also has an upwardly concave
locomotion energy–speed curve (Di Santo et al., 2017). It is currently
unclear whether the other aquatic vertebrates have upwardly concave
locomotor performance curves. The scales of speed and power differ
among vertebrates and vehicles. (C) Possible locomotor performance
curves for collective motion compared with locomotion of solitary
individuals. At present, no available data quantify the total energetic
expenditure (aerobic plus non-aerobic costs) of collective motion over a
range of speeds compared with that of individuals moving alone. Also
unknown is whether the performance curve for many species moving in a
group is exponentially increasing or upwardly concave. Collective
movement could reduce the minimum total energy expenditure of
locomotion (Min) and shift the locomotor performance curve down, and/or
allow increased maximal movement speeds (Max) compared with those of
individuals. Animal icons from https://www.phylopic.org/.
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speeds. Does moving in a group shift the performance curve down so
that movement at all speeds is less expensive? Does collective motion
alter the location of the minimum energetic cost, and/or does group
motion alter the maximal sustainable speed (Fig. 2C)? Answering
these questions is critical to understanding how group dynamics alter
the cost of locomotion (Fig. 1).

Why is it important to measure the total energy expenditure
(TEE) of collective motion?
Vertebrates use both aerobic and non-aerobic (high-energy
phosphate stores and substrate-level phosphorylation) energy

sources to power locomotion. Sustained locomotion at low
workloads (e.g. low speeds) is predominately supported by
aerobic metabolism. Although aerobic and non-aerobic
metabolism have been extensively studied in terms of cellular
oxidative and substrate-level phosphorylation (mostly in post-
fatigue and exhausted animals; Gaesser and Brooks, 1984; Wood,
1991; Richards et al., 2002; Holder et al., 2022), most current
studies on the locomotion of individual animals usually consider
whole-organism aerobic metabolic rate obtained by measuring O2

uptake (ṀO2
) during movement. Lactate levels in the blood may be

measured also to confirm that energy use is at least mostly aerobic
(e.g. Taylor and Heglund, 1982). Typically, the aerobic energy
expenditure is measured and then the cost of transport (COT; see
Glossary) is calculated. Hence, locomotor gaits at lower speeds (e.g.
human walking, horse walking and trotting) have an optimal speed,
showing a concave upward curve for O2 costs to move a unit of
distance. However, the O2 costs during locomotion may show a
slight decline or maintain a plateau in human running, horse
galloping and kangaroo hopping (Hoyt and Taylor, 1981; Dawson
and Taylor, 1973). If O2 use alone during movement is a
proxy for the energetic cost of locomotion, it is difficult to
understand how humans and horses can move faster [and thus
require more energy, based on the necessary increase in kinetic
energy (see Glossary) and the increased drag associated with wind
resistance] without actually consuming more energy. Although
elastic energy cycling in tendons and other connective tissues
(Baudinette et al., 1992) and the energy conversion between kinetic
energy and gravitational potential energy (Cavagna et al., 1977;
Margaria, 1968) can at least partially uncouple O2 consumption
from speed at low to moderate movement velocities, we suggest that
the energetics of motion can be better understood bymeasuring both
aerobic and non-aerobic costs over a wide speed range, including at
high speeds.

The O2 cost of locomotion (measured as ṀO2
) is only

proportional to the aerobic ATP turnover rate under a steady state
(Brett, 1962; Zhang and Gilbert, 2017). As workload increases, or at
high speeds, ṀO2

gradually decouples from the ATP turnover rate
(Milligan, 1996; Farrell and Clutterham, 2003), as a higher
proportion of short-term ATP production is supported by high-
energy phosphates and substrate-level phosphorylation of pyruvate
to ATP without O2 consumption (Hochachka and Mommsen,
1983). The glycolytic pyruvate supply results in a substantial ATP
supply from substrate-level phosphorylation, which produces
lactate. Fast-twitch ‘white’ muscle fibres are mostly fuelled by
glycolysis to support the additional thrust needed at higher
movement speeds (Jayne and Lauder, 1996; Moyes et al., 1992).
Glycolytic contributions to locomotion have been measured in
studies using blood lactate (Taylor and Heglund, 1982) and lactate
kinetics (isotope-labelled lactate to distinguish lactate appearance
and disposal) (Omlin and Weber, 2010; Teulier et al., 2013; Weber
et al., 2016). The confounding factors of using blood lactate
accumulation to estimate the glycolytic costs of locomotion are that
(1) blood lactate accumulation is a net result of lactate appearance
and disposal (Weber et al., 2016), (2) specific organs, such as fish
hearts, also oxidize lactate (Gemelli et al., 1980; Milligan and
Farrell, 1991), and (3) lactate can become fuel for oxidative
phosphorylation in slow-twitch ‘red’ muscles (Brooks, 2018). This
enables sustained muscle performance relying on both oxidative
and substrate-level phosphorylation (Conley et al., 2001), and is
critical to allow human cyclists, for example, to maintain 80% of
maximum power output for approximately 30 min (Hoppeler et al.,
1985).

A     Individual

B     Individual versus group locomotion
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Fig. 3. Upwardly concave curve of the total cost of transport–speed
curves for solitary organisms and collective groups. The total cost of
transport (TCOT; see Glossary) is the total energy expenditure of moving a
unit of distance. The total energy expenditure encapsulates the aerobic
costs during locomotion and the additional non-aerobic costs (excess post-
exercise oxygen consumption, EPOC; see Glossary) that are mostly repaid
after locomotion. Most current literature measures only aerobic costs during
locomotion to estimate the aerobic energy expenditure and calculate the
cost of transport (COT; see Glossary). We hypothesize an upwardly
concave TCOT–speed curve for vertebrate taxa when moving both
individually and as a group. (A) Hypothesized schematic TCOT curves
derived from experimental and modelling data for four representative
species: kangaroo during pentapedal locomotion and hopping, including
wind resistance (Baudinette et al., 1992); human walking (Browning and
Kram, 2005; Kwak and Chang, 2023); teleost fish (tuna; theoretical
expectation); and elasmobranch (skate; Di Santo et al., 2017). (B) The
TCOT (including aerobic and non-aerobic energy sources) is for collective
motion over a range of speeds compared with separate measurements of
individuals moving alone (Zhang and Lauder, 2023 preprint). Collective
movement could reduce the energetic cost over the speed range compared
with the cost of solitary motion. Collective movement could also flatten the
TCOT performance curve at higher speeds, which would indicate that fluid
dynamic effects are particularly effective at reducing costs as vertebrates
move faster. Animal icons from https://www.phylopic.org/.
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Despite important interactions between oxidative and substrate-
level phosphorylation in vertebrate physiology, few studies measure
both the aerobic and non-aerobic cost of locomotion in individuals
over a wide speed range (e.g. Lee et al., 2003; Svendsen et al.,
2010). No published study, to the best of our knowledge, has
measured both the aerobic and non-aerobic costs for active,
directional swimming during collective motion and compared
these costs with those of solitary individuals moving at the same
speed. Consequently, a substantial proportion of the energetic
contribution from high-energy phosphate stores and glycolysis may
be overlooked (Wood, 1991; Scarabello et al., 1991, 1992; Richards
et al., 2002), at least in studies of fish locomotor dynamics; yet, for
faster speeds, this contribution can be substantial (∼50%; Lee et al.,
2003; Zhang and Lauder, 2023 preprint). Vertebrates repay the O2

deficit incurred at locomotor speeds above the aerobic threshold
through a prolonged and elevated aerobic metabolic state during the
post-locomotion recovery time. The total O2 cost for recovery is
measured as excess post-exercise O2 consumption (EPOC; see
Glossary; Brett, 1964; Gaesser and Brooks, 1984; Brooks, 2018).
Hence, the total energy used during locomotion must be determined
by measuring ṀO2

(the aerobic contribution) and by quantifying
EPOC. By modelling how the non-aerobic contribution changes
with speed (Lee et al., 2003), the aerobic and non-aerobic (EPOC)
contributions can be integrated to estimate the total energy
expenditure (TEE; see Glossary) at each speed and over a speed
range. Knowing the TEE and movement speed allows calculation of
the total cost of transport (TCOT, aerobic plus non-aerobic energy in
kJ per kg per km; see Glossary), which generates the performance
curve of the total energy used per distance travelled. Based on the
published studies and principles of physics (kinetic energy and fluid
drag as functions of speed), we hypothesize that TCOT curves of
vertebrates across a diversity of locomotor gaits and a wide range of
speeds can show a concave upward shape (Fig. 3A).
What is the effect of collective movement on TCOT curves? To

our knowledge, there are currently no published data available to
answer this question other than some preliminary results (Zhang and
Lauder, 2023 preprint). Here, we present several possible effects of
collective movement on the TCOT; these suggestions can serve as
hypotheses for future experimental analyses (Fig. 3B). If we assume
that group movement reduces energetic costs, the TCOT curve for
an animal moving in a group could be shifted downward with
reduced costs across all speeds compared with the curve for solitary
individuals. Another (not mutually exclusive) possibility is that
group motion involves hydrodynamic interactions that increase in
benefit as movement speed increases, resulting in a flattening of the
TCOT curve and only a slight rise in TCOT as speed increases
(Fig. 3B). Testing these hypotheses will require experimental
measurements of whole-animal metabolic aerobic and non-aerobic
energy use in collectively moving vertebrates.

What are the challenges of studying the energetics of
collective movement?
Investigations of the energetics of collective movement are
complicated by the difficulty inherent in directly measuring
metabolic energy expenditure in animals moving freely in nature
as a collective. For example, considering birds moving across the
airscape in a V-formation (Fig. 1B), how should one measure both
aerobic and glycolytic metabolism of these animals over a range of
speeds, and also gather data for solitary birds flying at the same
speed and under the same aerodynamic conditions? This is clearly a
challenging proposition. Indirect measurements of energy
expenditure such as wing beat frequency provide ambiguous

results, with at least one study demonstrating increased wing beat
frequency when birds are in a V-formation, suggesting increased
locomotor costs rather than the expected energy savings
(Usherwood et al., 2011). For swimming fishes and other aquatic
organisms, computational models demonstrate a variety of
mechanisms by which collective movement could save energy
(Fig. 4B,C). However, such mechanisms need to be validated using
direct experimental measurements, and models are usually speed
specific and not often suitable for generating performance curves
where high-speed locomotion requires simulation at high Reynolds
numbers (see Glossary).

Furthermore, in nature, animal groups are often moving at
considerable speeds, which are difficult to replicate in the
laboratory. Bird V-formation flying is an obvious example of
vertebrates moving at a high speed as a group, and fish schools can
move at speeds well beyond those typically studied in the laboratory
[∼5 body lengths (BL) s−1 for sustained and prolonged swimming;
see Castro-Santos, 2005; Fig. 5]. The collective movement of fishes
can reach speeds of ∼20 BL s−1 (Brehmer et al., 2011; Misund and
Aglen, 1992). During high-speed movement, drag forces are
exponentially greater than at lower speeds; hence, the potential
advantage of being in a group could be considerably magnified. The
increased energetic workload at high speeds (>50% of the highest
sustained locomotor speed) is supported by both aerobic and non-
aerobic energy sources (largely glycolysis) (Brett, 1964; Lee et al.,
2003; Laforgia et al., 2006). If collective movement can reduce the
energetic need for glycolysis, then vertebrates moving in groups will
experience shorter recovery times, and would be able to repeat high-
speed locomotion more rapidly, which could be advantageous for
feeding or escaping predators. We hypothesize that the benefits of
this energy conservation will be greatest at higher movement
speeds, resulting in a down-shift of the energetic performance
curves at higher speeds (Figs 2 and 3). We suggest that prioritizing
the quantification of the locomotor energetic performance curve
over awide range of speeds will inform the focus of investigation for
3D high-speed kinematics, group structures and fluid dynamics.
This will help to indicate potential mechanisms by which collective
movement might conserve energy.

Measuring whole-animal aerobic and glycolytic metabolism
To directly compare the TEE of an animal moving as part of a group
with that of a solitary individual requires respirometry
measurements made on groups and solitary individuals separately
(Parker, 1973). Given the different masses of groups and
individuals, different sizes of respirometers may be needed to
obtain reliable signal-to-noise ratios (larger containers and smaller
biomass often result in a lower signal-to-noise ratio; Zhang et al.,
2019; Prinzing et al., 2021; Zhang, 2021). In addition, quantifying
EPOC can require continuous measurements for up to 20 h post-
exercise, and shorter measurement periods can result in
underestimates of glycolytic metabolism. For example, measuring
EPOC for 4–6 h in fishes can result in non-aerobic metabolism
being underestimated by up to ∼50% (Zhang et al., 2018). In
humans, EPOC can last up to 24 h. This duration is directly related
to exercise duration and intensity (Laforgia et al., 2006). Currently,
automation in aquatic respirometry enables the measurement of
ṀO2

and EPOC on the same testing objects over a prolonged period
(Steffensen et al., 1984; Svendsen et al., 2016; Zhang et al., 2017),
paving the way to calculate TEE and TCOT for collective behaviour
during aquatic locomotion. When considering the challenges of
quantifying metabolism over a speed range and comparing groups
with individuals, we believe that studies of fishes moving in
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laboratory respirometers promise to provide the best first estimates
of the energetics of collective behaviour (Zhang and Lauder, 2023
preprint). Similar analyses of bird flight and terrestrial mammal
locomotion pose experimental challenges that may only be resolved
using new technologies.

Measuring 3D kinematics and group structure
In order to understand why collective movement energetics might
differ from those of solitary individuals, we need to know how
animals are moving with respect to each other in three dimensions
(Major and Dill, 1978; Herbert-Read, 2016). Moving near other
animals in a group introduces a panoply of fluid dynamic
mechanisms that could be involved in energy saving (see Fig. 4,
for example). We need to know: (1) the 3D distances among
individuals, (2) whether inter-individual distances change with
speed, and (3) how the body and appendage motion of animals in a
group differs from that of solitary individuals. Yet, many challenges
are involved in obtaining such data.

Tracking the kinematics of individuals in 3D space is necessary
for a complete picture of collective movement dynamics: animals
interact with the pressure and flow fields generated by other
individuals in three dimensions (Dabiri et al., 2014). However,
tracking individual kinematics and group structures is commonly
conducted in two dimensions. Two-dimensional (2D) studies have
been instrumental in revealing simple motions of individuals within
a school that suggest energetic savings from collective movement
(Li et al., 2020; Thandiackal and Lauder, 2023). Even with the
advent of effective and open-source tracking software (Walter and
Couzin, 2021; Lauer et al., 2022; Chiara and Kim, 2023; Pereira
et al., 2022), 2D analyses continue to dominate studies of animal
kinematics. Some recent studies document 3D V-shape formation
for bird flocks (e.g. bald ibises, Geronticus eremita; Portugal et al.,
2014) and pairings within the flocks (e.g. jackdaws, Corvus
monedula; Ling et al., 2019). There are, of course, many difficulties
in obtaining multi-camera calibrated 3D data on multiple
individuals to reconstruct their body and appendage motion (not

Drag wake versus thrust wake

Drag wake Thrust wake

Cyclist behind encounters
reduced flow (drafting)

Cyclist behind encounters
increased flow

Ufs
U1>Ufs

U1

U2

U2<Ufs

1

2

3

4

1

2

3

4

A

B

C

Fig. 4. Hydrodynamic mechanisms that
reduce locomotor costs during
collective movement. (A) In the air,
drafting behind another individual is
known to save energy as a result of the
reduced incoming flow following the
leading individual, which is a drag wake
(left). In contrast, leading fish generate an
increased flow behind, a thrust wake. This
is the equivalent of a leading cyclist with a
large fan on their back accelerating flow
behind, which increases the incoming flow
to a trailing cyclist (right). Terrestrial
animals moving collectively could save
energy during locomotion by locating
themselves in a drag wake directly behind
other individuals. However, what can fish
do? (B,C) Several fluid dynamic
mechanisms of energy savings have been
demonstrated that could apply to fish
within a school. Bottom (B) and side
(C) views of a fish school demonstrate
that energy saving can occur by
(1) reduced oncoming velocity U2 from
free-stream velocity Ufs (Weihs, 1973),
(2) the Knoller–Betz effect of leading-
edge suction reducing costs for a trailing
fish even in the face of increased flow U1

(Jones et al., 1998; Saadat et al., 2021),
(3) added mass ‘push’ from follower to
leader reducing costs for the leader (Fish
and Hui, 1991; Kurt and Moored, 2018;
Saadat et al., 2021) and (4) wall effects
from neighbouring fish, where swimming
next to another fish reduces swimming
costs (Daghooghi and Borazjani, 2015;
Li et al., 2020). Counter-clockwise (red)
and clockwise (blue) arrows indicate the
direction of fluid vorticity at that location.
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just body locations), including the computational challenges in
segmenting overlapping individuals that are undergoing constant
and dynamic changes in relative position. However, we believe that
such 3D kinematic data will be critical to understanding the
mechanistic bases of any observed differences in metabolic data
between groups and solitary individuals, and for assigning one or
more of the known fluid dynamic mechanisms to subgroups within
the collective (Fig. 4).
3D tracking of both solitary individuals and those in a group is

ideally done simultaneously with metabolic measurements to
validate that changes in metabolic rate are associated with specific
body kinematics or 3D group formations. With simultaneous
kinematic and metabolic data, we can better understand the
energetic performance of the animals in the group.

Quantifying 3D fluid dynamics within groups
In addition to understanding the metabolism and kinematics of
collective motion, ideally we would also like to understand the fluid
dynamic environment that animals are moving in. Particle image
velocimetry (PIV; see Glossary) has provided a wealth of
information on animals moving through the water (Drucker and
Lauder, 1999; Nauen and Lauder, 2002) and air (Johansson and
Hedenström, 2009; Hedenström et al., 2010; Lentink et al., 2007),
and the extension of 2D analyses to 3D is becoming increasingly
common (Flammang et al., 2011; Mendelson and Techet, 2015;
Elsinga et al., 2006). PIV provides valuable experimental insight
into the kinematic interactions of individuals with patterns of fluid
motion; it enables measurement of drag and thrust wakes and shows

where individuals are located within these flow regimes (Fig. 1A,
Fig. 4). Velocity vector fields are the primary data provided by PIV,
from which the surface pressures or locomotor forces can be
estimated for freely moving animals (Peng et al., 2007; Dabiri et al.,
2014; Thandiackal and Lauder, 2020; Calicchia et al., 2023).

There are many challenges to understanding 3D fluid dynamics
within fish schools, not least of which are the issues of resolution:
relevant flow structures can be small, shadows caused by individuals
within the group can block laser illumination, and the rapidly
changing positions of individuals necessitate high image-capture
rates to resolve flow dynamics. Computational fluid dynamic (CFD)
analyses (see Glossary) that employ a variety of approaches to better
understand group collective dynamics (Dong et al., 2006;Mittal et al.,
2008; Borazjani et al., 2012; Fish et al., 2016; Zhang et al., 2023) can
address these challenges to some extent, and such analyses are an
important complement to experimental measurements. CFD allows a
detailed understanding of the flow physicswithin collectives, does not
suffer from resolution issues, and can generate detailed flow patterns
within groups that are not subject to experimental limitations and the
challenges of working with live animals.

The typical range of Reynolds numbers used for CFD simulation
of collective fish movement is 1×103–1×104. However, even small
fish swimming near or at their maximum sustained swimming speed
can easily reach a Reynolds number one or more magnitudes higher,
and large animals will move at even higher Reynolds numbers. This
poses a challenge for computational approaches.

Conclusions and prospects
Given the considerable current interest in the collective dynamics of
animal motion and the common view that moving in a group saves
energy relative to moving as a solitary individual, it is surprising that
there are so few experimental data that document the energetic
advantage of group motion. In order to understand whether and how
collective motion influences the energetics of movement, it is
necessary to directly measure both whole-animal aerobic
metabolism and glycolysis, which together provide the energy
(ATP) that powers locomotion. Then we can demonstrate how group
characteristics – such as the spatiotemporal positioning of
individuals – can take advantage of fluid dynamics that may
enable energy conservation. We advocate here for the direct
measurement of energetic performance curves for collective
movement and then a direct comparison with similar data for
solitary individuals moving at the same speed and in the same
experimental fluid conditions. Such analyses promise a
comprehensive picture of the energetics of collective movement
when coupled with experimental data on the kinematics and fluid
dynamics of the group.

Finally, we note that one of the key components of predicting
global animal distributions and abundance is an understanding of
environmental factors that affect the ability of animals to move.
Locomotor performance curves can serve as the foundation on
which to build ecological models. Other environmental factors,
such as acidity, temperature and O2 availability, can shift and shape
these performance curves, and understanding how these factors
shape collective behaviour is a key challenge for the future.
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most commonly obtained from animal-borne sensors or data loggers, and
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