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Abstract The study of fish locomotion provides a rich source of inspiration for the
design of robotic devices. Fish exhibit an array of complex locomotor designs that
involve both diversity of structures used to generate locomotor forces, and versatile
behaviors to engage with the aquatic environment. The functional design of fish
includes both a flexible body exhibiting undulatory motion as well as numerous
control surfaces that enable fish to vector forces and execute rapid maneuvers in
roll, pitch, and yaw directions. Patterns of body undulation have often been
misunderstood, and fish with propulsive mechanics as diverse as tuna and eels can
display similar patterns of body bending during swimming. Many of the often-cited
classical locomotor categories are based on a misunderstanding of body and fin
kinematics. Fish fins can exhibit remarkably complex conformational changes
during propulsion, and do not function as flat plates but have individual mobile fin
rays actuated by muscles at the fin base. Fin motion and surface bending in most
fish is actively controlled. Even during steady horizontal locomotion, median fins
such as the dorsal and anal fins function to balance torques and can contribute to
thrust. Locomotion using body undulation is not achieved independently from fin
motion, and the vast majority of fish locomotor patterns utilize both the body and
fins. Robotic systems derived from fish templates can range from simple flexible
plastic panels to more complex models of whole body and fin design. Experimental
test platforms that represent individual fins or specific components of fish locomotor
design allow for detailed testing of hydrodynamic and mechanical function.
Actuating and controlling complex fish robotic systems involving both the body
and multiple individual fins are a major challenge for the future.
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1 Introduction

The study of fish locomotion provides a rich source of inspiration for the design of
robotic devices. Fish exhibit an array of complex locomotor designs that involve
both diversity of structures used to generate locomotor forces, and versatile
behaviors to engage with the aquatic environment which can range from calm
stratified lakes to turbulent high-velocity rivers. The functional design of fish
includes both a flexible body exhibiting undulatory motion as well as numerous
control surfaces that enable fish to vector forces and execute rapid maneuvers in
roll, pitch, and yaw directions. Designers of robotic systems that must deal with the
unpredictable aquatic environment can turn to the mechanics and function of fish as
a source of ideas for how to approach the construction of new mechanical devices
that use flexible control surfaces and patterns of wave-like motion to produce thrust
and maneuvering forces.

In this chapter we provide a general background and an overview of the
mechanics of fish locomotion, and then explore some of the mechanical systems
that we have constructed to better understand the function of both the body and fins
of fish. Research on fish robotics has the potential not only to demonstrate novel
designs for autonomous underwater vehicles that are not based on propellers, but
also to use robotic systems and their control to better understand the biology of fish
swimming. In our view, the potential for using mechanical systems to test bio-
logical hypotheses about how and why fish are designed the way they are is one of
the most intriguing areas for future work.

Within the past 15 years, there have been many reviews and overviews of the
topic of fish swimming and the increase in publication rate on this topic reflects the
growing interest in understanding the functional design of fish and the implications
for robotic system construction. In this chapter, we will not duplicate material from
these previous articles, but will instead focus on summarizing key features of fish
functional design; note several misunderstandings in some of the current literature
on the mechanics of fish swimming; address specific fish systems that are of special
relevance for the construction of fish-like mechanical devices; and finally illustrate
some of the mechanical systems that we have developed ranging from simple to
complex representations of fish functional design.

Readers interested in the literature review of one or more aspects of fish loco-
motor function can examine classical summaries such as [4, 47–49, 76, 131] as well
as the more contemporary books [12, 27, 75, 86, 110, 127, 134, 139] and articles
[36, 39–41, 60, 62, 73, 87, 106, 109, 122, 123, 130, 132, 133].
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2 Overview of Fish Swimming Dynamics

2.1 General Background

Perhaps the most common image of fish as swimming objects is the often-published
horizontal section through a fish body that resembles a NACA airfoil in shape. This
view emphasizes the overall streamlined nature of fish bodies and allows for
comparisons between fish and objects that are designed to minimize drag or to
generate lift. But fish shapes are complex in three dimensions [125, 126] and have
multiple projections (fins) and changes in geometry along the body length that are
not well represented in a horizontal NACA-like section. Figure 1 illustrates some of
the complexity in fish shape with transverse sections obtained using a micro-CT
scanner of a bluegill sunfish Lepomis macrochirus. Toward the front of the body,
fish often are thickest due to the head and gill region housing the brain, feeding and
respiratory systems. This portion of the body is not symmetrical in the transverse
plane, and the top is often more pointed while the bottom (ventral) region is
rounded. Moving back along the body reveals increased dorsal–ventral symmetry
and the median fins which project into the water above and below the fish body.
The surfaces of these fins are not smooth, and instead have a roughened exterior due
to the fin rays that support the thin fin membrane. Near the base of the tail (the
region known as the caudal peduncle: sections d and e in Fig. 1) the body becomes
more symmetrical with sharp edges that cause flow separation as the body and tail
move from side to side during swimming [124]. The consequences of body
asymmetry for the generation and control of locomotor torques has not been
addressed, and remains an interesting area for future work.

2.2 Fish Locomotion Using Body Deformation

Although the notion of a gait is most common in studies of terrestrial locomotion
(as when a horse moves from a walk to a trot to a gallop as speed increases), many
fish have gaits too. As swimming speed increases, fish can change from a primarily
pectoral fin-based swimming style in which the body remains relatively still, to
body undulation with fin motion, to exclusively steady wave-like body motions for
thrust generation. If speed increases still further, unsteady locomotion can occur
with burst-and-glide swimming with intermittent high-frequency beating of the tail.
These gait transitions are significant because they reflect the use of different
muscular systems and a shift from steady swimming to high-speed unsteady
locomotion caused by a change in muscle fiber activation from slower red fibers to
the faster-contracting white fibers [14, 30, 108].

Figure 2 shows patterns of body bending in several species of swimming fish. In
most species, the head oscillates relatively little until swimming speeds increase
beyond two body lengths per second. Species as diverse as eels, sunfish, and clown
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knifefish (Fig. 2) show remarkably similar patterns of body bending, and even
quantitative analyses of tuna locomotion [29, 70] show similar patterns of head
oscillation to other species. This result is not generally appreciated in the fish
mechanics literature which suggests that tuna show reduced head oscillation
amplitudes relative to other fish: the published quantitative analyses do not support
this conclusion, although considerably more research needs to be done on tuna
kinematics under controlled conditions.

Figure 3a shows an analysis of the amplitude of body bending as speed changes
in largemouth bass [56]. At low speeds there is virtually no amplitude along the
anterior third of the body, and even as speed increases considerably head oscillation
does not increase greatly. There is a relatively sharp transition two-thirds of the way
along the body where lateral body amplitudes begin to increase rapidly, reaching

A
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Fig. 1 Fish vary greatly in cross-sectional shape along the body. This figure illustrates shape
cross-sections from micro-CT scans at several points (b–g) along the body of a 15 cm long bluegill
sunfish, Lepomis macrochirus. Panel a shows the skeleton of this species (bones are stained red
and the tissue has been enzymatically rendered transparent) to illustrate how fins such as the dorsal
fin are supported by the axial skeleton. Panel b provides a guide to the location of the images
below. Body shape changes from rounded anteriorly to the tail region where the upper and lower
body surfaces have sharper edges. Fin surfaces are bumpy (see sections c and g) with projecting fin
rays. All micro-CT images are shown at the same scale. From Lauder [61]
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a maximum at the tail tip. Furthermore, graphs of amplitude versus length often
have two inflection points (e.g., Fig. 3a), and are more complex than the relatively
simple functions often used to program undulatory robotic devices.

0.5 L/s 1.5 L/s1.0 L/s

Clown knifefish

Bluegill sunfish

Eel

5 cm

4 cm

4 cm

(a)

(c)

(b)

Fig. 2 Patterns of body motion in fish swimming with undulatory motion. During swimming,
a traveling wave of bending passes down along the body. Panels a and b show body outlines at
two different times in bluegill sunfish (L. macrochirus) and largemouth bass (Micropterus
salmoides). Panel c shows how the pattern of body bending changes as fish increase swimming
speed from slow (0.5 L/s) to moderate (1.5 L/s) speeds. At 0.5 L/s, bluegill sunfish use labriform
locomotion and generate thrust only with their pectoral fie. Note the relatively low amplitude
sideways (yaw) head motion and increasing amplitude along the body in most species. Panel
c modified from Xiong and Lauder [140]
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Fish kinematics in a wide diversity of species match this general pattern of
reduced head oscillation with a wave-like pattern of body bending (Fig. 2). While
fish species certainly differ in the number of waves and in specific details of the
amplitude envelope [45], the differences in this two-dimensional view are minor,
and recent quantitative comparisons of the midline kinematics of a diversity of
species does not lend much support to the often-cited qualitative descriptions of fish
swimming modes and simple graphical summaries that inaccurately depict patterns
of body bending [76, 105].

Fish body undulations are caused by a wave-like pattern of muscle activation
that sweeps from the head toward the tail (Fig. 3). During steady sustainable
swimming, fish use almost exclusively red muscle fibers that have higher aerobic

300 mV 100 ms
2L

2R

4R

6R

6L

Time (cycles)

0.03

0.08

0.27

0.42

0.52

onoff

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
0.7 L s-1

1.2 L s-1

1.6 L s-1

2.0 L s-1

2.4 L s-1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Length along body (L)

La
te

ra
l d

is
pl

ac
em

en
t 

   
(%

 b
od

y 
le

ng
th

)
(a)

(c) (d)

(b)

Fig. 3 Pattern of body bending during undulatory locomotion (a) and body muscle activity used
to drive the bending wave (b and c). Body oscillation amplitude in swimming fishes increases with
speed, and is minimal at a point approximately 30 % down the body from the tip of the snout.
Waves of muscle activity (b, black bars) pass along the body to generate this wave, and muscle
activity in the red fibers that power slow to moderate swimming increases as swimming speed
increases (c, d). Labels in c refer to the positions down the body: positions 2, 4 and 6 correspond to
43, 57, and 72 % down the body. R and L refer to the Right and Left sides of the body. Modified
from Jayne and Lauder [55, 56]
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capability even though these fibers usually form only a very small percentage
of total fish muscle mass, often less than 5 %. The bulk of fish muscle mass is
composed of larger white fibers that are used for rapid unsteady motions and escape
responses [53, 54, 107, 108, 115]. Thus, the bulk of fish bodies are passive during
slower, routine, steady swimming behaviors, and body wave motion is controlled
actively only by a relatively small proportion of muscle fibers. Figure 3b illustrates
that muscle electrical activity alternates between the left and right sides of
a swimming fish, but due to the movement of the wave of electrical activity toward
the tail and the relatively large extent of activation on one side, there is considerable
co-activation of red muscle fibers on the right and left sides of the body at any one
time. This may stiffen the body actively and reduce the amplitude of motion which
could be tuned to particular swimming speeds based on the intensity of muscle
activation. Figure 3c documents that the intensity of muscle activity increases with
swimming speed as does the velocity of the muscle activation wave and frequency,
while the overall pattern of red fiber activity remains similar until speeds increase to
the point where white muscle fibers are activated. Fish certainly possess the
capability of actively controlling body stiffness with their locomotor musculature,
but the extent to which this alters locomotor function is largely unknown
[81, 82, 88].

One area of fish swimming that has received relatively little attention but that has
great promise for facilitating the comparison of fish swimming mechanics to that of
robotic devices is the study of center of mass (COM) motion [135]. In contrast to
biomechanical investigations of walking and flying animals, almost nothing is
known about motion of the center of mass in swimming fish. One recent study of
ours quantified the three-dimensional center of mass motion in several species of
fish using different swimming modes [140], but much more remains to be done to
better understand the pattern and magnitudes of fish center of mass movement
during steady swimming behaviors. We propose that comparison of COM motion
in live fish to that of robotic devices provides a useful performance metric by which
autonomous robotic fish-like mechanical systems can be compared to the swim-
ming performance of live fish. High COM oscillation amplitude during swimming
would be expected to reflect high costs of transport, and autonomous robotic
designs could be evaluated and compared based on the amplitude of COM
oscillation in the three movement planes.

2.3 Fish Locomotion Using Fin Movements

Fish fins also play an important, and in many species a dominant, role in propul-
sion. Pectoral fins are commonly used for slower speed swimming and to generate
thrust for steady swimming, and off-axis forces for maneuvering (e.g., [31, 34, 44,
128, 129, 137, 138]. Pectoral fin propulsion may involve complex conformational
and wave-like motions (Fig. 4) [16, 28, 34, 68, 100], and both experimental and
computational fluid dynamics of pectoral propulsion have shown that thrust can be
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generated on both the instroke and outstroke of fin motion, and that fin confor-
mational changes may act to reduce vertical center of mass oscillations.

Fins such as median dorsal and anal fins (Fig. 5) are also important players in
controlling fish body motion during undulatory swimming and these fins can also
contribute thrust as they are actively moved by basal fin musculature [33, 35, 113,
114]. Dorsal and anal fins act to balance body torques during steady swimming
(Fig. 5b) and to generate rolling moments during maneuvers. In addition, wakes
from the dorsal and anal fins (and even the pelvic fins) can greatly alter incident
flow on the tail [1, 112, 114]. Figure 5b shows the path of the caudal fin of a trout
through the vortex wake shed by the dorsal fin and demonstrates that the tail of
swimming fish does not move through undisturbed free-stream fluid, but instead
encounters vortices that greatly alter the angle of attack of incident flow.

The fin rays of bony fish (but not sharks or rays) possess an interesting
mechanical design that involves bilaminar jointed bony half-rays connected by
collagen fibers and elastic tissue. The mechanical properties of these bilaminar fin
rays have recently been studied in some detail [2, 42, 69, 116, 117] and represent a
key evolutionary innovation in fish functional design that allows active curvature
control of the fin propulsive surface and permits fish to resist fluid loading on their
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Fig. 4 Kinematics of the pectoral fins during locomotion in bluegill sunfish (L. macrochirus).
Pectoral fins are often used by fish for slow to moderate speed locomotion, and can undergo complex
conformational changes as the fin beats. This figure shows three views of a single time during the fin
beat cycle; the three fin images are color coded by z-position, which indicates the distance of the fin
element from the body. Note the bent and cupped shape of the fin at this time. Arrow #1 points to the
wave of bending that travels from root to tip of the fin, while arrows labeled #2 point to the region of
the fin surface that generates thrust during the outstroke. From Lauder [61]
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control surfaces [63]. Fin rays of sharks and rays are simpler collagenous rods that
are not capable of active curvature control.

2.4 Multi-Fin and Body Locomotion Together: The Norm
and not the Exception

Although in this chapter we have for the most part treated locomotion using body
deformations separately from fin-based motions, in most fish species patterns of
body deformation during undulatory propulsion occurs in concert with the active
movements of fins. Two of the more common qualitative descriptive terms for fish
swimming are “body and caudal fin” (BCF) and “median and paired fin” (MPF)
locomotion. But dividing fish swimming into these two categories is entirely arti-
ficial and obscures the important fact that most species use the body and fins at the
same time during swimming. And such coordinated use of the body and fins is
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Fig. 5 Median fins such as the dorsal and anal fins play important roles during undulatory
locomotion. a Trout (Salvelinus fontinalis) swimming in two horizontal laser light sheets to permit
simultaneous imaging of flows generated by the dorsal and anal fins and the tail. b The dorsal fin
(to the left) generates a clear vortex wake (yellow vectors) that the tail must pass through (red dots
show the path that the tail will take through the dorsal vortex wake) during swimming rainbow
trout (Oncorhynchus mykiss); free-stream flow has been subtracted. c Velocity through time of the
dorsal and anal fins during locomotion at two speeds. These fins contribute significantly to both
generating thrust and modulating body torques. d Schematic summary of the function of different
median fins and their roles in controlling body position. Modified from Drucker and Lauder [35]
and Standen and Lauder [114]
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critical for maintaining control of body position and for effecting changes in body
orientation.

As examples of the contribution of the median and paired fins, first consider
swimming bluegill sunfish as speed increases [32]. At slow speeds below 1.0 L/s,
the paired fins contribute 100 % of thrust, and the body provides no thrust. As speed
increases to over 1.5 L/s, pectoral fins contribute approximately three-quarters of
needed thrust, and body undulation occurs to complete the needed thrust to swim at
this speed. At the highest steady swimming speeds, the pectoral fins contribute
almost nothing to thrust, and the body nearly 100 %. And the bluegill dorsal fin
contributes about 12 % of total thrust at speeds of 1.1 L/s [33].

Even in fish such as trout which are known for effective undulatory locomotion,
the median fins make a contribution to controlling body position in roll and yaw, and
we cannot consider undulatory locomotion without taking this into account. Standen
and Lauder [114] estimated that for trout of 16 cm long swimming at 1.0 L/s,
the dorsal and anal fins each add about 1 mN to thrust, which is nearly 10 % of total
thrust required at this speed.

The use of both the fins and body together is particularly evident during
maneuvering, and we recommend abandoning this artificial division of fish
swimming modes as BCF versus MPF. Of course, this poses a considerable chal-
lenge for designers of whole fish robotic devices who must consider the possibility
of adding active fin-like control surfaces to an already complex flexible body, and
in the next section we consider a variety of mechanical models for fish fins and
bodies.

3 Robotic Models of Fish Locomotion

3.1 Overview of Fish Robotic Systems

Recent years have seen greatly increased interest in robotic models of fish swim-
ming and a wide diversity of approaches has been taken to the mechanical design of
fish-like systems. One way of conceptualizing this variety is to consider a fish
template and both relatively simple as well as more complex mechanical models
derived from these templates (Fig. 6). Simple models have the advantage of more
rapid construction and iteration times when changes are desired, and the ability to
easily make modifications that represent basic abstractions of fish features.
Examples of this approach include modifications of the trailing edge of a flexible
flapping foil or panel to represent different fish tail shapes, or changes in body
stiffness achieved by changing the panel material (Fig. 6). Examples of using
simple mechanical models to understand the dynamics of propulsion include (but
are certainly not limited to) the following studies [3, 9, 13, 17, 19, 25, 26, 50, 52,
64, 65, 74, 97, 98, 101].
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Simple models are convenient but do not represent the complex behaviors
inherent in biological systems. Thus, development of more complex mechanical
devices that include active control of the body or fins is important for exploring

Fish template
Simple

robotic model
Complex

robotic model

Fig. 6 Robotic approaches to studying fish locomotion can involve relatively simple flexible foil
models of propulsion or more complex engineered devices. This diversity of approaches is based
on fish templates, and can involve whole fish models (top two rows) or mechanical test platforms
that represent individual fins such as the pectoral fin (third row) or caudal fin (bottom row).
Individual panels show images from our collaborative work in fish robotics. Other chapters in this
volume also present a diversity of fish robotic systems. Images are from research described in
[3, 22, 23, 38, 65, 66, 96, 120, 121, 141]
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some of the behaviors seen in freely-swimming fish. Recent examples of using
complex mechanical devices to understand whole-body or fin-based propulsion
include the following studies: [5–8, 20–23], Epps et al. [37, 38, 51, 59, 71, 72, 77–80,
83–85, 90, 91, 93, 96, 104, 118–120].

Below we explore some of the benefits and drawbacks of using both simple and
complex mechanical fish-like systems using examples from our previous research.

3.2 Simple Mechanical Models of Fish Locomotion

Simple flexible plastic strips or panels have proven to be useful passive models for
flexible body propulsion in the water. These very basic propulsive systems are
remarkably fish-like despite their simplicity, and exhibit a traveling wave of
bending and self-propulsion at fish-like speeds and Strouhal numbers when actuated
at frequencies of from 0.5 to 3 Hz in heave motion at their leading edge [111]. In
order to effect propulsion of these simple flexible models of the fish body and tail
region, the leading edge is attached to a rod controlled by heave and pitch motors
(Fig. 7) and moved in a recirculating flow tank [64, 65, 98]. Flow speed is adjusted
to achieve either self-propulsion when the net x-force (thrust) averages zero over a
flapping cycle, or propulsive kinematics, forces, and hydrodynamics can be studied
under conditions of net thrust or drag, measured with a force/torque sensor attached
to the rod. These simple flexible strips (Fig. 7a, b) are convenient subjects for study
because stiffness can be altered by changing the material, and different lengths and
shapes can easily be attached to focus experiments on these parameters. The fish-
like motions (Fig. 7c, d) produce interesting performance surfaces where thrust and
efficiency of propulsion can be mapped over a range of heave amplitudes and
frequencies for flexible foils of different stiffness (Fig. 7e, f). At low heaves and
frequencies, efficiency is negative for the most flexible material as no net thrust is
produced, but as stiffness and frequency increase, thrust is developed and efficiency
approaches values of 0.2. Experiments like these also show that there can be a
complex interaction between stiffness and frequency so that the material with the
highest efficiency can depend on the frequency at which propulsion is occurring,
and crossover points show where both flexible and stiff materials perform equally
well (Fig. 7f).

Mechanical controllers that allow study of propulsion in flexible foils or panels
are also convenient for the study of a number of fish structures, including the
specialized skin structure in sharks. We have been using this approach to better
understand how fish skin functions hydrodynamically, and to study the function of
fish skin under conditions of self-propulsion. The vast majority of previous research
on the skin of fish has been conducted using relatively simple models in constant
velocity flow regimes. But fish bodies bend and flex during locomotion and the skin
surface is thus subject to time-varying flows and changing angles of attack. It is our
view that in order to understand the diversity of fish skin structures and how these
surface structures function during locomotion, testing must be done under dynamic
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Fig. 7 Use of a flapping foil model system to study the dynamics of undulatory propulsion in fish.
a, b A mechanical controller is used to oscillate flexible panels at the leading edge in heave and
pitch motions while forces and torques on the shaft are measured (e.g., [64–66, 97, 98]. Flexible
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for a particular heave and flow speed. Panels c–f modified from Shelton et al. [111]
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self-propelled conditions. In addition, the frequencies, Strouhal numbers, and
surface curvatures achieved by skin-like test membranes must match those exhib-
ited by swimming fish.

Sharks have a remarkable structure to their skin. The surface of sharks is covered
with millions of small tooth-like denticles that can range from 200 μm to 1 mm in
size. Each denticle has a complex structure with a base embedded into the skin, and
a stalk region that supports a flattened top containing ridges and valleys
[58, 89, 92]. There is considerable variation in denticle structure among species
of sharks [18], and equally substantial variation in denticle shape on different
regions of the body [102, 103]. Adjacent denticles overlap, and changing the angle
of the skin changes the angle of each denticle and hence the overlap between
adjacent denticles. Previous work has suggested that shark skin functions to reduce
drag, and may thus increase locomotor efficiency [10, 11, 24], but these analyses
have been conducted under steady flow conditions in which the test surfaces were
not moving.

In order to study the function of shark skin structures, we first assembled
a flexible membrane composed of two pieces of fresh shark skin into a two-layer
“sandwich” so that the skin surface denticles are exposed on each side (Fig. 8a).
These membranes were then attached to a rod and moved by our mechanical flapper
in a manner that matches the frequencies and surface curvatures of sharks swim-
ming in vivo. By comparing the self-propelled speed of membranes with surface
denticles intact and after they had been removed by careful surface sanding, we
showed (Fig. 8a) that removal of the surface roughness reduced swimming speeds
by an average of about 12 % [94]. Furthermore, the effect of surface roughness on
self-propelled speed disappeared when rigid foils with shark skin on the surface are
compared, indicating that the surface flexibility and motion of skin denticles is
critical to their swimming performance advantage. Finally, particle image veloci-
metry of flow over the swimming shark skin membrane and the sanded control
showed that removal of the surface alters the strength of the leading edge vortex,
and suggests that the roughened shark skin surface may enhance leading edge
suction and thus increase thrust. Shark skin surface roughness may thus enhancing
thrust on oscillating surfaces such as the tail where flow separation occurs [15] as
well as reduce drag.

In order to better understand the function of shark skin, [136] designed a biomi-
metic shark skinmembrane using additive manufacturing (Fig. 8b, c).Manufacture of
shark-skin-like surfaces permits alteration of biological parameters, and controlled
study of individual parameters of shark skin. Manufactured skin-like membranes
were assembled into a two-layer sandwich and compared to a smooth control surface
(Fig. 8b). These membranes consist of rigid denticles embedded into a flexible
membrane and this allows the biomimetic skin membrane to bend and flex during
swimming in a manner similar to real shark skin.

Testing under a wide range of parameters revealed improved swimming per-
formance of the membranes with skin-like denticles compared to a smooth control.
For example, Fig. 8d shows data from tests of self-propelled speed when the
membranes are actuated at 1 Hz, heave values of ±1.5 cm at the leading edge, and
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Fig. 8 Use of a mechanical flapping system to study the propulsive effect of shark skin.
a Dynamic testing of the hydrodynamic function of shark skin denticles using pieces of shark skin
that are attached to a flat support (shown on the left) which in turn is attached to a mechanical
flapping foil device that allows controlled side-to-side and rotational motions of the shark skin
membrane. Graph shows the self-propelled swimming speed of the shark skin membrane with
intact denticles and after the denticles have been sanded off (to produce a relatively smooth
surface) under three different motion programs. Note that in each case the swimming speed of the
shark skin with denticles intact is significantly greater (*) than after the denticles have been
removed by sanding. b Edge-on view of biomimetic shark skin assembled into a two-layer
membrane compared to a smooth control of the same mass. White scale bars = 3 mm. c Scanning
electron microscope view of biomimetic 3D-printed rigid shark skin denticles on a flexible
membrane substrate. d Completed assembly of the tested flexible biomimetic shark skin foil (on
left). Graph of the results from testing the self-propelled swimming speed of the biomimetic shark
skin foil (blue bars) compared to the smooth control (red bars) at different pitch angles. At pitch
angles of 5, 10, and 15° the biomimetic shark skin foils swim significantly faster (*) than the
smooth controls. At the other pitch angles, the swimming speeds are similar. Modified from Wen
et al. [136], Oeffner and Lauder [94], and Lauder [62]
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a variety of pitch angles. Membranes with the roughened denticle-like surface
swam faster for pitch angles of 5°, 10°, and 15°, but were not significantly different
from controls at both higher and lower pitch values.

We believe that the manufacture of different fish-skin-like surfaces combined
with dynamic testing that mimics conditions of fish swimming is a promising
avenue for the future study of fish skin surface effects on locomotion.

3.3 Complex Robotic Models of Fish Locomotion

We have focused on bluegill sunfish (Lepomis macrochirus) as a model biorobotic
system for studies of individual fin function, as well as for the development of more
complex biorobotic models of the whole body and multi-fin function. Bluegill
sunfish are particularly useful as they represent a generalized fish body shape and
anatomy, and a substantial amount of three-dimensional kinematic, behavioral, and
experimental hydrodynamic data on locomotor function exist that provide a useful
baseline for both the design and analysis of biorobotic performance. The goals of
our research using bluegill sunfish as a model system are (1) to better understand
the locomotor performance of aquatic propulsive mechanical systems with flexible
fish-like fins, (2) to develop manufacturing and assembly methods that allow
construction of fins with fin rays having active control of the propulsive surface,
(3) to conduct quantitative comparisons of data from mechanical devices to that of
live fish, and (4) to use these biorobotic platforms to investigate complex swimming
behaviors that are difficult to control in live fish such as multi-fin function during
backward swimming and maneuvering.

We have developed several biorobotic models of the flexible fins of bluegill
sunfish as experimental tools for investigating the mechanics and control of fin-
based swimming. These systems include biorobotic pectoral and caudal fins that
can execute the fin motions used during steady swimming, turn maneuvers, and
hovering (Fig. 9, see [38, 121]); a freely swimming fish driven by paired pectoral
fins [120]; and a model that integrates a moving peduncle with independently
driven dorsal, anal, and caudal fins (our PDAC device, shown in Fig. 10). This
biorobotic system is being used for investigating multi-fin swimming gaits which
are common in fish when they stop, brake, swim backward, and maneuver through
obstacles. The most recent of these systems incorporates distributed sensing within
the fins (Fig. 9a, [57]), so that closed-loop control and navigation using object
contacts can be explored. So that results from experiments conducted with these
robotic systems have biological relevance, a priority of our design was to faithfully
represent mechanical traits and to reproduce swimming characteristics of the bio-
logical fins. Physical features of the engineered fins were thus based on detailed
studies of the bluegill sunfish biological system, and each model’s dynamics, fin ray
kinematics, and wake hydrodynamics were validated against those of the live fish
(e.g., [31, 33, 44, 67, 68, 113]).
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In order to produce good approximations of the complex fin kinematics used by
the sunfish during swimming, each biorobotic fin uses multiple, independently
actuated, compliant fin rays that are covered by a flexible fin webbing (elastane and
polyester, latex, and/or urethane). The base of each fin ray is driven using ser-
vomotors (e.g., Maxon Precision Motors, Fall River, MA, USA) that are connected
to the fin rays via nylon tendons. The fin rays are mounted to hinged bases which,
with the servomotors, are designed to provide each fin ray with up to three degrees
of actuated motion. In cases where the fin is designed to execute relatively simple
kinematic patterns—such as steady swimming for caudal fins (Fig. 9c, d; [38])
bases with a single degree of freedom are sufficient. The fin rays move back and
forth along an arc that is dictated by the orientation of the hinge within the base and
complexity can be given to the fin shape by tailoring the compliance, phase rela-
tions, and the time course of individual rays. In cases where swimming gaits are
more multifaceted such as pectoral fin maneuvering in sunfish, which involves
complex motions of the fins and substantial conformational changes in the fin
surface [46, 99], or where a single biorobotic model is used to investigate multiple

Fig. 9 Biorobotic pectoral (a, b) and caudal fins (c, d). Each of the rays of the pectoral fin has two
actuated degrees of freedom which make them capable of executing a large repertoire of fin
motions. In addition to steady swimming gaits such as that shown in (b), the pectoral fin can create
the motions used during turns and hovering. The curvature of the fin rays seen in panel b is a result
of the fluid loading on the compliant fin. Sensors within the pectoral fin (a) enable the curvature of
the fin rays and the pressure across the fin webbing to be monitored for closed loop control. The
rays of the caudal fin (c, d) are actuated through only one degree of freedom, but complex fin
shapes can still be created by controlling phase relations between rays (d)
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kinematic patterns such as during maneuvering and steady swimming [96], the fin
rays are also driven to rotate about the axis normal to the base (Fig. 9b). This, for
example, enables a fin ray to follow different paths as it moves away from, or
toward, the fish body. Active control over a fin ray’s curvature, and thus over the
fin’s shape as it moves through the water, has been enacted in several biorobotic
fins as a third degree of freedom using shape memory alloys, or a servomotor, to
pull on a tendon that bends the rays shape [95]. In most cases, though, the fin rays
are passive and curve only in response to fluidic loading. The cross sections of these
passive fin rays are tapered from base to tip so that each ray’s flexural rigidity scales
to the flexural rigidity of the biological fin. This is key in allowing engineered fins
to bend like a biological fin and to create appropriate wake and forces.

The nylon tendons that attach to the base of each fin ray are sheathed in a flexible,
but non-collapsible, housing (Fig. 10), as is done for the cables of bicycle brakes. In
addition to allowing the actuators to be located away from the fins, which benefits
packing, these housings enable the tendons to follow curved paths within the robotic
fins. In the PDAC robotic device, this permits the tendons of the robot’s caudal fin to
pass through the peduncle (Fig. 10), and for the peduncle to be actuated without
causing the caudal fin’s tendons to bind or to pull accidentally on the fin.

Fig. 10 Biorobotic model of the sunfish caudal peduncle (base of the tail) and the dorsal, anal, and
caudal fins. The system provides independent control over the peduncle and 13 rays of the median
fins for studies of multi-fin swimming. The location of the anal fin can be changed so that spatial
relations among fins can be studied (b). Tendons, sheathed in housings, pass from the lateral sides
of the fish to the fin ray bases (b). Fin motions and interactions are very different during steady
swimming (c) and maneuvers, such as during backing (d) and this model is able to closely
replicate the phasing and relative amplitudes of fin motions seen in live fish
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4 Conclusions

These devices based on bluegill sunfish, in addition to the wide variety of inter-
esting complex fish robotic systems developed by other investigators, provide a
solid foundation for future work in the area of fish biorobotics. Designing ever more
complex fish-like systems will allow us to develop autonomous maneuvering
robotic mechanisms that exhibit locomotor performance close to that of live fish. To
accomplish this, biorobotic fish systems can make use of a diverse array of fins that
allow force vectoring which will permit more complex behaviors than steady for-
ward swimming alone. These devices will also be of great utility in testing bio-
logical hypotheses that are challenging to evaluate in living animals.

In the future, the use of simple mechanical systems to test specific hypotheses
about the role of body shape, flexibility, and surface structure allows considerable
control over experimental parameters, and will be of great value in investigating
fundamental principles of aquatic propulsion. Researchers in fish biomechanics will
benefit greatly from working with engineers to better understand how to construct a
mechanical system that allows biological hypotheses to be tested. Similarly, engi-
neers will continue to benefit from biological input which can provide insights into
locomotor behaviors of the body and fins which may be unfamiliar to workers in
design and manufacturing. We believe that one of the key challenges in the future is
the control system needed to provide fish-like behavior and movement patterns in
both steady and unsteady maneuvering propulsion. Developing an open-loop
control will be challenging enough, but even more difficult is closed-loop control
that integrates information from both the body and multiple fins. Closed-loop
control is needed for navigation through complex habitats [43], and yet relatively
few mechanical fish-like devices today incorporate such feedback.

Fish possess many interesting structural features of potential significance for
locomotion that have yet to be studied, and the use of mechanical devices to explore
the function of these features promises to help unlock some of the secrets of fish
swimming performance.
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