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Experimental gradient-based optimization is used to maximize the propulsive
efficiency of a heaving and pitching flexible panel. Optimum and near-optimum
conditions are studied via direct force measurements and particle image velocimetry
(PIV). The net thrust and power scale predictably with the frequency and amplitude of
the leading edge, but the efficiency shows a complex multimodal response. Optimum
pitch and heave motions are found to produce nearly twice the efficiencies of optimum
heave-only motions. Efficiency is globally optimized when (i) the Strouhal number is
within an optimal range that varies weakly with amplitude and boundary conditions;
(ii) the panel is actuated at a resonant frequency of the fluid–panel system; (iii) heave
amplitude is tuned such that trailing-edge amplitude is maximized while the flow
along the body remains attached; and (iv) the maximum pitch angle and phase lag are
chosen so that the effective angle of attack is minimized. The multi-dimensionality and
multi-modality of the efficiency response demonstrate that experimental optimization
is well-suited for the design of flexible underwater propulsors.
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1. Introduction
Compliant fins and wings have prompted long-standing interest in flexible

propulsors among biologists and fluid dynamicists. Wu (1971a) first predicted that
flexible propulsors could provide higher efficiencies, and this was later confirmed
numerically by Katz & Weihs (1978). However, it is only recently that advances
in materials technology have popularized flexible energy harvesters (Liu, Xiao &
Cheng 2013) and underwater vehicles (Low 2011), some of which can vary stiffness
during operation (Park et al. 2014). This newfound practicability has led to a surge
in research on flexible propulsors.

The major finding of this body of work is that flexibility can boost propulsive
efficiency. This finding holds true for flexible airfoils (Prempraneerach, Hover &
Triantafyllou 2003; Pederzani & Haj-Hariri 2006), and heaving and/or pitching
flexible panels (Heathcote & Gursul 2007; Zhu 2007; Michelin & Llewellyn 2009;
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Paulo, Ferreira de Sousa & Allen 2011; Alben et al. 2012; Dewey et al. 2013;
Quinn, Lauder & Smits 2014a). When the propulsor and fluid densities have similar
magnitudes, the efficiency appears to be maximized when the actuation frequency is
at or near the resonant frequency of the fluid–structure system (Michelin & Llewellyn
2009; Masoud & Alexeev 2010; Dewey et al. 2013; Quinn et al. 2014a). If instead
the propulsor is more dense than the surrounding fluid, the inertia of the propulsor
may dominate the dynamics, and fluid–structure resonance may play a lesser role;
Daniel & Combes (2002) and Kang et al. (2011) provide a further discussion. In
the present study, the propulsor–fluid density ratio is O(1), and we will show that
resonance plays an important role in maximizing efficiency.

To isolate the effects of flexibility, most studies of flexible propulsors have
considered either heave-only or pitch-only actuation. When considering both heave
and pitch, the phase lag between the two becomes an additional input parameter.
Linear theory predicts that efficiency is maximized when pitch lags heave by 90◦
in the flapping cycle (Lighthill 1970; Wu 1971b), and this has been confirmed
numerically for rigid airfoils (Isogai & Shinmoto 1999; Tuncer & Kaya 2005). In
experiments, the optimal phase lag has been shown to be slightly smaller; Anderson
et al. (1998), for example, determined 75◦ to be optimal. Non-optimal values of
phase lag are associated with leading-edge separation, which can lead to losses in
efficiency (Wang 2000; Lewin & Haj-Hariri 2003; Kang et al. 2013).

Here, we provide the first experimental investigation of flexible panels undergoing
both heave and pitch over a range of phase lags. To explore the full space of input
parameters, we will use gradient-based optimization in addition to more traditional
grid searches. Optimization routines have previously been used in numerical propulsor
design. For example, fluid simulations have been combined with gradient-based
optimization to tune the kinematics of rigid airfoils (Tuncer & Kaya 2005) and with
evolutionary algorithms to tune the shape and/or kinematics of anguilliform swimmers
(Kern, Koumoutsakos & Eschler 2007; Tokic & Yue 2012; van Rees, Gazzola &
Koumoutsakos 2013). Optimization can also be applied to analytical models. Eloy
& Schouveiler (2011), for example, used an empirical nonlinear model to tune the
deformation of a two-dimensional (2D) flexible panel. Only two propulsion studies
have combined optimization techniques with experimental setups. Milano & Gharib
(2005) used an evolutionary algorithm to maximize the lift produced by a flapping
rigid plate, and Izraelevitz & Triantafyllou (2014) used model-based optimization to
tune the in-line motion of rigid airfoils. One advantage of experimental optimization
is that the analogue nature of experimental techniques is combined with the rapidity
of computational optimization.

The main goal of the work presented here is to demonstrate that an experimental
gradient-based optimization routine can be used to maximize the efficiency of flexible
propulsors. We will show that optimization is especially well-suited for flexible
propulsors, where achieving resonance requires particular combinations of input
parameters that are unknown a priori. In addition to the optimization, we will
investigate the causes of the maximal efficiencies by considering select subspaces of
the input parameters and conducting particle image velocimetry (PIV) on a sample
of near-optimal cases. We will demonstrate that the efficiency is globally maximized
when: (i) the Strouhal number is within an optimal range that varies weakly with
amplitude and boundary conditions; (ii) the panel is actuated at a resonant frequency
of the fluid–panel system; (iii) heave amplitude is tuned such that trailing-edge
amplitude is maximized while flow along the body remains attached; and (iv) the
maximum pitch angle and phase lag are chosen so that the effective angle of attack
is minimized.



432 D. B. Quinn, G. V. Lauder and A. J. Smits

Pitch motor

Leading edge spar

Panel

u

ay

x

u

y

x

z

x

u

s

‘Pinion’
‘Rack’

(a)

(b)

(c)

FIGURE 1. (Colour online) Experimental arrangement. (a) Length scale definitions;
(b) top view; (c) side view.

2. Experimental methods

Experiments were conducted on a flexible rectangular panel suspended in a
recirculating water channel with flow speed u. The chord c, span s, and thickness δ
of the panel were 195 mm, 150 mm, and 0.11 mm, respectively. The panel had an
elastic modulus E = 3.8 GPa, resulting in a bending stiffness b = 6.9 × 10−5 N m2,
where b ≡ Esδ3/(12(1 − ν2)), and Poisson’s ratio ν was estimated to be 0.3. The
elastic modulus was measured by tensile tests of the polyethylene from which the
panel was made. A deflection test was also used to measure the bending stiffness of
the panel, and the resulting estimate agreed with the tensile tests to within 10 %.

The panel was actuated at the leading edge by an aluminium spar (chord = 10 mm,
thickness = 3 mm) undergoing heave and pitch oscillations. The oscillations were such
that the lateral position h and angle of attack α of the spar followed h= a sin(2π f t)
and α= α0 sin(2π f t− φ), where a is the heave amplitude, α0 is the maximum pitch
angle, f is the frequency of oscillation, t is time, and φ is the phase lag between heave
and pitch. The remainder of the panel deformed passively, finishing with a trailing-
edge amplitude a′. The motions were produced by connecting the spar to a pitch motor
(Pittman, GM8724S009) seated beneath a rack that heaved back and forth under the
action of a second motor (MCG, IB23007) (see figure 1).

A six-axis force–torque sensor (ATI Inc., Nano-17 SI-50-0.5) was used to measure
streamwise forces Fx, lateral forces Fy, and z-torques Qz. The true lateral ḣ and
angular α̇ velocities of the spar were recorded using two rotary encoders. Together,
these force and velocity data give the power input to the fluid ℘ according to ℘ =
−Fyḣ−Qzα̇. Time-averages were obtained by averaging over the largest number of
oscillation cycles possible in a 10 s period of data acquisition. We will use ‘net thrust’
τ̄ and ‘net power’ ℘̄ to refer to time-averaged streamwise force and power input
to the fluid, respectively. Of particular importance to swimming performance is the
propulsive efficiency η≡ τ̄u/℘̄. The average variance between trials for net thrust and
power was ±5 mN and ±1 mW, resulting in 3 % uncertainty in the efficiency.

The chosen propulsive efficiency metric, often called the Froude efficiency,
represents the fraction of energy transferred to the wake resulting in positive thrust.
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This metric is only defined when the thrust produced by the propulsor exceeds the
drag incurred by the flow. Fully autonomous swimmers require that their net thrust
be zero for steady swimming, and in this case the more appropriate metric is the cost
of transport, u/℘̄. Our treatment of efficiency is therefore best-suited for propulsors
that operate with net thrust in order to drive drag-producing payloads. Given the
O(1) aspect ratio of our panel, our results may apply most directly to swimmers with
broad flattened fins, such as rays and skates or batoid-inspired vehicles.

The oscillations of the leading-edge spar define four of the five input parameters
to the system (f , φ, a, and α0), with the fifth input being the flow speed of the
water channel (u). The time to conduct full sweeps of the parameter space texp
depends exponentially on the number of input parameters n, that is, texp ∝ en.
Including multiple trials and resetting time, the proportionality constant for the
current setup is approximately 1 h. This limitation precludes any full sweeps of
the full five-dimensional (5D) parameter space. Instead, we will consider selected
subspaces of the parameter space and employ gradient-based optimization to seek the
global maxima of the full space.

The largest subspace we considered spans the space of heave-only motions (α0= 0).
Data were taken via grid search over 23 frequencies ranging from 0.6 to 2.8 Hz, 14
flow speeds ranging from 25 to 360 mm s−1, and four amplitudes ranging from 6 to
18 mm. This subspace was chosen to overlap with previous heave-only studies (Quinn
et al. 2014a) and to demonstrate some general features of the efficiency manifold. The
subspace covers Strouhal numbers and Reynolds numbers that are typical of fishes and
bio-inspired propulsors with similar chord lengths to our panel (Lauder, Flammang
& Alben 2012; Shelton, Thornycroft & Lauder 2014). Two smaller subspaces were
chosen to isolate the effects of pitch and phase offset. These subspaces correspond
to conditions near the two optima discovered by the gradient-based optimization
scheme. Here, the heave amplitude, frequency, and flow speed were fixed at their
optimum values, while maximum pitch angle and phase offset were kept variable.
Data were taken at 11 maximum pitch angles ranging from 0◦ to 30◦ and 16 phase
offsets ranging from 0◦ to 337.5◦. The upper bound for maximum pitch angle was a
limitation based on load constraints of the force sensor.

Some optimization studies have used advanced learning algorithms (e.g. SNOPT by
Gill, Murray & Saunders 2005 was used by Izraelevitz & Triantafyllou 2014), but we
chose an archetypal gradient-based algorithm in order to demonstrate the robustness
of the technique. The algorithm is a form of iterated local search based on classical
learning algorithms from Snyman (2005). During each iteration, the inputs are shifted
in the direction of the estimated gradient of the efficiency manifold, and the cycle is
repeated until a minimum step size is reached. Further details of the method are given
in appendix A.

At several sample conditions, PIV was conducted at the midspan. The laser sheet
was generated by a continuous 10 W argon-ion laser (Coherent, Innova 70-C), and
the particles were hollow silver-coated glass beads with an average diameter of 12 µm.
Images were taken at 250 Hz with 1024× 1024 resolution (Photron, FASTCAM 1024
PCI). The velocity field was calculated using Davis 8.1.3, the spatial cross-correlation
algorithm developed by LaVision Inc. (Stanislas et al. 2005). Four passes with 50 %
overlap were conducted on the data: two with 64× 64 pixel windows and two with
24 × 24. The resulting velocity field consisted of 86 × 86 vectors. Phase-averaged
velocity fields were calculated using the same number of cycles as the time-averaged
force data. The PIV images were also used to calculate trailing-edge amplitude, which
was taken to be the average difference between extrema of the trailing-edge position.
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As a control case, a rigid NACA 0012 airfoil (67 mm chord) was run through the
same testing procedure at sample conditions, chosen to overlap with those used for
the flexible panel and with a previous NACA 0012 dataset taken in the same water
channel (Lauder et al. 2011). For these cases, the heave amplitude, maximum pitch
angle, and phase offset were fixed at 13 mm, 10◦, and 90◦, respectively. Data were
taken at 11 frequencies ranging from 1.1 to 2.1 Hz and 11 flow speeds ranging from
30 to 180 mm s−1.

3. Scaling considerations
The five input parameters to the system are the flow speed u, oscillation frequency f ,

heave amplitude a, maximum pitch angle α0, and heave–pitch phase lag φ. In cases
where PIV was conducted, the trailing-edge amplitude a′ is also known. Additional
constants are the density ρ and viscosity µ of the water, and the chord c, span s, and
bending stiffness b of the propulsor. These 11 variables produce eight dimensionless
parameters. One of them, the aspect ratio AR ≡ s/c, is fixed for this experiment at
0.77. Another, the Reynolds number based on the chord, Rec ≡ ρuc/µ, ranges from
5000 to 70 000 in this study, and at these large Reynolds numbers pressure forces are
assumed to dominate over viscous forces so that Rec will not be considered further.
The dimensionless trailing-edge amplitude a′/a is an output of the system and will be
used to verify the location of resonant frequencies.

The remaining five dimensionless parameters provide an alternative description of
the five-dimensional input space over which we will optimize efficiency. First we have
α0 and φ, which are already dimensionless. Next we have the amplitude–chord ratio
a∗≡a/c and the Strouhal number St≡2af /u (a is used as a proxy for the width of the
wake since it is prescribed). The final parameter must incorporate the bending stiffness
of the panel. By introducing an added-mass term into linear beam theory, it can be
estimated that the first eigenfrequency of the fluid–panel system f̂1 is (b/(Mρsc5))1/2,
where M is a constant (see appendix B). We are thus motivated to introduce a second
dimensionless frequency based on this time scale, the ‘flexural frequency’ f ∗ ≡ f /f̂1,
where M will be set to 1 for now (its actual value will be discussed later). Whereas
St compares the actuation frequency to time scales of the incoming flow, f ∗ relates
the actuation frequency to time scales of fluid–structure resonance.

Table 1 compares the range of dimensionless input parameters for several studies of
propulsive flexible panels. Note that φ has been omitted because most studies examine
heave or pitch only. The exceptions are Zhu (2007), where φ was fixed at 90◦, and
this study, where φ ranges from 0◦ to 360◦. We will focus on low heave amplitudes
and high flexibilities (high values of f ∗) because this configuration can excite multiple
resonant modes at modest frequencies (f (Hz)=O(1)).

4. Propulsive efficiency results
Before introducing flexibility, we first consider the rigid airfoil control case. Scaling

arguments based on added mass (e.g. Dewey et al. 2013 and Quinn et al. 2014b)
suggest that for low-amplitude rigid airfoils swimming at high Reynolds numbers
and moderate Strouhal numbers, the time-averaged net thrust τ̄ and power ℘̄ scale
according to

τ̄ ∼ ρsc f 2a2; ℘̄ ∼ ρsc f 2a2u. (4.1a,b)

These scalings demonstrate why η (≡τ̄u/℘̄) is O(1) under typical swimming
conditions, but to explain the variation in the efficiency η, one must turn to potential
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FIGURE 2. Propulsive efficiency as a function of Strouhal number for a pitching and
heaving rigid NACA0012 airfoil. a∗ = 0.19, φ = 90◦.

flow models that include a wake. Such models reveal that efficiency tapers off
with increasing St and drops off sharply when St � 1 (Lighthill 1975). In a real
flow, viscous drag also causes η to become negative below some threshold Strouhal
number. In practice, these trends cause a local maximum in efficiency to occur at
St ≈ 0.2–0.4 for typical swimmers (Taylor, Nudds & Thomas 2003), although the
range may be wider (Eloy 2012). These tendencies have been observed in a variety
of experimental and numerical studies (see e.g. Triantafyllou, Triantafyllou & Yue
(2000) for a review), and were reproduced as means of a control case for the present
study (see figure 2).

4.1. Heave-only motions
We now compare the rigid case with the subspace of heave-only motions (α0= 0) for
our flexible propulsor. With the additional time scale provided by flexibility, both St
and f ∗ play a role in determining efficiency. This effect is illustrated in figure 3 by
contour plots of efficiency over a variety of St and f ∗ values. Moving from low to
high St at a fixed value of f ∗ shows the same sharp rise and slow taper observed in
figure 2. Varying f ∗, however, reveals a multimodal response in efficiency as the fluid–
panel system passes through resonant modes. The peaks are known to correspond to
resonance because the same propulsor was previously shown to exhibit local maxima
in trailing-edge amplitude at these particular frequencies (Quinn et al. 2014a). The
global maxima in efficiency occur when the optimum Strouhal number aligns with
fluid–structure resonance.

The efficiency also increases with amplitude, presumably because the relative
contribution of viscous drag decreases. Alternatively, the same effect can be explained
with actuator disc theory (Anderson et al. 1998). High amplitudes must lead to a
loss of efficiency, but no such effect was observed for the small amplitudes studied
here. The global optimum over all heave-only conditions was found to be η= 0.23 at
St = 0.53, f ∗ = 57, and a∗ = 0.09. However, within experimental error, this condition
was equally efficient as the peak in the other mode where η = 0.21 at St = 0.40,
f ∗ = 27, and a∗ = 0.09. We will refer to these two heave-only optima as A3D and
B3D to signify that the optimization took place over three dimensions. The ratio
between optimum f ∗ values (= 57/27 = 2.11) is strikingly similar to the predictions
of linear beam theory (see appendix B), strongly suggesting that for our propulsive
system added mass plays the most important role in scaling the fluid–structure
resonance.



Maximizing the efficiency of a flexible propulsor 437

20

40

60

20

40

60

0.2 0.6 1.0 0.2 0.6 1.0

0 0.22

(a)

(c)

(b)

(d)

FIGURE 3. (Colour online) Contour plots of propulsive efficiency for heave-only motions:
(a) a∗= 0.03; (b) a∗= 0.05; (c) a∗= 0.07; (d) a∗= 0.09. Labelled circles show conditions
at which PIV was conducted (see § 5).

The heave-only power data did not show the u-dependence expected from (4.1),
presumably because those predictions are based on prescribed kinematics, whereas
our propulsor deforms passively. To try to resolve this issue, we replace u with c f̂1,
a velocity based on the fundamental frequency. Guaranteeing the appropriateness of
this particular replacement would require a separate study of panels with varying size
and stiffness, but the replacement is chosen here because it uses the only remaining
time scale in the problem. The modified scaling predictions can then be written in
dimensionless form as

τ̄ ∗ ∼ ℘̄∗ ∼ (f ∗a∗)2, (4.2)

where thrust and power have been non-dimensionalized using the bending stiffness b
and the first-harmonic frequency f̂1, that is,

τ̄ ∗ ≡ τ̄

b/c2
, ℘̄∗ ≡ ℘̄

bf̂1/c
. (4.3a,b)

For heave-only motions, figure 4 demonstrates that the proposed scaling gives the
right trend for the power over a wide range of frequencies and amplitudes. The thrust,
however, increases more slowly than predicted by the trend at low Strouhal numbers.
At higher Strouhal numbers, added-mass forces dominate over viscous forces, and
thrust approaches the slope predicted by the scaling. The bumps on the line to which
thrust is converging are evidence of resonances, which lead to the local maxima in
efficiency (figure 3). The power shows a better collapse than thrust because it scales
with lateral forces at the leading edge, which are an order of magnitude higher than
the viscous drag. Together, figures 3 and 4 demonstrate that efficiency is multimodal
because of its sensitivity to slight changes in thrust at resonance, but that net thrust
and power still scale predictably in the larger scope of the parameter space.
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FIGURE 4. (Colour online) Dimensionless performance coefficients for heave-only motions.
Log–log scale. (a) Dimensionless net thrust (τ̄ ∗); (b) dimensionless net power (℘̄∗). Bold
circles correspond to conditions where St > 0.6.

4.2. Combined heave and pitch motions
We now consider leading-edge motions that include pitch, that is, where α0 6= 0.
To begin, the gradient-based optimization scheme was used to find the maximum
efficiency conditions. Figure 5(a) shows the algorithm validated in two dimensions
for the heave-only case. Note that u/(c f̂1) was used in place of St for the
optimization – this substitution was chosen to decrease the runtime of the algorithm
by limiting changes in flow speed between steps. The substitution does not affect
the dimensionality of the parameter space, and we will convert back to St values in
subsequent analyses. Figure 5(b) shows a 2D projection of the trajectories through
the 5D state space as the algorithm converges on optimum conditions. The particular
projection was chosen using multi-dimensional scaling (MDS). In this technique, the
Π1–Π2 plane is chosen such that the L2 norm in the plane is most similar to the
L2 norm in the 5D parameter space. In this way, distances in the Π1–Π2 plane are
representative of distances in state space (see e.g. Borg & Groenen (2005) for a full
description of MDS).

The MDS projection illustrates that the optimization converges on two clusters in
state space, and we will refer to the averaged conditions of these clusters as A5D and
B5D. Table 2 shows the conditions at each optimum, as well as the conditions at the
heave-only optima for comparison. The fact that the f ∗ values are relatively unchanged
is evidence that these newly discovered optima are the same resonant modes as those
observed in the heave-only case. This observation is consistent with linear beam theory
in that the boundary conditions for the perturbation component of the solution have
not changed (one end clamped, one end free), and so the eigenfrequencies should
be the same in both cases. The major changes between the two cases are: (i) the
heave-only optima have higher St values, meaning the heave-only propulsors need
to heave faster to achieve the same zero net thrust flow speed; (ii) an equilibrium
amplitude was reached in the trials with pitch (a∗ = 0.07), suggesting that dynamic
stall was a limiting factor in the 5D optimization; and (iii) introducing pitch nearly
doubles the propulsive efficiencies. The errors reported are the standard deviations
in the clusters of optimal design variables to which the procedure converged. These
errors characterize the reproducibility of the procedure and the sensitivity to initial
conditions.
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FIGURE 5. (Colour online) (a) Four gradient-based optimization routines demonstrated on
a 2D subset of the parameter space. a∗= 0.05. Trajectories are superimposed on a contour
plot of propulsive efficiency. Efficiency scaling as in figure 3. (b) A 2D projection of
the 5D trajectories chosen by 15 gradient-based optimization routines; the Π1–Π2 plane
was chosen via multi-dimensional scaling. Outlined circles denote the endpoints of the
trajectories. The two double-outlined circles show projections of the heave-only optima
(A3D and B3D) for reference.

Optimum St f ∗ a∗ α (deg.) φ (deg.) η

A3D 0.40± 0.04 27.0± 0.8 0.09 — — 0.21± 0.03
B3D 0.53± 0.05 56.8± 1.8 0.09 — — 0.23± 0.03
A5D 0.26± 0.04 24.8± 0.7 0.07± 0.01 30 76± 8 0.38± 0.03
B5D 0.33± 0.05 50.8± 1.4 0.07± 0.01 30 96± 10 0.37± 0.03

TABLE 2. Input parameters and efficiencies at optimum conditions for heave-only
motions (A3D and B3D) and heave/pitch motions (A5D and B5D).

To explore the effects of phase offset, we consider two projections onto the φ–α0

plane in the vicinity of A5D and B5D. Figure 6 shows the projections for net thrust
and efficiency, and it demonstrates that introducing pitch is not always advantageous.
For some values of φ, introducing pitch can decrease thrust and efficiency, and can
even push the propulsor into a drag-producing regime.

An important parameter when interpreting these plots is the effective angle of attack
of the leading edge,

αeff = α + arctan
ḣ
u
, (4.4)

which includes the geometric angle of attack and the relative angle of attack caused by
motion perpendicular to the incoming flow. The effective angle of attack is minimized
when φ = 90◦ and maximized when φ = 270◦, and in general lower values have been
associated with higher efficiencies (Kang et al. 2013). The trailing-edge amplitude,
however, is maximized near φ = 0◦ and minimized near φ = 180◦, and the higher
trailing-edge amplitudes at low values of φ can increase thrust and therefore shift the
phase for optimum efficiency to values less than 90◦. This effect has been observed for
rigid airfoils (Anderson et al. 1998) and is consistent with the thrusts and efficiencies
found near A5D (figure 6a,b). The phase at B5D, however, is indistinguishable from
90◦ within the experimental error. Conditions near B5D have higher αeff values than
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FIGURE 6. (Colour online) Contour plots of dimensionless net thrust and efficiency in
the α0–φ plane: (a) net thrust near A5D; (b) efficiency near A5D; (c) net thrust near B5D;
(d) efficiency near B5D. Labelled circles show conditions at which PIV was conducted
(see § 5).

those near A5D, and it appears that this feature makes minimizing αeff more important
than maximizing trailing-edge amplitude near B5D.

5. Flow field results
To investigate the origins of the efficiency maxima, we turn to PIV images of the

flow surrounding the panel. All of the images shown are phase-averaged snapshots
of vorticity at the moment when the leading edge passes the y-axis headed toward
negative y-values since this point best distinguishes the various cases. Figure 7 shows
the flow field for optimum conditions A3D and A5D. Both flows are characterized by
a thin layer of vorticity along the panel and a 2S reverse von Kármán street in the
wake. The efficiency measurements, however, showed that A5D demonstrates nearly
double the efficiency of A3D. A primary difference between the two cases is the
presence of a leading-edge vortex in A3D (figure 7a). It appears that by decreasing
the effective angle of attack, the non-zero pitch angle reduces leading-edge separation.
Introducing pitch also leads to a lower Strouhal number at optimum conditions
(St= 0.26 compared to 0.40), which is known to be in the range of Strouhal numbers
that optimize wake stability (Triantafyllou, Triantafyllou & Grosenbaugh 1993). This
feature is reflected by the greater coherence of the vortex street for A5D (figure 7b).

To examine the effect of Strouhal number more closely, we consider perturbations
from an optimum condition, this time from B3D. Figure 8 shows the flow field at B3D
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FIGURE 7. (Colour online) Phase-averaged density plots of vorticity: (a) first optimum
condition in the heave-only subspace (A3D), St= 0.40, f ∗ = 27.0, a∗ = 0.09; (b) optimum
condition in the full parameter space (A5D), St = 0.26, f ∗ = 24.8, a∗ = 0.07, α = 30◦,
φ = 76◦. Labels correspond to labelled circles in figures 3 and 6.
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FIGURE 8. (Colour online) Phase-averaged density plots of vorticity: (a) second
optimum condition in the heave-only subspace (B3D), St = 0.53, f ∗ = 56.8, a∗ = 0.09;
(b) non-optimum St conditions near B3D, St = 0.39 for St− and St = 0.86 for St+;
(c) non-optimum f ∗ conditions near B3D, f ∗ = 44.6 for f ∗− and f ∗ = 61.9 for f ∗+. All
other variables were held at their optimum values. Labels correspond to labelled circles
in figure 3. Vorticity scaling as in figure 7.

as well as at non-optimal values of St and f ∗. Strouhal numbers less than and greater
than optimal will be referred to as St− and St+, respectively, and other parameters will
follow the same convention. When St is lower than optimal (St−, figure 8b), the wave
along the body is too slow to keep pace with the incoming flow, and a large vortex
detaches from the body just downstream of the first peak in lateral position. At St+,
no separation occurs along the body, but the vortices in the wake break down farther
upstream. The thrust and power data confirm that these conditions are associated with
lower efficiencies.
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Variations in f ∗ lead to less significant differences in the flow field, as seen in
figure 8(c). The f ∗− case shows the beginnings of a transition to a 2P wake, though
this may be due more to the lower flow speed required to keep St constant when
decreasing f ∗. The more significant difference is believed to be the lower trailing-edge
amplitudes observed at non-optimal f ∗ values. Compared with a′/a= 1.68 at B3D, the
low and high f ∗ conditions give a′/a = 1.66 and 1.52, respectively. At the same f ∗

values but with the flow speed fixed at its respective optimal value, the decreases
were more pronounced, with a′/a = 1.63 and 1.51. An error analysis of the edge
tracking technique suggests that ±0.02 is a proper confidence interval for a′/a, so
these decreases are significant. The zero in ∂a′/∂f ∗ at optimal conditions confirms
that f ∗ is associated with resonance, and that the efficiency is locally maximized at
resonant frequencies of the fluid–structure system.

Since the efficiency increases with a∗ through the full space of a∗ values
(0.03–0.09), it may be more revealing to consider the effects of varying a∗ around
B5D, where the optimum a∗ value was 0.07. Figure 9 shows the flow field at
non-optimal values of a∗, as well as at non-optimal values of φ and α. For the a∗

perturbations, flow speed was kept constant instead of St, because higher flow speeds
reduce the amplitude along the body and interfere with conclusions about amplitude
effects. In the case of a∗+, amplitudes higher than optimal lead to detached flow
along the body. Presumably the lateral pressure gradients become sufficiently adverse
for the boundary layer to separate from the panel. The a∗− case shows no such
separation, while the optimal case shows the beginnings of separation. The efficiency
data indicated that in this low-amplitude regime, higher amplitudes are associated
with higher efficiencies. It appears, therefore, that the efficiency is optimized when
the amplitude is as high as possible but low enough for the flow to stay attached
along the body.

Changing φ has severe consequences for the surrounding flow field (figure 9c). In
the φ− condition, the effective angle of attack is approximately twice what it is in
the optimum condition, and the resulting periodic separation is evident to the side
of the panel. In addition, heave and pitch are working against each other such that
a′/a drops to 0.99 from 1.55 at B5D. The result is a severe drop-off in efficiency
going counterclockwise from 90◦ in figure 6(d). In the φ+ condition, heave and pitch
are working constructively, and a′/a increases to 2.01. This high amplitude helps
to explain the large thrust seen at low values of φ in figure 6(c). As figure 6(d)
shows, however, the higher effective angles of attack still cause lower efficiencies as
φ increases beyond 90◦, albeit at a slower rate than when φ is decreased. The result
is that the optimum φ remains at 90◦.

Finally, we consider variations in maximum pitch angle α0 (figure 9d). Since the
pitch angle converged to the boundary of the range considered (30◦), we use 15◦
(α−) and 0◦ (α−−) as perturbed conditions. Both cases lead to increased separation
along the panel, which is consistent with the fact that the effective angle of attack
is increasing. Because α−− is a heave-only case, it can also be referenced on the
contour plots in figure 3. From this figure, we understand that α−− corresponds to
a heave-only motion with a suboptimal Strouhal number (note the similarity with the
St− case in figure 8b). With this in mind, it would be misleading to say lower values
of α0 necessarily lead to separated flow along the body. It is more precise to say
that under these conditions, maintaining attached flow while decreasing α0 requires
a higher Strouhal number, and this higher Strouhal number leads to efficiencies that
are globally non-optimal.
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FIGURE 9. (Colour online) Phase-averaged density plots of vorticity: (a) second optimum
in the full parameter space (B5D), St = 0.33, f ∗ = 50.8, a∗ = 0.07, α = 30◦, φ =
96◦; (b) non-optimum a∗ conditions near B5D, a∗ = 0.05 for a∗− and a∗ = 0.09 for
a∗+; (c) non-optimum φ conditions near B5D, φ = 41◦ for φ− and φ = 141◦ for φ+;
(d) non-optimum α conditions near B5D, α = 15◦ for α− and α = 0◦ for α−−. Labels
correspond to labelled circles in figure 6. Vorticity scaling as in figure 7.

6. Conclusions
A combination of grid search and gradient-based optimization was used to explore

the state space of flexible panels heaved and pitched at the leading edge. Direct force
measurements and PIV suggest that propulsive efficiency is globally optimized when
the following criteria are met.

(i) The Strouhal number (St≡ 2a f /u) is high enough that the flow does not separate
over peaks and troughs in the panel waveform, but low enough that the vortex
cores in the wake remain tightly packed and coherent. For the particular propulsor
considered, the range of optimal Strouhal numbers was between 0.40 and 0.53 for
heave-only motions and between 0.26 and 0.33 for motions with heave and pitch.

(ii) The flexural frequency (f ∗≡ f (ρsc5/b)1/2) is one of a set of resonant frequencies
of the fluid–structure system. The panel considered here passed through two
resonant modes over the frequencies considered, so f ∗ showed two optimal
values: 27.0 and 56.8 (heave-only motions) or 24.8 and 50.8 (heave and pitch
motions). The ratio of these resonant frequencies can be predicted with linear
beam theory (appendix B).

(iii) The heave-to-chord ratio (a∗ ≡ a/c) is as high as possible, so long as the
boundary layer along the body stays attached. Higher a∗ values lead to a smaller
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relative contribution of viscous drag. The optimum a∗ value was beyond the
maximum considered (0.09) for heave-only motions, but converged to 0.07 for
heave and pitch motions.

(iv) The maximum pitch angle (α0) is such that the effective angle of attack is
minimized, thereby reducing separation at the leading edge. At high enough
values of α, pitch increases the effective angle of attack, but only pitch angles
up to 30◦ were considered here, and the optimum efficiency was found at this
maximum value.

(v) The phase lag (φ) between pitch and heave is 90◦, or in some cases just less
than 90◦. The effective angle of attack is minimized at φ = 90◦, but for one of
the optima discovered here, the higher thrust attainable at lower φ values brought
the optimum φ for efficiency to 76◦.

The multi-dimensionality and multi-modality of the efficiency space reveals that
flexible propulsors are prime candidates for optimization routines. This study shows
that even the most archetypal gradient-based optimization can lead to significant
improvements in the efficiency of a flexible panel. Optimizing the pitch and phase,
for example, produced nearly double the best efficiencies of the heave-only case
(0.38 compared with 0.23). The same routine could be applied to more complex
three-dimensional propulsors with optimized planforms and an arbitrary number of
kinematic inputs. Used in this way, experimental optimization would be a powerful
tool for the design of flexible underwater vehicles.
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Appendix A. Gradient-based optimization routine
Let P be a state space spanning n dimensions, and let ei be a unit vector in

the ith dimension. The goal of the search routine is to discover the value of p ∈P
which maximizes η(p). Because the efficiency manifolds are assumed to be smooth,
a gradient-based or ‘hill-climbing’ routine was chosen, where the proposed solution
was iteratively shifted in the estimated direction of ∂η/∂ei. To account for multiple
local maxima, the routine was run as a series of local searches. Initial conditions were
chosen to ensure a variety of relative strengths between initial parameters (table 3).

At each iteration of the routine, five steps are taken in each dimension of P: two
‘small steps’ (defined below), two ‘large steps’, and one ‘null step’ (a step size of
zero). After all dimensions have been considered, the steps that maximized efficiency
are applied to the proposed solution. If a small step led to higher efficiency, the step
size in that dimension is decreased; if a large step led to higher efficiency, the step
size in that dimension is increased. This variable step size allows the search procedure
to decelerate/accelerate and reduces the search time considerably.

The step sizes can be written as an n × 5 matrix ∆, where the rows represent
step sizes for f (Hz), u (mm s−1), a (mm), α0 sinφ (deg.), and α0 cosφ (deg.).
Note that maximum pitch angle and phase offset were converted to rectilinear
coordinates in the α0–φ plane. This avoids solutions getting stuck at α0 = 0,
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Trial f (Hz) u (mm s−1) a (mm) α0 sinφ (deg.) α0 cosφ (deg.)

1 0.7 180 5.9 6.4 −3.0
2 0.8 220 7.8 −14.5 10.7
3 1.0 130 7.8 6.0 12.8
4 1.0 130 15.6 −5.1 14.1
5 1.2 40 15.6 0 0
6 1.4 180 11.7 −19.0 −12.2
7 1.5 30 15.6 −5.1 14.1
8 1.5 90 9.8 5.1 −14.1
9 1.9 90 9.8 5.1 −14.1

10 2.0 150 9.8 −5.1 14.1
11 2.0 150 9.8 5.1 −14.1
12 2.0 150 9.8 14.1 5.1
13 2.0 150 9.8 −14.1 −5.1
14 2.4 40 7.8 −14.1 −5.1
15 2.5 220 5.9 0 0

TABLE 3. Initial positions in state space for the 15 optimization trials that converged on
optima A5D and B5D.

an error that occurs because adding pitch can decrease efficiency when done
over certain ranges of phase offset. The starting value of ∆ was chosen to be
〈0.1, 10, 2, 5, 5〉⊗ 〈0,−1/2, 1/2,−2, 2〉. Note the small steps (corresponding to entries
with ±1/2) and large steps (corresponding to entries with ±2) in each dimension.
Convergence was found to be stable above step sizes of ∆0/4, so this value was used
for the termination criterion of the routine. All trials reached this termination criterion
in less than 20 steps. The details of the routine are given in pseudocode below:

Pseudocode Description

CHOOSE p ∈P . Initialize state space vector
LET ∆=∆0. Initialize step size matrix
WHILE ∆>∆0/4 While any step sizes are above the threshold

FOR i= 1 : n Loop through state space dimensions
LET ηMAX =−∞. Initialize max efficiency
FOR j= 1 : 5 Loop through step sizes

IF η(p+∆ijei) > ηMAX If new condition is more efficient
LET ηMAX = η(p+∆ijei). Set new standard for best efficiency
LET j′ = j. Record which step size maximized efficiency

LET p= p+∆ij′ei Take the step that maximized efficiency
IF j′ 6 3 If ‘null step’ or ‘small step’ was best

LET ∆i =∆i/2. Decrease step sizes
ELSE

LET ∆i = 2∆i. Increase step sizes

Appendix B. Linear beam theory with added mass
Small deflections d of a homogeneous panel with constant cross-section can be

modelled by the linear beam equation (Weaver, Timoshenko & Young 1990),

ρpδs
∂2d
∂t2
+ EI

∂4d
∂x4
=Fext, (B 1)
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where ρp is the density of the panel and Fext is the external force per unit length.
Following Ramananarivo, Godoy-Diana & Thiria (2013) and Quinn et al. (2014a),
we replace the mass per length of the panel, ρpδs, with an effective mass per
length, Mρsc, where M is a constant to be fitted experimentally. This substitution
incorporates added-mass forces into (B 1), which can be rewritten in dimensionless
form as

f ∗2 ∂
2D∗

∂T∗2 +
∂4D∗

∂X∗4 =F ∗
ext, (B 2)

where D∗≡ d/a, X∗≡ x/c, T∗≡ t f , and F ∗
ext ≡Fextc4/(ba). In this modified equation,

Fext represents any forces in addition to added mass, such as internal damping or
viscous drag.

A special case to consider, F ∗
ext= 0, represents conditions where added-mass forces

dominate the dynamics of the flow. Along with our four boundary conditions, one
end fixed (D∗(0) = 0, D∗

′
(0) = 0) and one end free (D∗′′(1) = 0, D∗

′′′
(1) = 0), the

homogeneous case of (B 2) has closed-form eigenmodes. The eigenvalues ˆf ∗n of the
modes are determined implicitly as solutions to

cos
√
ˆf ∗n cosh

√
ˆf ∗n =−1. (B 3)

In each mode, the actual eigenfrequency is fn= ˆf ∗n (b/(Mρsc5))1/2. A modal projection
analysis of the panel in the current study shows that modes 3 and 4 are excited over
the frequency range considered here (Quinn et al. 2014a). The theoretical eigenvalues
are ˆf ∗3 ≈ 62 and ˆf ∗4 ≈ 121, compared with the measured values of ˆf ∗3 ≈ 26 and ˆf ∗4 ≈ 53.
The linear model over-predicts the eigenvalues, but the ratio between the two flexural
frequencies, ˆf ∗4 / ˆf ∗3 , is consistent with the model, differing from the predicted ratio by
less than 5 %. This agreement implies that a simple added-mass constant can be fitted
to the propulsor, after which the theory can predict additional eigenfrequencies. For
example, M = 1 was chosen above to facilitate comparison with other studies, but
choosing M = 0.14 brings both measured eigenfrequencies to within 4 % of their
modelled values.
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