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We present an experimental investigation of flexible panels actuated with heave
oscillations at their leading edge. Results are presented from kinematic video analysis,
particle image velocimetry, and direct force measurements. Both the trailing edge
amplitude and the mode shapes of the panel are found to scale with dimensionless
parameters originating from the Euler–Bernoulli beam equation. The time-averaged net
thrust increases with heaving frequency, but experiences localized boosts near resonant
frequencies where the trailing edge amplitude is maximized. These boosts correspond
to local maxima in the propulsive efficiency. For a constant heave amplitude, the time-
averaged net thrust coefficient is shown to be a function of Strouhal number over a
wide range of conditions. It appears, therefore, that self-propelled swimming (zero net
thrust) only occurs over a small range of Strouhal numbers. Under these near-constant
Strouhal number conditions, the propulsive economy increases with higher flexibilities
and slower swimming speeds.
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1. Introduction
Flexibility is one of the defining characteristics of fish propulsion, where fine

musculature and compliant membranes allow both active and passive control of fin
kinematics (Lauder & Madden 2007). Moreover, flexibility allows complex kinematics
to result from rather simple forcing patterns, an effect with important consequences
for swimming efficiency (Bhalla, Griffith & Patankar 2013). These observations
have led to a considerable body of literature concerning the role of flexibility in
propulsive performance. Interest can be dated to the work of Wu (1971), who showed
analytically that slender flexible bodies could achieve higher efficiencies than their
rigid counterparts. Katz & Weihs (1978) both verified these predictions and extended
them to large amplitude motions using an inviscid panel method.

More recently, advances in biologically inspired underwater vehicles have led to
new-found interest in flexible propulsors: see, for example, Low (2011) or Lauder
et al. (2011). Specifically, chordwise flexibility has been shown to increase propulsive
efficiency in experiments (Prempraneerach, Hover & Triantafyllou 2003) and direct
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numerical simulations (Pederzani & Haj-Hariri 2006; Zhu 2007). In the past few years,
much attention has been given to the resonant frequency of the propulsor, and most
studies report the highest efficiencies occurring when the actuation frequency f is
within 10 % of the first resonant frequency f̂1. This finding has held true in a variety
of experiments (Heathcote & Gursul 2007; Spagnolie et al. 2010; Leftwich et al. 2012;
Dewey et al. 2013) and numerical studies (Michelin & Llewellyn Smith 2009; Paulo,
Ferreira de Sousa & Allen 2011).

In contrast, several studies in the micro-aerial vehicle (MAV) literature have found
efficiencies to be maximized for f considerably lower than f̂1. Through experiments
(Ramananarivo, Godoy-Diana & Thiria 2011), direct numerical simulations (Vanella
et al. 2009), and order-of-magnitude scaling arguments (Kang et al. 2011), the
optimum f was found to be as low as 33–50 % of f̂1. In these MAV studies, the
surrounding air is much less dense than the propulsor itself, and the differences are
presumed to be due to the relative importance of the inertia of the propulsor; for a
thorough discussion see Daniel & Combes (2002) or Kang et al. (2011).

To examine the effects of flexibility and to identify scaling relationships, we are
motivated to investigate flexible propulsors with simple geometries and actuations. A
similar strategy was adopted by Dewey et al. (2013), who studied the thrust production
of rectangular flexible panels undergoing pitch oscillations at the leading edge. The
current study advances this work in three directions. First, we investigate multiple
flow speeds, so that we can change the Strouhal number (the non-dimensional flapping
frequency) by varying the frequency and/or the flow speed. By changing the flow
speed, we can also investigate multiple ‘self-propelled’ swimming conditions, that
is, cases in which the panels experience zero net thrust. Second, the wide range of
flexibilities and longer chord used here allow excitation of the first four modes of
flapping, whereas only the first mode was considered by Dewey et al. (2013). We will
therefore be able to demonstrate that linear beam theory is applicable to swimming
kinematics up to the fourth resonant mode. Finally, the oscillations are in heave, not
pitch, but we will show that the relevant scaling parameters will be similar in form.

In this respect, the work of Alben et al. (2012), who studied the swimming speeds
of flexible rectangular panels actuated with heaving oscillations at the leading edge,
is directly relevant to the current study. All cases considered were self-propelled,
which differs from the current study, where both negative and positive net thrust
conditions are considered. Their inviscid numerical model predicted multiple peaks
in self-propelled swimming speed as the panel length and flexibility were varied.
In comparison, the current study shows multiple peaks in propulsive efficiency as
flexibility is varied. Finally, we will borrow analysis techniques from Allen & Smits
(2001), who studied the passive motions of flexible membranes behind a bluff body.
While their membranes were not directly actuated, the boundary conditions were
similar, and we expect similar modal decompositions of the kinematics.

2. Experimental methods
Experiments were conducted on rectangular panels suspended in a recirculating

water channel. The four panels tested had bending stiffnesses ranging from EI =
6.9×10−5 to 3.2×10−1 N m2 (see table 1), where EI = Esδ3/(12(1−ν2)), with elastic
modulus E, panel thickness δ, panel span s, and Poisson ratio ν. The Poisson ratio was
estimated to be 0.3 for all panels. The moduli were measured by tensile tests of the
steel (panel A) or polyethylene (panels B–D) from which the panels were made. All
panels had a chord length c= 195 mm and a span s= 150 mm.
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FIGURE 1. (Colour online) Experimental setup: (a) length scale definitions; (b) top view;
(c) side view.

Panel E (GPa) δ (mm) EI (N m2)

A 82.0 0.66 3.2× 10−1

B 1.7 0.77 1.1× 10−2

C 1.8 0.32 8.1× 10−4

D 3.8 0.11 6.9× 10−5

TABLE 1. Panel specifications.

The panels were actuated at the leading edge by an aluminium spar undergoing
sinusoidal heave oscillations with frequency f and peak-to-peak amplitude a (see
figure 1). The 29 frequencies considered ranged from 0 to 3.5 Hz at intervals of
0.125 Hz. The leading amplitude a was 20 mm for all trials, while the trailing
amplitude a′ was a passive output of the system. The position of the leading edge
yLE was checked with an optical encoder, and it did not deviate by more than 1 %
from the input waveform. The leading edge spar was connected to a rack which
heaved back and forth under the action of a servo motor. Along the spar (between the
mount and the panel) was a 6-axis force/torque sensor (ATI Inc., Nano-25 SI-125-3 for
panels A and B, Nano-17 SI-50-0.5 for panels C and D) which was used to measure
streamwise and lateral forces (Fx and Fy, respectively).

The surface of the water downstream of the panel was covered with a planar baffle
to reduce surface waves. With the baffle in place, surface waves were only found to
be significant for panel A actuated at frequencies near the first gravity wave harmonic,
which occurs at f ≈ 1.8 Hz based on the dimensions of the channel. Left untreated,
panel C experienced significant spanwise curvature. This curvature was eliminated by
using two strips of aluminium shimstock to increase the spanwise rigidity.

The net streamwise force Fx is equal to the thrust produced by the panel minus
the drag imposed by the flow. For notational convenience we will use ‘net thrust’ (τ )
to denote ‘net force in the x direction’ (Fx). The power input to the fluid is given
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by ℘ = −FyvLE, where vLE is the lateral velocity of the leading edge, and will simply
be referred to as the ‘power’ (℘). The instantaneous net thrust and power data were
filtered using a 12 Hz LP second-order digital Butterworth filter and phase-averaged
(denoted by a tilde) over the largest number of oscillation cycles possible in a 10 s
period of data acquisition. Time-averages (denoted by an overbar) were taken by
averaging over the same oscillation cycles. The average variance over all conditions
was ±13 mN for T̄ and T̃ , and ±3 mW for P̄ and P̃. These estimates were lower for
panels C and D, where the higher resolution force/torque sensor reduced the average
variances to ±5 mN and ±1 mW.

In addition to force/torque data, the kinematics of the panel were recorded by
filming the edge view (seen in the x–y plane) with a high-speed camera (Photron,
FASTCAM 1024 PCI). An in-house edge-tracking code identified the shape of the
panel at 200 Hz. The trailing edge amplitude a′ was taken to be the difference between
extrema of the trailing edge position, averaged over the same cycles as were used for
net thrust and power averages. At the lowest flow speed, panel D became unstable
for f > 2.75 Hz, and a′ deviated by more than 10 % between cycles. Data for these
conditions will be reported but highlighted in the figures.

Using the same camera setup, particle image velocimetry (PIV) was conducted at
the midspan for a sampling of cases. The laser sheet was generated by a continuous
10 W argon-ion laser (Coherent, Innova 70-C), and the particles were hollow silver-
coated glass beads with an average diameter of 12 µm. Black ink was used to reduce
diffuse laser reflections off the panels to a region adjacent to the panel surface with
a thickness ≈ 1 mm. The velocity field was calculated using Davis 8.1.3, the spatial
cross-correlation algorithm developed by LaVision Inc. (Stanislas et al. 2005). In total,
nine passes with 50 % overlap were conducted on the data: three with 128 × 128
pixel windows, three with 64 × 64, and three final passes with 32 × 32. The resulting
velocity field consisted of 64 × 64 vectors. In quadrature, the instantaneous velocity
errors are estimated to be 1–5 % (Sciacchitano, Wieneke & Scarano 2013).

To summarize, the input parameters are the chord (c), span (s), and bending stiffness
(EI) of the panel; the peak-to-peak amplitude (a) and frequency (f ) of the heave
oscillations; the density (ρ) and viscosity (µ) of water; and the speed of the incoming
flow (u∞). These eight variables yield five dimensionless parameters. The first two
are geometric: the aspect ratio (s/c ≈ 0.77) and the amplitude/chord ratio (a/c ≈ 0.1).
These parameters were held constant. The third parameter is the Strouhal number,
St ≡ fa′/u∞, where a′ is a function of the other variables and must be determined
a posteriori from the video analysis. We also define a Reynolds number based on the
chord, Rec ≡ ρu∞c/µ, which ranges from 7800 to 46 800 in the current study. Finally,
we define the effective flexibility, Π1 ≡ (ρsf 2c5/EI)1/2, which is a ratio of added mass
forces to internal bending forces. Figure 2 illustrates where the current study fits in
with previous work in the ReC–Π1 plane of the phase space.

3. Results & discussion
3.1. Kinematics

Small deflections h of a flexible panel with constant cross-section can be modelled by
the Euler–Bernoulli beam equation (Weaver, Timoshenko & Young 1990),

ρpδs
∂2h

∂t2
+ EI

∂4h

∂x4
= Fext, (3.1)

where ρp is the density of the panel and Fext is the external force per unit length.
Since ρp/ρ = O(1) and δ/c� 1, we expect added mass forces to dominate over the
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FIGURE 2. (Colour online) Parameter space. Semi-log scale. Existing propulsive panel
literature: �, Buchholz & Smits (2006); ©, Dewey et al. (2013); �, Alben et al. (2012).
Current study: O, u∞ = 40 mm s−1; C, u∞ = 110 mm s−1; 4, u∞ = 170 mm s−1; B, u∞ =
240 mm s−1. Reynolds number ReC ≡ ρu∞c/µ; effective flexibility Π1 ≡ (ρsf 2c5/EI)1/2.
In the online version panels A, B, C, and D are coloured red, orange, green, and blue,
respectively.

inertia of the panel. We are thus motivated to replace the mass per length of the panel,
ρpδs, with an effective mass per length, ρsc. Introducing dimensionless variables
X∗ ≡ x/c, H∗ ≡ h/a′, and T∗ ≡ tf , the beam equation can now be written as

Π 2
1

∂2H∗

∂T∗2 +
∂4H∗

∂X∗4 =F ∗
ext, (3.2)

where F ∗
ext ≡ Fextc4/(EIa′) is the dimensionless external force per unit length, except

for added mass, which was incorporated into the left-hand side of the equation by
introducing the effective mass per length. These additional external forces could
include, for example, internal damping or viscous drag. Note the appearance of the
effective flexibility, Π1, as defined above. Since the leading edge was fixed and the
trailing edge was free, the appropriate boundary conditions are H∗(0) = 0, H∗

′
(0) = 0,

H∗
′′
(1)= 0, and H∗

′′′
(1)= 0.

The solution to (3.2) can be represented as H∗(X∗,T∗) = ∑∞i=1ξi(X∗)Θi(T∗),
where ξi are orthonormal eigenfunctions and Θi are the modal contributions. The
eigenfunctions form a basis into which we can project the experimentally measured
displacement, H∗exp. The choice of basis is not unique, and here we choose the
eigenfunctions for the homogeneous form of (3.2), that is, where F ∗

ext = 0. The
advantage of this choice is that ξi has an exact solution with eigenvalues λi that
follow from the boundary conditions (Weaver et al. 1990). The natural frequencies of
these modes, f̂i, are such that f /f̂i =Π1λ

2
i . Hence the importance of the dimensionless

variable Π1: it is directly proportional to the ratio between the actuation and resonant
frequencies when only added mass forces are modelled.

The modal contributions follow from taking an inner product of Hexp with each
eigenfunction:

Θi(T
∗)=

∫ 1

0
H∗exp(X

∗,T∗)ξi(X
∗) dX∗. (3.3)

Panels A and B exhibited only the first mode, that is, Θi=1 ≈ 1 and Θi6=1 ≈ 0 for all
conditions. Panel C exhibited the first two modes, though the second mode appeared
only at the lowest flow speed considered. Panel D exhibited the first four modes, and
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FIGURE 3. (Colour online) Mode shape projections for panel D at T∗ = 0.75: (a) u∞ =
240 mm s−1; (b) u∞ = 170 mm s−1; (c) u∞ = 110 mm s−1; (d) u∞ = 40 mm s−1. Mode
shapes: ¬, mode 1; , mode 2; ®, mode 3; ¯, mode 4 (symbols are placed at the peaks
to highlight shifting modes).

provides the most insight into the structure of the modal decomposition. Figure 3
shows the modal contributions for panel D at a sample phase for each of the four flow
speeds. As the heaving frequency increases, the modal contributions pass through a
series of peaks as successively higher modes are actuated. As the flow speed increases,
these peaks shift to higher frequencies. Heaving at 0.5 Hz, for example, actuates the
second mode when u∞ = 40 mm s−1, but the first mode when u∞ = 240 mm s−1.

We now consider the trailing edge amplitude a′. At heaving frequencies where a′ is
locally maximized, the system is said to be operating in resonance. For each panel, the
frequency at which resonance occurs is relatively independent of flow speed. Figure 4
shows that resonance occurs at four distinct values of Π1 for all panels tested. Panel
A displays the first peak, whereas the more flexible panels pass through multiple
peaks over the frequency range considered. For all panels, a′/a appears to be a strong
function of Π1.

The amplitudes of the a′/a peaks show two main trends. One is a reduction in
magnitude with successive peaks. The first two peaks in figure 4 show a peak-to-
trough distance of ∼1, but this has fallen to ∼0.5 by the fourth peak. This behaviour
is consistent with deflections being more easily suppressed by fluid forces when
the panel is more flexible. The other noteworthy trend is a decrease in a′/a with
increasing flow speed. Presumably the form drag at higher flow speeds suppresses
panel deflections and thereby reduces the amplitude of the wave along the panel.



256 D. B. Quinn, G. V. Lauder and A. J. Smits

A B C D

100 101 102

1.5

2.0

1.0

2.5

FIGURE 4. (Colour online) Trailing edge amplitude as a function of effective flexibility,
Π1 ≡ (ρsf 2c5/EI)1/2: O, u∞ = 40 mm s−1; C, u∞ = 110 mm s−1; 4, u∞ = 170 mm s−1; B,
u∞ = 240 mm s−1. Locations of a′/a peaks are highlighted along the Π1 axis (�). Filled
symbols denote conditions with chaotic kinematics. Due to high scatter at low frequencies
where the kinematics are heavily influenced by drag, only positive net thrust conditions
(τ̄ > 0) are plotted.
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FIGURE 5. (Colour online) Mode shape symbols as in figure 3. Empty symbols, panel D;
filled symbols, panel C. Solid lines are linear regressions for each mode. Locations of a′/a
peaks are highlighted along the Π1 axis (�).

A linear regression of the mode peaks helps to connect the trailing edge behaviour
with the modal decompositions (figure 5). The Π1 values at which structural modes
would theoretically occur when u∞ = 0 coincide approximately with the Π1 values
at which a′/a is maximized (the modes could not be measured directly at u∞ = 0,
because with no flow to stabilize the travelling wave, the panel kinematics become
chaotic). It appears that the first-order effect of form and viscous drag is to stretch
the shape of the panel in the streamwise direction but leave the resonant frequencies
relatively unaffected.

3.2. Flow field
The flow surrounding the panel is characterized by regions of concentrated vorticity
along the surfaces of the panel and in the wake. Figure 6 shows the distribution
of positive (anticlockwise) and negative (clockwise) vorticity at three frequencies for
u∞ = 110 mm s−1. At the lowest frequency, boundary layers along the panel feed into
wavy sheets of vorticity in the wake. The sign of the sheets corresponds to a jet
flowing toward the body, and this case will be shown to produce a net drag on the
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FIGURE 6. (Colour online) Frequency dependence of vorticity (ω) for panel D for u∞ =
110 mm s−1, at the time of maximum leading edge excursion (φ = 0): (a) f = 0.5 Hz;
(b) f = 2.6 Hz; (c) f = 3.5 Hz.

panel. As the frequency increases, the wake vorticity is concentrated into cores until
a typical vortex street is present. In these cases, the downstream momentum flux is
positive and the panel experiences net thrust.

The shape of the panel in figure 6 depicts how higher modes are excited by
higher frequencies. The higher modes are also seen to produce a qualitatively different
vorticity distribution along the surface of the panel. Unlike at lower frequencies,
vorticity alternates along both sides of the surface of the panel, and the alternation
is locked in phase with the travelling wave. We expect that in these cases the steady
component of the pressure distribution will have periodicity matching that of the
actuation. This will have important consequences for the instantaneous forces exerted
on the panel.

Figure 7 shows the vorticity distributions at three flow speeds for f = 2 Hz. The
spacing of the vortices increases with flow speed due to faster advection rates. The
shape of the panel depicts how mode peaks are shifted to higher frequencies as the
flow speed increases. While the shape is mostly the third mode when u∞ = 40 mm s−1,
it is between the third and fourth mode when u∞ = 170 mm s−1. In addition, the
higher flow speeds cause the flow to separate off the panel surface, presumably
resulting in higher form drag. This process also disrupts the alternation of vorticity
along the panel surface; at u∞ = 170 m s−1, the periodicity is barely discernible.

In all the vorticity distributions shown, two vortices are present at the leading edge.
Only one phase is shown, but these vortices remain attached to the leading edge
throughout the flapping cycle. This attachment is presumably because of the high
reduced frequencies k ≡ fc/u∞ considered (2.3–9.8 in figure 7), which imply that
vortex dynamics are more strongly influenced by lateral motions than by the free-
stream velocity. Indeed, at the lowest k-values considered here, some of the vorticity at
the leading edge rolls up and travels downstream in coherent vortices. This behaviour
is consistent with MAV studies (e.g. Kang et al. (2013)), where k is typically less
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FIGURE 7. (Colour online) Flow speed dependence of vorticity (ω) for panel D for
f = 2 Hz, at the time of maximum leading edge excursion (φ = 0): (a) u∞ = 40 mm s−1;
(b) u∞ = 110 mm s−1; (c) u∞ = 170 mm s−1.

than 1 and leading edge vortices are often seen to detach from the body. Under these
low k conditions, the timing of leading edge vortex shedding is known to be important
for propulsive efficiency (Anderson et al. 1998), but no such trends were observed
here.

3.3. Phase-averaged forces
Figure 8 shows phase-averaged net thrust and power measured through the oscillation
cycle at four heaving frequencies for panel D. We define φ as the phase of the
oscillation such that φ ranges from 0 to 2π, with φ = 0 corresponding to yLE/a = 0.5,
that is, when the leading edge is at its maximum y position. The content of the signals
is dominated by a frequency of 2f , that is, twice the heaving frequency, with peaks
occurring just after the panel is in mid-upstroke (φ = π/2) and in mid-downstroke
(φ = 3π/2). The magnitudes of both signals increase with heaving frequency, as
expected. The power signal is the smoother of the two, owing to the fact that
|Fy/Fx| = O(c/a)� 1, and thus the relative error in the power signal is expected
to be much lower than the relative error in the net thrust. Unlike the net thrust signal,
the power signal is negative at certain times in the oscillation cycle, specifically just
after the leading edge passes through its extrema (φ = 0 and φ = π). Hence, there is a
phase lag between the lateral forces and leading edge position. Just after yLE/a = 0.5,
for example, a negative power input implies that Fy is still negative, despite the
downward motion of the panel.

Figure 9 shows the net thrust and power signals at four different flow speeds for the
same panel (panel D). The frequency content and peak positions are similar to those
observed in figure 8. The net thrust decreases significantly with increasing flow speed,
and the reduction happens in two distinct ways. The first is an offset in the signal,
causing its average to decrease and even drop below zero. The second reduction is
in the magnitude of the peaks. This contribution is more likely due to the changing
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FIGURE 8. (Colour online) Frequency dependence of phase-averaged net thrust and power
for panel D. (a,b) Position of the leading edge yLE. (c,d) Net thrust (c) and power (d).
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FIGURE 9. (Colour online) Flow speed dependence of phase-averaged net thrust and power
for panel D. (a,b) Position of the leading edge yLE. (c,d) Net thrust (c) and power (d). Flow
speeds: H, u∞ = 40 mm s−1; J, 110 mm s−1; N, 170 mm s−1; I, 240 mm s−1.

kinematics on the panel, since the effect was less pronounced for the stiffer panels
(not shown). In contrast to the net thrust, the power is unaffected by changing the
flow speed, signifying that viscous effects play only a minor role in scaling the lateral
forces.

We now introduce a scaling based on typical force magnitudes. We propose the
following representative parameters: a fluid mass, ρsc, and the leading and trailing
edge velocities, fa and fa′, respectively. Following Hultmark, Leftwich & Smits
(2007), who found that thrust is produced primarily at the trailing edge of undulating
swimmers, we will use fa′ to scale the net thrust. The power, however, was found
to scale better with fa. We thus introduce the phase-averaged thrust and power
coefficients

C̃τ ≡ τ̃

ρscf 2a′2
and C̃℘ ≡ ℘̃

ρscf 3a3
. (3.4)

Figure 10 shows a variety of these coefficients for panels B, C, and D. The collapse of
the data demonstrates the effectiveness of this scaling approach. The main trends are
the same for all cases. As before, two peaks occur per cycle, each at or slightly after
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FIGURE 10. (Colour online) Coefficients of net thrust and power: (a) panel B, (b) panel C,
(c) panel D. Solid lines show the phase-averaged net thrust and power coefficients through the
flapping cycle. The data cover all flow speeds considered. Due to high relative uncertainties at
low frequencies, only frequencies leading to positive net thrust (τ̄ > 0) are plotted.

the mid-upstroke or mid-downstroke. The scaling did not apply well to the stiffest
panel, panel A (results not shown), where the highest C̃τ peaks were roughly four
times higher than the lowest peaks, and the phase of the peaks occurred over a range
between π/2 and π. This is not surprising in that there are no bending forces in the
proposed scaling. Presumably the bending forces play a larger role in the stiffer panels,
and the magnitude and phase of the forces are no longer linked to fluid forces alone.

Exceptions aside, the curves show a comparatively strong collapse, given that before
the scaling they differed by as much as two orders of magnitude. Most of the
remaining differences result from the flow speed effects mentioned above, where in
general higher flow speeds lead to lower values of C̃τ . In addition, the peaks occur at
similar phases for panels B, C, and D, despite their vastly different kinematics. This
observation is consistent with the behaviour of the flow fields, where in many cases
the vorticity along the panel was locked in phase with the actuation frequency. It is
apparent that the leading edge plays an important role in thrust production, but the
exact magnitude of the net thrust depends strongly on the trailing edge amplitude. The
fact that the C̃τ peaks are O(1) suggests that the typical thrust forces are relatively
unaffected by the bending stiffness. The magnitude of C̃℘ , however, varies significantly
and is not O(1). Without accounting for bending forces, the characteristic power
ρscf 3a3 will likely be an underestimate, which helps to explain why C̃℘ � 1, and why
it increases with panel stiffness.

3.4. Time-averaged forces
Time-averages of the net thrust (τ̄ ) give insight into the bulk propulsive performance
of the panels (figure 11). In general, τ̄ increases with heaving frequency, but does so
at different rates, and in some ranges even decreases with frequency. The resulting
plateaus are directly related to resonance at the trailing edge. Since the more flexible
panels pass through multiple resonant frequencies, they exhibit multiple plateaus. As
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FIGURE 11. (Colour online) Time-averaged net thrust: (a) panel A, (b) panel B, (c) panel C,
(d) panel D. Symbols as in figure 4.

with the phase-averaged net thrust, higher flow speeds reduce τ̄ in two main ways.
One way is by shifting the curves downward, a trend best understood by looking at the
static case (f = 0 Hz), where viscous drag produces an offset between the net thrust
curves. At higher frequencies, the curves differ by more than just an offset, especially
with the more flexible panels. This trend suggests that variations beyond the simple
offset are due to the different kinematics brought on by higher flow speeds. These two
trends can be thought of as being analogous to the two trends in C̃τ mentioned in
§ 3.3.

To understand the origins of the plateaus, we consider the Lighthill (1970) model for
undulating slender fish. For the analysis, it will be useful to scale the time-averaged
net thrust with a reference force that is independent of frequency. We therefore use the
usual net thrust coefficient based on dynamic pressure:

C′τ ≡
τ

1
2
ρu2
∞sc

. (3.5)

Reformulated using the current notation, the Lighthill (1970) model predicts that

C̄′τ = π
( s

c

)[
St2

(
∂H∗

∂T∗

)2

−
(

a′

c

)2(
∂H∗

∂X∗

)2
]
, (3.6)
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FIGURE 12. (Colour online) Predictions of the Lighthill model for a sinusoidal propulsor.
Thin line, a′/c= 0.1; thick line, a′/c= 0.1(1+ 0.15 sin2k).
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FIGURE 13. (Colour online) Time-averaged net thrust coefficient. The inset shows a
magnified view near the origin. Dashed line, C̄′τ = (πs/c)St2. Symbols as in figure 4.

where the expression is to be evaluated at the trailing edge where X∗ = 1. Note that
this dependence on trailing edge motions alone is consistent with the experiments
on anguilliform (eel-like) motion by Hultmark et al. (2007), and with the scaling
in (3.4). For illustration, consider a panel experiencing a sinusoidal travelling wave
with a wavelength equal to the chord, that is, H∗ = 0.5 sin(2π(X∗ + T∗)). Figure 12
plots the predicted variation of C̄′τ with frequency for the case where a′/c is constant,
and where a′/c varies sinusoidally with the reduced frequency (k ≡ fc/u∞). The local
maxima in a′ increase the net thrust coefficient such that plateaus appear in the k–C̄′τ
curve.

Motivated by the coefficients of (3.6), we now plot all the data in the St–C̄′τ plane
(figure 13). Under the new scaling, plateaus are no longer visible. Specifically, within
the plateaus the frequency increases but a′ decreases, and the net result is a constant
Strouhal number. The plateaus are thus reduced to clusters in St–C̄′τ space.

If the panel were perfectly rigid (EI→∞), H∗ would have no spatial variation,
and (3.6) then suggests that C̄′τ would scale with St2. This result agrees with the
Theodorsen (1935) model for heaving rigid aerofoils and is plotted as a reference in
figure 13. As one would expect, this scaling applies best to the most rigid panel (A),
except at low Strouhal numbers where the inviscid model neglects the viscous drag
present in the experiment. For finite rigidities, H∗ varies with X∗, and (3.6) predicts
a reduction in C̄′τ , which is consistent with the data in figure 13. The H∗ variation
increases at higher structural modes, which are increasingly difficult to actuate at
higher frequencies. In other words, a higher jump in frequency is required to move
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FIGURE 14. (Colour online) Swimming economy. Symbols as in figure 4.

from the second to the third mode than is required to move from the first to the second
mode (see figure 3). The result is that the reduction in C̄′τ due to variation in H∗ is
similar over a range of conditions, and within this range of conditions C̄′τ is primarily
a function of St. This effect is revealed experimentally by the collapse of the C̄′τ–St
curves for panels B, C, and D.

The collapse to a single St–C̄′τ curve has significant implications for self-propelled
swimming, that is, where the mean net thrust is zero (τ̄ = 0). In figure 3, this
condition occurs where C̄′τ crosses the St axis. If panels B, C, or D were self-
propelling at any of the four flow speeds considered, they would necessarily be
operating at Strouhal numbers between 0.3 and 0.4. The classic explanation for the
tight band of Strouhal numbers observed in fish propulsion is that wake structures
are most efficient when St ≈ 0.25→ 0.35 (Triantafyllou, Triantafyllou & Grosenbaugh
1993). Panels B, C, and D, however, can only self-propel at St ≈ 0.3→ 0.4, regardless
of the energy it takes to do so. In fact, the swimming economy, ε ≡ u∞/℘̄, at the self-
propelled swimming conditions varies by an order of magnitude (figure 14), despite
the nearly constant Strouhal number. It appears that the more relevant parameters here
are flexibility and flow speed, where ε increases with flexibility and decreases with
swimming speed.

We now consider the efficiency. Efficiency can be quantified for thrust-producing
conditions (τ̄ > 0) by introducing the propulsive efficiency η ≡ τ̄u∞/℘̄, which
represents the fraction of the power input that results in streamwise kinetic energy
gains for the propulsor. It is only defined in positive net thrust conditions and is
relevant when a propulsor is accelerating or overcoming the drag on a body to which
it is attached. Following Dewey et al. (2013), we note that the scaling in (3.4) suggests
that η̂ ≡ ηSt may be a more useful parameter than η itself. Figure 15 shows η̂ over
the full parameter space. Peaks in efficiency occur at or just above the Π1 values
where the trailing edge amplitude was maximal. As with the swimming economy, the
efficiency is highest at low flow speeds and high flexibilities. Presumably, the flow
separation observed at high flow speeds (figure 7) results in significantly higher drag
and lower efficiency. The only exception to this pattern occurs for the conditions
with chaotic kinematics, where efficiency experiences a sudden decrease. This only
occurred for panel D at the lowest flow speed and at the highest frequencies
(f > 2.75 Hz).

The reduction in efficiency at higher flow speeds is more severe for the more
flexible panels. For panel D, the reduction is sufficient for the stiffest panel (panel A)
to be more efficient than panel D at u∞ = 240 mm s−1. It appears that an efficient
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FIGURE 15. (Colour online) Scaled propulsive efficiency. Semi-log scale. Symbols as in
figure 4. For reference, locations of a′/a peaks are highlighted along the Π1 axes (�).

heaving propulsor should swim slowly and be as flexible as possible. If higher speeds
are required, a more rigid panel may be more efficient. If the propulsor can adjust its
stiffness, it could increase EI when u∞ is high in order to maximize its efficiency over
a range of swimming speeds.

4. Conclusions
Kinematic analysis and direct force measurements have shown that the propulsive

performance of heaving flexible panels depends strongly on structural resonance.
Trailing edge amplitude is maximized at discrete values of the dimensionless variable
Π1 (≡ (ρsf 2c5/EI)1/2), corresponding to higher levels of net thrust and increased
propulsive efficiency (≡ τ̄u∞/℘̄). This finding is consistent with the results of Alben
et al. (2012), who numerically discovered multiple local maxima in the self-propelled
swimming speeds of heaving propulsors.

Phase-averaged force measurements revealed that net thrust and power experience
two peaks during the flapping cycle. For panels B, C, and D, these peaks occur near
φ ≈ π/2 and φ ≈ 3π/2, regardless of the kinematics along the panel. This suggests
that the leading edge plays an important role in thrust production. Particle image
velocimetry supported this finding by revealing strong vortices that remained attached
to the leading edge throughout the cycle. While thrust production was dominated by
the motion of the leading edge, it experienced localized increases when the trailing
edge amplitude was maximized. These increases resulted in frequency plateaus in the
net thrust curves, an effect that was qualitatively recreated by sinusoidally varying the
trailing edge amplitude input into the Lighthill (1970) model.

Higher flow speeds led to lower structural modes present on the panel, separation
along the surface of the panel, lower trailing edge amplitude, and lower propulsive
efficiencies. The fact that flow separation was correlated with lower efficiencies brings
the current study in line with the work of Hultmark et al. (2007), who adopt an
anguilliform body motion characterized by a travelling wave with an exponentially
growing amplitude with distance along the body. As in their study, the results
here suggest that thrust increases with trailing edge amplitude, but that efficiency
decreases when deflections are sufficient for flow to separate along the surface of
the panel. Unlike efficiency, the frequencies at which trailing edge resonance occur
were relatively unaffected by flow speed. Furthermore, these resonant frequencies
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appeared to align with the frequencies of the eigenmodes for the theoretical case
where u∞ = 0 and added mass forces are the only external forces. This result has
important implications for propulsor design. A flexible propulsor is able to maintain
high efficiency over a range of swimming speeds by operating at certain Π1 values.

It was shown analytically that when only added mass forces are present, Π1 is
directly proportional to the ratio between the actuation and resonant frequencies, f /f̂i.
This helps to relate the current results to the work of Dewey et al. (2013), who
estimated the first resonant frequency empirically and found that f /f̂1 could be used
to collapse their data. Dewey et al. (2013) successfully applied scalings based on the
Euler–Bernoulli beam equation to pitching motions at one flow speed, where the first
resonant frequency was reached. By examining heaving motions, multiple flow speeds,
and four resonant frequencies, we have shown that these scalings are applicable over a
wide range of flexibilities and swimming conditions.

For panels B, C, and D, the traditional net thrust coefficient (≡ τ̄ /(ρscu2
∞/2)) was

shown to be primarily a function of Strouhal number (≡ fa′/u∞). A similar result
was found numerically by Paulo et al. (2011). The implication is that self-propelled
swimming for panels B, C, and D is only possible over a tight range of Strouhal
number between 0.3 and 0.4. It is worth noting that a variety of swimmers and flyers
in nature swim in this range (Taylor, Nudds & Thomas 2003), although the possibility
of coincidence cannot be ruled out, especially since for many fish the propulsor is only
a small part of the body. Carangiform swimmers, for example, produce thrust primarily
with the caudal fin, and other parts of the body may contribute to increased form drag.
This higher drag would add an offset to the St–C̄′τ curve in figure 13 and lead to a
different Strouhal number range for self-propelled swimming.

Nevertheless, our findings suggest that the usual interpretation of Strouhal number
as an indicator of efficiency (Triantafyllou et al. 1993) is imprecise. It appears that
for the simple case of self-propelled heaving flexible panels, Strouhal number is an
outcome determined by the geometry and gait of the panel. We find a nearly constant
value of the Strouhal number for self-propelled swimming, but significant variation in
the swimming economy (≡ u∞/℘̄). The economy is maximized when the flow speed
is low and panel flexibility is high. If the panel were designed to be a propulsor, the
Strouhal number in the self-propelled state would be approximately constant, and the
economy would be dictated by the swimming speed.
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