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In this paper we consider the effects of adding high-frequency, low-amplitude
perturbations to a smooth sinusoidal base input signal for a heaving panel in a closed loop
flow tank. Specifically, 0.1 cm amplitude sinusoidal perturbation waves with frequency fp

ranging from 0.5 to 13.0 Hz are added to 1 cm heave sinusoids with base frequencies,
fb, ranging from 0.5 to 3.0 Hz. Two thin foils with different flexural stiffness are heaved
with the combined input signals in addition to both the high-heave and low-heave signals
independently. In all cases, the foils are heaved in a recirculating water channel with an
incoming velocity of Vx = 10 cm/s and a Reynolds number based on the chord length
of Re = 17 300. Results demonstrate that perturbations increase the net axial force, in the
streamwise direction, in most cases tested (with the exception of some poor performing
flexible foil cases). Most significantly, for a base frequency of 1 Hz, perturbations at 9 Hz
result in a 780.7% increase in net streamwise force production. Generally, the higher the
perturbation frequency, fp the more axial force generated. However, for the stiffer foil, a
clear peak in net force exists at fp = 9 Hz, regardless of the base frequency. For the stiffer
foil, swimming efficiency at a 1 Hz flapping frequency is increased dramatically with the
addition of a perturbation, with reduced efficiency increases at higher flapping frequencies.
Likewise, for the flexible foil, swimming efficiency gains are greatest at the lower flapping
frequencies. Perturbations alter the wake structure by increasing the vorticity magnitude
and increasing the vortex shedding frequency; i.e., more, stronger vortices are produced in
each flapping cycle.

DOI: 10.1103/PhysRevFluids.2.023101

I. INTRODUCTION

The remarkable locomotor capability of fishes, the result of over 500 million years of evolution,
has stimulated a wide variety of research on aquatic propulsion. Fish excel at both steady swimming
and maneuvering and produce wavelike motions of their fins and body to generate thrust. Both fin
and body deformation during locomotion can involve the production of complex waveforms, and
flexibility is a key design feature of fish fins and body. It is thus not surprising that fish locomotion
has been used as inspiration for understanding the fundamental physics of unsteady motion and to
inspire novel designs for propulsive underwater systems [1–4].
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Experiments on the kinematics and hydrodynamics of freely swimming fishes have involved
measuring body and fin waveforms and correlating these deformations with wake flow patterns.
The influence of flexibility on the hydrodynamics of swimming has been investigated for a range
of experimental and computational systems [5–8]. One investigative method is to use reduced-order
physical models, such as pitching and/or heaving hydrofoils [9–12]. Typically, a smooth, periodic,
input signal is used to control the leading edge of foil motion in experiments that explore fundamental
factors (aspect ratio [13], shape [14], flexibility [15], etc.) in swimming performance.

However, there are two reasons to believe that use of simple sinusoidal input motions can be
improved, and that such relatively simple control signals do not accurately represent the mechanism
by which motor output is generated in many biological systems. First, prior research on patterns
of fin and body deformation in freely swimming fishes has demonstrated that complex waveforms
are generated during propulsion, and that kinematic deformation may involve multiple waves of
different frequency and amplitude on the fins [6,16]. Body waveforms may also possess a number
of dominant frequency components [17,18].

Second, the generation of the control signal in biological locomotor systems typically involves
the combination of a base output signal and a modulatory signal produced by sensory inputs
of various kinds [19–22]. The control of biological locomotion thus involves neuromechanical
interactions in which the final output control signal has resulted from multiple inputs that include
modulation of a pattern-generated base program. Taking inspiration from this recent research in
the neuromechanics of locomotion, the purpose of this paper is to demonstrate that it is profitable
to investigate more complex control signals for reduced-order physical models and begin to move
beyond single sinusoidal inputs for swimming flexible panels. To our knowledge, previous studies of
locomotion using physical models have not used more complex driving waveforms that are likely to
reflect at least some of the complexity of biological inputs to the locomotor system. We believe that
study of more complex input waveforms to locomotor structures and their effect on force production
and swimming efficiency represents an intriguing area for research in aquatic propulsion and can
lead to unexpected effects on the performance and efficiency of swimming systems. Thus, we focus
in this paper on the impact of perturbed input motions on swimming performance in a simple foil
model locomotor system.

Previous research using simple physical models to understand aquatic propulsion has devoted
considerable attention to wake structures produced during locomotion. Typically, wakes are
characterized by the nomenclature of Williamson and Roshko [23]. They found wake structures
downstream of an oscillating cylinder were formed from vortices shedding from the body every
half cycle, in one of two ways: either as a single vortex (2S) or as a same sign pair (2P). In the
2S wake, a starting-stopping vortex is created when the cylinder reaches the maximum amplitude
of its oscillation and changes direction. That vortex moves into the wake as a single entity and is
convected downstream. One half cycle later, as the cylinder changes direction again, it creates a
starting-stopping vortex with the opposite direction of rotation, shed as before. If this cylinder forms
a classic von Kármán vortex street, it produces drag. However, if the unsteady oscillations produce
a wake structure that is a reverse von Kármán street, it will produce a positive streamwise force.
In a reverse von Kármán street, the vortices induce a velocity in the same direction as the mean flow.
A third 2S scenario occurs when the body drag of the cylinder is matched by the thrust produced by
unsteady motion. In this case, the 2S structure will produce no net thrust. Starting-stopping vortices,
however, do not always shed as one distinct entity. When this happens, we see a common variation
of the 2S structure known as 2P. In 2P wakes, the starting-stopping vortex is split into two distinct
vortices (the primary and secondary vortices) with individual cores. The primary vortex stays on the
side of the wake in which it is shed, while the secondary vortex is convected to the opposite side of
the wake, forming a pair with the primary vortex from the next cycle.

Although biological oscillators are ubiquitous in nature, how these systems respond to small,
destabilizing perturbations is relatively unclear, and the effect of more complex input oscillations
on locomotor thrust, efficiency, and wake structure is unknown. Hover et al. [24] investigated the
effect of input shape with relation to the relative angle of attack of a flapping foil. They found
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TABLE I. Foil parameters.

Foil E (GPa) δ (mm) EI (Nm2)

Flexible 1.9 0.1 3.3 × 10−5

Stiffer 4.5 0.5 9.9 × 10−4

that the input signal can significantly effect performance; a cosine wave is most efficient while the
sawtooth produces the most force. While Hover et al. and others did consider the shape of the input
with regard to swimming performance [24–27], they did not consider the effect of a single, small
perturbation on a smooth signal.

Sensory and mechanical perturbations to oscillatory motion may be important for quantifying the
underlying neuromechanical control mechanisms that enable locomotion in animals [28]. Intrinsic
neuromuscular variability, complex changes in flexural stiffness along the body, and complex fluid-
structure interactions in biological materials make input-output mapping difficult for systems such
as undulating swimmers. In this study we focus on the effect of input perturbations on streamwise
force generation and swimming efficiency of simple heaving panels of two flexural stiffnesses and
on characterizing wake structures produced as input perturbations change. These data show how a
simple model system in which input perturbations can be systematically added to a control signal
can be used to understand the effects of biological oscillatory inputs and to improve current control
systems for unsteady propulsors.

II. METHODS

We moved two flexible foils (or panels) of different stiffness over a range of input motions by
oscillating the leading edge of the panel in a heave motion following the protocols and test flow
tank used in our previous work on swimming flexible panels [29–32]. The two plastic foils were cut
from a collection of plastic shimstock (ARTUS Corp.). The relatively flexible foil (tan color in the
shimstock collection) has a stiffness of EI = 3.3 × 10−5 Nm2, and the stiffer foil (yellow color in
the shimstock collection) a stiffness of EI = 9.9 × 10−4 Nm2 (see Table I), where EI is defined as
EI = Esδ3[12(1 − ν2)] where E is the modulus of elasticity of the foil material, s is the foil span,
δ is the foil thickness, and ν is Poisson ratio, taken to be 0.3 for both foils. The 5:3 aspect ratio
panels have chord lengths (in the direction of flow) of 18 cm and span widths of 10.8 cm. Foils were
effectively two-dimensional, being thin relative to their length and chord, with foil thickness equal
to δ = 0.1 mm and δ = 0.5 mm for the flexible and stiffer materials, respectively. The two foils were
chosen (both shape and stiffness) because of the availability of comparable data for smooth signals.
See Fig. 1 for a schematic of the foil shape. A constant flow speed of U = 10 cm/s was used for
each experiment (this is approximately the free swimming speed of the stiffer panel heaving about
its leading edge at 1 Hz with a 1 cm heave amplitude). Reynolds number (Re = ULρ

μ
, where ρ and

μ are the fluid density and viscosity, respectively) of each experiment was 17 300.

A. Input perturbation

We performed both base signal and perturbation signal frequency sweeps: base signals had 10 mm
heave amplitude and frequencies ranging from 0.5 to 3.0 Hz in 0.25 Hz increments. Perturbation
signals had 1 mm heave amplitude and frequencies ranging from 0.5 to 13 Hz. A smooth sinusoid
(“base” signal) is overlaid with high-frequency, low-amplitude perturbations as the input signal for
a heaving panel in a recirculating flow tank. Specifically, the perturbed inputs were generated by
adding a 1 cm heave amplitude (A = 1 cm) base sinusoid with frequencies (fb) ranging from 0.5 to
3.0 Hz, to a 0.1 cm heave perturbation signal with frequencies (fp) ranging from 0.5 to 13 Hz. That
is, a smooth base signal is overlaid with an oscillatory, low-heave amplitude but higher frequency
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FIG. 1. A diagram showing chord and span of the heaved foil. The function that controls heave motion of
the leading edge is shown in the upper left. Note that the base frequency, fb ranges from 0.5 to 3.0 Hz, and fp

is the perturbation frequency and ranges from 0 (no perturbation) to 13 Hz. Vx is the incoming flow velocity of
10 cm/s for all runs.

“perturbation” (see Fig. 2) to generate a driving signal, I (t), according to the following equation:

I (t) = A sin(2πfbt) + 0.1A sin(2πfpt + φ), (1)

where in addition to already defined variables, t is time and φ is a phase shift between the two
signals used to avoid overloading the driving motor. This value was set to φ = π/2. It is noted that,
for high values of fp, the velocity of the perturbation (0.1A ∗ fp) is the same order as the velocity
of the base signal.

A 1 cm heave was chosen as the base input to allow comparison to previous work [15]. For
simplicity, we considered only pure heave (i.e., no pitch). The range of frequencies chosen (for both

FIG. 2. The base, smooth, input is a sinusoid with amplitude A and period T shown in the top panel. An
example perturbation signal is shown in the middle panel. This example has a period of T/9 and an amplitude
of A/10. In the experiments, the perturbation frequency ranged, fp , from 1–25 times the input frequency, fb.
The experiments were carried out with the combined “perturbed signal” shown in the bottom panel, as well as
separately with the smooth input signal and the higher frequency perturbation alone.
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FIG. 3. The top panels (above the red line) show the stiffer foil (EI = 9.9 × 10−4) with a smooth 1 cm
heave input with a base frequency of fb = 3 Hz and no perturbation (a) and the same base frequency with
a 0.1 cm perturbation at a frequency of fp = 9 Hz (b). Below the red line, the panels show the flexible foil
(EI = 3.3 × 10−5) undulating with a smooth input, fb = 0.5 Hz base frequency, 1 cm heave amplitude (c)
and the same foil heaving with a perturbed input generated by adding a fp = 12.5 Hz, 0.1 cm heave amplitude
perturbation to the 0.5 Hz smooth motion (d). One cycle of the base signal is shown in each row, and the images
are taken from raw PIV data.

fb and fp) provides a large parameter space, while limiting us to the general range of midsized
fish motions. For this study, only smooth signals were considered (as opposed to those generated
by band-limited noise signals), although it is expected that more complicated perturbations will be
explored in the future.

Both were moved in three ways: (1) using the high-heave base frequencies only, (2) using the
low-heave and high-frequency input perturbation only, and (3) with the combined signals referred
to as a “perturbed input” I (t). One cycle of motion for the flexible foil is shown for both a smooth,
unperturbed signal and a perturbed input in Fig. 3.

B. Heaving foil apparatus

During experimental trials, foils were anchored above the flowtank and secured to a thin carbon
fiber rod at the leading edge. The foil was submerged in the recirculating flow tank. A stepper motor
on the other end of the rod, above the flow tank, heaved the foil with a user specified input motion.
The flow speed was prescribed by the user. The motor and flow speed were controlled by LabVIEW
graphical user interfaces (GUIs). An ATI Nano-17 six-axis force/torque sensor (ATI Inc., Nano-17
SI-50-0.5) was attached to the foil shaft to allow three force and torque measurements in an xyz

coordinate system; see Fig. 1. The x direction is aimed downstream, z points vertically up the shaft,
and y points in the direction of heave motion (normal to flow).

Foils were attached to a carbon fiber supporting element (Fig. 1) that bolts to the leading foil
edge and attaches to the ATI transducer above. A motor mounted above the flow tank enabled lateral
motion of the foil in normal to free-stream flow, and a LabVIEW program was used to implement
the control protocol. Position data of the leading edge were obtained from an encoder on the heave
motor throughout each experimental trial. LabVIEW programs were used to collect the force and
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torque data on the supporting shaft, and then stored locally for processing. Data were processed and
plotted using iPython.

C. Measurements

We measured both the forces generated by the heaving panel and, for some cases, the resulting
flow field.

1. Streamwise force and efficiency

Force and torque data from the ATI transducer were used to calculate both the mean axial
(streamwise) force coefficient and efficiency for each tested case as in Refs. [15,31–33]. The mean
force coefficient, CF , for each trial was calculated as 2 times the average streamwise force per cycle
(Fx mean) divided by fluid density times swimming velocity squared, times the foil surface area
(note that Fx is the measured force in the streamwise direction, i.e., the propulsive force minus the
drag of the foil). Thus,

CF = Fx

1/2ρAV 2
x

. (2)

Swimming efficiency was calculated as the force coefficient divided by the power coefficient [33]:

η = FxVx

P
. (3)

Power, P , was calculated as force (Fy , measured directly) times the velocity of heave motion, and
mean values of each over a flapping cycle allowed calculation of the power coefficient. Foils were
moved in heave only at the leading edge, and no rotational (pitch) motions were introduced.

2. Flow visualization

Wake analysis for selected cases was performed using particle image velocimetry (PIV) as
in Refs. [15,30,32]. A Coherent 10 W continuous-wave argon-ion laser illuminated small plastic
particles (10–25 μm) added to the flow tank water. Movement of particles near the flapping foil
surface and in the wake during a series of two or three flapping cycles was visualized using Photron
PCI-1024 high-speed cameras with a resolution of 1024 × 1024 pixels operating at 1000 fps. Fluid
velocity and vorticity fields were calculated using DaVis software (v. 8.1.3, LaVision Inc.). A
LabVIEW trigger pulse allowed simultaneous acquisition of force and torque measurements during
each trial.

III. RESULTS

By measuring both the forces generated by, and the flow fields surrounding, two heaving foils of
different flexibility, a complete picture of a heaving foil with a perturbed input begins to emerge. In
this section we present force, efficiency, and velocity data for the 132 different I (t) inputs tested.

A. Force measurements

The force coefficient [Eq. (2)] was measured for two foils each with 11 base frequencies and
two to 13 perturbation frequencies, resulting in 132 total flapping inputs. The streamwise force, Fx ,
was measured directly (along with the lift, lateral forces, and associated torques) and is the total
thrust for one cycle averaged over two cycles, as described in Sec. II C 1. ρ is the density of water,
A = 194.4 cm2 is the surface area of the panel, and Vx = 10 cm/s is the incoming flow velocity. The
quantity 1/2ρAV 2

x is constant for all cases and equal to 0.0972 N. In Fig. 4, 132 axial force values
are plotted. For every case, the presence of perturbation on the input heave signal increased the
streamwise force produced by the foil. Note that Fig. 4 is presented in dimensional form, because
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FIG. 4. The axial force, Fx , is plotted against perturbation frequency, fp , for both the stiffer panel (left)
and the flexible panel (right). All 11 base frequencies, fb, are shown for both panels. Note that applying a
perturbation always increases Fx for every case tested, and, for the stiffer foil, a distinct peak in performance
exists around fp = 7 − 9 Hz.

the peak in performance occurs at the dimensional perturbation frequency of fp = 9 Hz for the
stiffer foil, as discussed in Sec. IV.

For the stiffer foil, shown in the left side of Fig. 4, a peak in performance exists when a
perturbation frequency of fp = 7–9 Hz is applied to the base frequency, regardless of the value
of fb. This observation is clearly true for base frequencies up to 2 Hz. When fb is above 2 Hz,
mechanical limitations of the driving motor prevent the collection of enough data to confirm the
existence and location of this peak. It is unclear in the present study if this is related to a mechanical
resonance of the foil [15,34]. However, the reliability of its location, at approximately 9 Hz, suggests
this may be true. The lack of a peak in the right panel of Fig. 4 may be a consequence of the more
flexible foil having a mechanical resonance at a higher frequency.

For the flexible panel, the streamwise force value was still increasing when the highest fp was
tested (fp = 13). It is possible that a peak similar to that seen on the stiffer foil exists at a higher
perturbation frequency but could not be reached because of the physical limitations of the motors.
However, the addition of the perturbation can greatly increase the forward force production of
these panels. For example, the flexible foil with a 1 cm sinusoidal heave at 1/2 Hz has a Fx =
−0.037 N. The negative sign indicates that the free swimming speed would be less than the applied
incoming velocity Vx = 10 cm/s. The coefficient of force slowly increases, but remains negative,
until fp = 8.5 Hz, when it reaches 0.003 N. By the point that a 12.5 Hz perturbation is applied,
Fx = 0.034 N, indicating a net positive streamwise force (the free swimming speed would be greater
than Vx), and demonstrating about an 800% increase in force production through the application of a
high-frequency, low-amplitude perturbation. For the stiffer foil with no perturbation added at a heave
frequency of 1 Hz, the axial force is near zero, indicating that the foil is self-propelling (Fig. 4).

If we consider a few select cases, specifically base frequencies of fb = 1, 2, and 3 Hz with the
associated perturbations, we can more easily compare the performance of the stiffer and flexible foils
(see Fig. 5). While the flexible foil always produces less force than the stiffer one, there are some
combinations of base and perturbation frequencies in which its performance is nearly as strong. For
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FIG. 5. The axial force (CF = Fx

1/2ρAV 2
x

) is plotted for both the stiffer (purple, EI = 9.9 × 10−4) and flexible

(green, EI = 3.3 × 10−5) foils for base frequencies of fb = 1, 2, and 3 Hz and all associated perturbation
frequencies.

example, when fb = 1 Hz and fp = 13 Hz, the performance of the flexible foil is still improving,
while the stiffer foil has peaked. Note that for some cases in the left panel of Fig. 5, some of the
values for CF are very small: so small that the value registers as zero on this scale, indicating that
the panel is approximately at its free swimming condition. Additionally, recall that when fb = 1 Hz,
the flexible foil produces negative or zero streamwise force at this Vx until fp is above 9 Hz.

As mentioned above, we did measure the axial force of the foils with the perturbation input only,
i.e., only a single sinusoid with heave amplitude of 0.1 cm. In all of the cases, the perturbation input
alone, measured at the same Reynolds number (Vx = 10 cm/s), was drag producing. The measured
force, Fx , was negative. Thus, these results, that the streamwise force increases when a perturbation is
added to a base signal, are not simply the result of adding the effects of the two separate signals. That
would cause a decrease in force production with perturbation, the opposite of what is seen. However,
given the nonlinear nature of the Navier-Stokes equations, it is not expected that we could simply add
the solutions to the two inputs measured separately to achieve the solution to the combined input.

The force coefficient tends to increase with increasing perturbation frequency, and it may not
come at the cost of propulsive efficiency, η. Figure 6 shows the efficiency for the same cases as in
Fig. 5. We define propulsive efficiency for thrust producing conditions, following Ref. [33], as the
thrust coefficient divided by the power coefficient [Eq. (3)]. We note that when the velocity, Vx ,
is fixed, as it is in this study, there is the potential for negative streamwise force, as seen in this
study. In those cases, propulsive efficiency will be negative and, thus, is not particularly meaningful.
However, we are choosing to present those cases as they highlight the improvement in performance
that perturbations can cause. Additionally, a CF of zero (indicating steady swimming) will have an
efficiency of zero regardless of the power input. Finally, unlike force coefficients [Eq. (2)], where the
scaling factor 1/2ρAV 2

x is a constant across cases, the denominator of Eq. (3) differs as the power
to the motor P is not constant and is measured for each I (t) tested.

For the stiffer foil with a base frequency of fb = 1 Hz, there is an initial dramatic jump in
efficiency when a perturbation is added, although the increase in CF is comparatively modest. As fp

is increased, the efficiency remains higher than for the base frequency alone, but it always decreases
below the value of the previous fp. For higher base frequencies, fb = 2 Hz and fb = 3 Hz, the
initial increase in efficiency is more modest (40.2% and 18.0%, respectively). The efficiency then
decreases modestly as the perturbation frequency is increased.

The propulsive efficiency is more constant for the flexible foil, neglecting the somewhat
unphysical, negative propulsive efficiencies when the foil is performing very poorly. Significantly,
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FIG. 6. The propulsive efficiency (η = FxVx

P
) is plotted for both the stiffer (purple, EI = 9.9 × 10−4)

and flexible (green, EI = 3.3 × 10−5) foils for base frequencies of fb = 1, 2, and 3 Hz and all associated
perturbation frequencies.

cases with largely improved performance, such as fb = 1 Hz with a fp = 13 Hz where Cx = 0.375,
there is a slight increase in propulsive efficiency. Thus, for the flexible foil, the best performing case
in the left panel of Fig. 5 is the most efficient on the same panel in Fig. 6.

B. Wake structures

Wake analysis was conducted using PIV to examine the vorticity patterns in the wake for
interesting perturbed inputs. The vorticity is shown using a diverging scale of red and blue (all
vorticity scales are the same), and the vorticity fields are plotted over the raw images to locate the
position of the foil in each frame. All images are taken from instantaneous velocity fields, i.e. no
averaging has occurred. In general, for both the stiffer and flexible foils, perturbations increased the
intensity of the vorticity and increased the number of individual vortex structures present in the wake.

Flow fields for the stiffer foil with four input functions are shown in Fig. 7. Each input is shown
at three phases in the cycle: T/3 (left column, the foil is heaving towards the bottom of the frame,
its left, as indicated by the yellow arrow), 2T/3 (center column, and leading edge of the foil has just
changed directions), and at the end of the cycle, T (right column, the foil is heaving up). In all cases
[Figs. 7(a)–7(d)], the base frequency, fb = 1 Hz. Panel a (top row) shows the vorticity fields when
an unperturbed 1 Hz heave is applied to the stiffer foil. While somewhat noisy, the panel generally
produces a single vortex each half-cycle (a 2S wake [23]), resulting in a weak reverse von Kármán
street. This is an expected result for a heaving panel at this Reynolds number and Strouhal number
of 0.1 (defined as St = f A

U
, where f is the heave frequency, and A is the trailing edge tip-to-tip

amplitude) [10,15]. This is the free swimming case (no net force condition), which can be seen in
the location of the vortices in the wake that are lined up, inducing flow directly perpendicular to the
incoming velocity.

In Fig. 7(b) (second row), a perturbation with a frequency of fp = 3 Hz has been added to the
base signal according to Eq. (1). This results in more individual vortices being shed into the panel’s
wake, whereas, without the perturbation only same-signed vorticity is shed each half cycle, now
both positive and negative vortices enter the wake regardless of the direction of panel motion. The
resulting wake is visually similar to a 2P wake [23], but we note that a traditional 2P wake consists
of two same-signed vortices being shed each half cycle. In this case, the pair are oppositely signed.

This effect is even more evident for higher perturbation frequencies seen in Fig. 7(c) (fp = 7 Hz)
and 7(d) (fp = 9 Hz). While the base frequency alone produces an alternating street of vortices
that are largely centered on the spanline of the panel, imposing a high-frequency perturbation [for
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FIG. 7. The ratio of the perturbation frequency to the base frequency alters the wake structure behind the
stiffer foil. (a) A base signal (1.0 Hz frequency, 1.0 cm heave amplitude), alone with no perturbation. (b)–(d)
The vorticity in the wake for perturbed inputs with perturbation frequencies that are 3 (b), 7 (c), and 9 (d)
times the base frequency, respectively. All perturbed inputs have the same base signal and perturbation heave
amplitude of 0.1 cm.

example 7 Hz shown in Fig. 7(c)] produces a high-frequency street of smaller, higher intensity
vortices that follow the curve of motion of the panel.

Finally, for very high perturbation frequency, fp = 9 Hz [Fig. 7(d)], pairs of oppositely signed
vortices are shed from the end of the panel together. The pair remains together as it convects
downstream; however, the “street” of vortices seen at lower fp is less well defined for this case. It is
noted that for the stiffer foil with fb = 1 Hz, this perturbation frequency generates the largest forces.

Flow fields for the flexible foil with four input functions are shown in Fig. 8. Once again,
each input is shown at three phases in the cycle: T/3, 2T/3, and at the end of the cycle, T . In
all cases [Figs. 8(a)–8(d)], the base frequency, fb = 1 Hz, and all contour levels are the same.
Figures 8(b)–8(d) show perturbed inputs with perturbation frequencies of fp = 17, 21, and 25 Hz,
respectively.

Without a perturbation [Fig. 8(a)], the flexible foil produces very weak vorticity, and the individual
structures are hard to distinguish from the noise. It is noted that this case is not force-producing: CF

is negative. However, the addition of perturbations [as seen in Figs. 8(b)–8(d)] greatly increases
the intensity of the wake vortices. In addition to stronger vortices, as for the stiffer foil, the
perturbations also increase their number. Again, we note that all of the perturbed cases shown
are thrust producing with positive CF of 0.0284, 0.0888, and 0.3567, respectively. As with the
high-frequency perturbations in the stiffer case, we see a oppositely signed vortices being shed each
half cycle. These follow the motion of the foil in the wake until they begin to break down about 1/2
a chord length downstream of the trailing edge.
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FIG. 8. The ratio of the perturbation frequency to the base frequency alters the wake structure behind the
flexible foil. (a) A base signal (0.5 Hz frequency, 1.0 cm heave amplitude), alone with no perturbation. (b)–(d)
The vorticity in the wake for perturbed inputs with perturbation frequencies that are 17 (b), 21 (c), and 25 (d)
times the base frequency, respectively. All perturbed inputs have the same base signal and perturbation heave
amplitude of 0.1 cm.

As fp increases, the strength of the vorticity on the foil also increases. Where in Fig. 8(a), there is
a boundary layer of mostly same-signed vorticity attached to the foil, the rest of the panels in Fig. 8,
there are regions of both positive and negative vorticity. As fp increases, those regions become
smaller and have higher intensity vorticity. This is reflected in the smaller, higher frequency vortices
present in the wake.

C. Velocity profiles

The spanwise velocity profiles for both foils are shown at one downstream location in Fig. 9.
The streamwise component of velocity with the incoming flow removed, (U − Vx) is is plotted
normalized by Vx . The normalized velocity is plotted against the spanwise position normalized
by the span length, y/s. The centerline of the foil is located at y/s = 0. The velocity profile is
the average velocity calculated over an area immediately downstream of the foil that is 1/6 chord
lengths long in the streamwise direction.

For both foils, the data are taken at five instances throughout a single cycle. The input for the
stiffer foil, Fig. 9 (left panel), is a base frequency of fb = 1 Hz and a perturbation of fp = 7 Hz.
This is the same condition shown in Fig. 7(c). Despite some noise (this is instantaneous data),
we see a region of high velocity near the center of the foil with two adjacent regions of reverse
flow. Specifically, we note that the location of the spanwise peak moves throughout the cycle. This
characteristic is consistent with the flow field shown in Fig. 7(c). The vortex street is not centered on
y/s = 0, as it typically is for a heaving foil, instead the street meanders throughout the cycle. Thus,
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FIG. 9. The streamwise component of velocity ( U−Vx

Vx
) is plotted along the span of the field of view for a

streamwise location of 1/6 chords downstream from the end of the foils. Data are taken from instantaneous
snapshots of a single heaving cycle at times: 0 (color), T/5 (color), 2T/5 (color), 3T/5 (color), and 4T/5
(color). The right panel shows velocity profiles for the stiffer foil with a base frequency of 1 Hz and a 7 Hz
perturbation [this flow field is shown in Fig. 7(c)]. The left panel shows the velocity profile for the flexible foil
with a base frequency of 0.5 Hz and an 8.5 Hz perturbation [this flow field is shown in Fig. 8(b)].

for perturbed inputs in particular, it can be very useful to look at instantaneous realizations of the
flow, as opposed to averages, where these variations can be lost.

IV. DISCUSSION

Fishlike locomotion involves waves of bending that pass down the body from the head toward
the tail and generate thrust with a distinctive reverse von Kármán wake hydrodynamic signature.
The precise nature of the input signals that swimming fish use to generate these waves of bending
is not well understood, although numerous recordings have been made of patterns of electrical
activity in the body musculature [35–38]. Two key conclusions from these muscle electrical activity
measurements in swimming fish are (1) that there is an alternating pattern of right-left activation and
(2) that electrical activity from both sides passes down the body at a speed greater than the traveling
mechanical wave.

Muscle electrical activity patterns that drive swimming muscles are produced by neural circuits
in the spinal cord and brain stem. Although outputs from these circuits appear to produce relatively
smoothly time-varying movements, there is increasing evidence that output signals from the nervous
system controlling motor behaviors represent a combination of a smooth base signal with the
addition of other oscillatory inputs that introduce variation [39]. Circuits that add variation to output
signals may be common in neural control systems that are involved in regulating behaviors such as
swimming.

Although there have been many recent studies that use simple physical models to understand
the hydrodynamics of aquatic propulsion [10,15,24,32,33,40], all of these have employed smooth
sinusoidal or sawtooth-like input waves to drive the leading edge of passive swimming panels. In
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this study our aim has been to extend this line of research to include a higher frequency modulatory
signal driving panels with relatively high (fishlike) flexibility, inspired by recent analyses of neural
circuits that control motor behavior, which demonstrate the existence of variable inputs to a base
control output signal.

The two foil stiffnesses studied here were chosen specifically to allow comparison to previous
studies of flapping propulsion using highly flexible foils [31], and to correspond to the range
of measured stiffnesses on the bodies of live fishes. Although measurements of fish body flexural
stiffness are limited and there is considerable variation along the body, the estimates that are available
range from about 1 × 10−3 Nm2 near the head to 1 × 10−6 Nm2 near the tail [31,41,42]. Propulsion
driven by a heave motion at the leading edge in these highly flexible foils displays kinematics
and wake structures that correspond well to that of the propulsive regions of live fishes, and there
are a number of reasons to believe that such passive foils are a good model for flexible fishlike
swimming [8,31]. For example, at slow to moderate swimming speeds, fish use only about 2%–5%
of their body muscle mass to power body bending and the body functions largely as a passively
flexing foil. We thus believe that data from analyses of flexible foils with similar flexural stiffness
to that of fish bodies are able to provide insights into the dynamics of aquatic propulsion in fishes,
and to inspire future biological measurements on freely swimming fishes.

Our most significant overall result is that applying high-frequency, low-amplitude perturbations
to a sinusoidal heaving foil will generally increase both the propulsive output of the foil over the force
generated by a heaving foil alone and the efficiency of propulsion, and sometimes dramatically so. It
appears that this occurs because the perturbation reorganizes boundary layer vorticity along the foil
such that stronger, more frequent vortices can be shed into the foil’s wake. Perturbations cause the
transition from a 2S to 2P wake, then finally an alternating street of vortices that follows the base heav-
ing motion of the panel through the wake. This is significantly different than results for nonperturbed
heaving panels. While sometimes, for highly flexible propulsors, the boundary layer fails to roll up
into distinct vortices and a shear layer is shed into the wake more or less following the motion of the
leading edge [15,34], there are not distinct, strong vortices in these cases. Furthermore, they tend to
produce very little forward force (or even generate net negative streamwise force, drag). However,
in addition to the wake structure shown here by swimming foils when perturbations are added, we
often see significant force augmentation with the addition of the high-frequency perturbation.

From Fig. 4 (left panel), it is clear that a peak in performance occurs for the stiffer foil when a
perturbation of 9 Hz is applied to the base heave signal. This is true up to a base frequency of 1.75 Hz
(above this, we do not have sufficiently resolved data to identify the presence or absence of a peak).
While a clear peak is not visible in Fig. 4 for the flexible foil (right panel), we still see an increasing
trend in the force production at perturbations of 13 Hz. It is possible that the peak exists, but at
higher perturbation frequencies than we can reach with the current experimental apparatus. There is
a small peak evident at the two lowest base frequencies when a perturbation of 9 Hz is added, but
the relative increase in force production is small compared to that observed for the stiffer foil, and
this peak is not evident at higher base frequencies. Furthermore, this increase in streamwise force
does not always come at a cost to efficiency. In fact, some high-performance cases, for example, the
stiffer foil with fb = 1 Hz and a fp = 9 Hz perturbation, also have a high propulsive efficiency.

The stiffer foil experiences much more dramatic changes in both force production and efficiency
as perturbations are added compared to the flexible foil (Figs. 5 and 6). For the stiffer foil there
appears to be a relatively broad range of perturbation frequencies that greatly improve propulsive
efficiency. This suggests that adding almost any perturbation in the 2–8 Hz range is sufficient to
introduce changes in flow around the foil greatly increasing propulsive efficiency, and that these
increases in efficiency are relatively insensitive to specific perturbation frequencies. In contrast,
while propulsive efficiency of the flexible foil is generally improved by the addition of perturbation
frequencies, the factorial increase is much less than for the stiffer foil.

In an attempt to understand the physical origin of these results, and to determine if there is
optimal perturbation size for a given foil stiffness and/or size, scaling laws for both the elastic and
hydrodynamic forces have been explored. Quinn et al. defined as the effective flexibility �1 =
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(ρsf 2L5/EI )1/2, which is the ratio of added mass to bending forces [15]. However, while very
enlightening for smoothly heaving foils of varying flexibility, it does not allow us to account for
the perturbation frequency, fp. Using traditional scaling, such as the ratio of perturbation to base
frequencies, fp/fb, the peak in Cf is no longer at a constant location. It occurs at increasingly
lower ratios of fp/fb for higher base heave frequencies. Thus, with experimental data, we are
not able to investigate the hydrodynamic forces compared to the bending forces with respect to
the perturbation bending in such a way as to provide an optimal value of the perturbation-rigidity
size. Graphs provided as Supplemental Material [43] illustrate the relationships between this elastic
force coefficient and the dimensionless frequency ratio fp/fb, and between the force coefficient and
this ratio. Further exploration of this using an analytical approach, which can investigate a wider
parameter space, could hopefully lead to this type of insight.

Under a number of biological conditions efficiency is not always the best criterion to judge animal
performance, as alternative metrics such as peak thrust may be of primary importance in behaviors
such as escape from predators. However, it is noteworthy that adding a higher frequency perturbation
to the base frequency (especially for the stiffer foil) greatly increased both force production and
efficiency. This suggests the interesting possibility that adding higher frequency perturbations to
base control signals may enable flexible flapping propulsive systems to avoid or at least minimize
the tradeoff between speed and efficiency and achieve relatively high values of both under conditions
which would not be possible without the use of a more complex control signal. These data suggest
that future engineering analyses of flapping propulsive systems utilizing fishlike flexible foils might
benefit from examining a broader range of input parameters than have traditionally been studied.
Correspondingly, biological analyses of aquatic propulsion might profitably focus on the nature of
the control signals generated by the nervous system to determine if swimming fishes use higher
frequency modulations of a base signal to increase locomotor performance.

V. CONCLUSIONS

For both a stiffer and a highly flexible foil, the addition of a high-frequency, low amplitude
sinusoidal perturbation to a standard sinusoidal base signal increases the streamwise force production
of the foil in almost all cases. While this is sometimes at a small cost in efficiency, there are cases
where the perturbation results in dramatic increases in efficiency. Furthermore, for the stiffer foil, a
peak in force production occurs for a perturbation frequency between 8 and 9 Hz, regardless of the
base heave frequency.

The addition of perturbations causes, first, a transition from a 2S to a 2P wake structure in the
stiffer foil [23]. Further increasing the frequency of the perturbation increases both the intensity
of the vorticity and the vortex shedding frequency, above two pairs per cycle. While less easily
categorized, the same trend is seen for the flexible foil, with the addition of alternate signed,
high-intensity vorticity becoming apparent along the foil.
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