
RESEARCH ARTICLE

Swimming hydrodynamics: ten questions and the technical
approaches needed to resolve them

George V. Lauder

Received: 10 September 2009 / Revised: 26 September 2009 / Accepted: 28 September 2009 / Published online: 11 October 2009

� Springer-Verlag 2009

Abstract Recent experimental and computational studies

of swimming hydrodynamics have contributed significantly

to our understanding of how animals swim, but much

remains to be done. Ten questions are presented here as an

avenue to discuss some of the arenas in which progress still

is needed and as a means of considering the technical

approaches to address these questions. 1. What is the three-

dimensional structure of propulsive surfaces? 2. How do

propulsive surfaces move in three dimensions? 3. What are

the hydrodynamic effects of propulsor deformation during

locomotion? 4. How are locomotor kinematics and

dynamics altered during unsteady conditions? 5. What is

the three-dimensional structure of aquatic animal vortex

wakes? 6. To what extent are observed propulsor defor-

mations actively controlled? 7. What is the response of the

body and fins of moving animals to external perturbations?

8. How can robotic models help us understand locomotor

dynamics of organisms? 9. How do propulsive surfaces

interact hydrodynamically during natural motions? 10.

What new computational approaches are needed to better

understand locomotor hydrodynamics? These ten questions

point, not exclusively, toward areas in which progress

would greatly enhance our understanding of the hydrody-

namics of swimming organisms, and in which the appli-

cation of new technology will allow continued progress

toward understanding the interaction between organisms

and the aquatic medium in which they live and move.

1 Introduction

The study of swimming hydrodynamics has attracted

considerable attention in recent years as engineers and

biologists, both separately and together, have focused on

the remarkable diversity in design and locomotor perfor-

mance of aquatic organisms. A great deal of progress has

been made, as evidenced by the chapters in this volume and

by the number of review papers and books presenting our

current understanding of how aquatic organisms interact

with their fluid environment. Many of these recent over-

views (e.g., Dabiri 2009; Fish and Lauder 2006; Fish et al.

2008; Lauder 2006; Lauder and Tytell 2006; Lauder and

Madden 2007; Shadwick and Lauder 2006; Triantafyllou

et al. 2005; Triantafyllou et al. 2000) have focused on the

results from recent studies of aquatic locomotor dynamics,

and present current information on swimming organisms.

Here, I will take a different approach and structure this

essay around a selection of the key questions that remain,

and emphasize the techniques and approaches needed to

address these questions going forward. I will present only

limited data for each topic, and instead focus on discussing

for each question the concepts and approaches relevant to

broader issues in swimming hydrodynamics.

The ten questions presented below are certainly not the

only possible ones that might be discussed, but these ques-

tions can serve as a starting point for thinking about new

directions for the next years of research. For each question I

first assess briefly the current state of research, and then

address some of the technical approaches that are needed to

address these questions. Some of the needed experiments or

computations are feasible now, but others will require the

development of new technologies or the further application

of techniques just now becoming available to biologists

and engineers studying aquatic locomotor systems.
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2 Ten questions for swimming hydrodynamics

2.1 What is the three-dimensional structure

of propulsive surfaces?

Without an understanding of the three-dimensional shape

of the propulsive surfaces of aquatic animals, and how

these shapes can deform during propulsion (see Question 2

below), it is difficult to imagine how we will make sub-

stantial further progress in understanding the hydrody-

namics of swimming organisms. While some organisms

probably can be treated reasonably by two-dimensional

analyses, either experimental or computational, in my view

we have effectively reached the limit of progress using

two-dimensional views and computational techniques

(Lauder et al. 2007; Tytell et al. 2008). It is now important

that we move to a full three-dimensional understanding of

the shape of swimming animals, and to understand how

deformation of propulsive surfaces takes place during

locomotion.

One would think that numerous data files would be

available on the three-dimensional shapes of animals such

as jellyfish, fish, and marine mammals. And yet, until very

recently, almost no data existed to document the geometry

of complex biologic propulsive surfaces. Even now there

are surprisingly few data sets with full three-dimensional

shape information. Most studies of locomotion in fishes

and marine mammals, e.g., treat the body two-dimension-

ally, either by considering a horizontal slice of a swimming

animal, or a vertical plane through a flapping appendage.

This situation is beginning to change, and both com-

putational fluid dynamics (Borazjani and Sotiropoulos

2009; Bozkurttas et al. 2009; Liu et al. 1997; Wolfgang

et al. 1999; Zhu et al. 2002) and experimental fluid

mechanical analyses (Bartol et al. 2005; Cooper et al. 2008;

Lauder and Madden 2007; Lauder and Madden 2008;

Weber et al. 2009) are beginning to incorporate a full three-

dimensional animal geometry. A public database of such

biologic geometries is still lacking, and would be a valu-

able resource for scientists. Such a database could be cre-

ated through micro-CT (Computed Tomography) scanning

of a diversity of whole organisms and individual propulsive

surfaces, which would permit detailed reconstruction of

body surface shape (as well as many internal bone and

cartilage elements).

While the streamlined shape of marine mammal bodies

and flukes in cross-section is well known (Fish 2004; Fish

et al. 2008) and the streamlined shape of most fish bodies is

well understood (Hertel 1966; Hoerner 1965; Webb 1975),

it is not generally appreciated that the fins of fishes are

often not at all streamlined, and in fact resemble the basic

design of insect wings in forming a textured surface. In

fact, textured surfaces are a prominent feature of the fins of

ray-finned fishes, and these propulsive surfaces are far from

smooth (Fig. 1). The fins of most fishes consist of jointed

bony or cartilage fin rays with a thin collagenous mem-

brane extending between them. This results in a ‘‘bumpy’’

surface structure, the implications of which have never

been investigated. The biomechanical properties of fish fin

rays and the remarkable bilaminar design have been ana-

lyzed (Alben et al. 2007; Geerlink and Videler 1987;

Lauder and Madden 2007), but the effect of the uneven fin

surface (with fin rays that may extend as much as 1 mm

above the membrane on each side) on flow control during

swimming has not been studied. It is also noteworthy that

different fins present the textured surface at different ori-

entations to incoming flow. For example, the bumpy sur-

face of fin rays in the caudal fin are oriented at a relatively

low angle of attack to freestream flow, while the dorsal and

anal fin rays can be nearly orthogonal to incoming flow

depending on the extent to which fish erect these fins.

Three-dimensional reconstructions of fin geometry would

be a first step toward computational fluid dynamic analyses

of the effects of surface structure.

There is also considerable variation in cross-sectional

geometry along the body of fish when viewed in three

dimensions, and this is another area that has received rel-

atively little attention. Figure 1 shows a series of body

cross sections resulting from a micro-CT scans of a bluegill

sunfish (Lepomis macrochirus) where the change in

sharpness of the upper and lower body margins is evident,

and suggests the possibility of considerable change in flow

separation along the body during undulatory locomotion.

Also noteworthy in the posterior sections is the textured

surface structure of the dorsal and caudal fins.

2.2 How do propulsive surfaces move in three

dimensions?

If little is known about the three-dimensional structure of

animal locomotor surfaces, then even less is known about

how these control surfaces move in three dimensions.

Although it might seem, in the year 2009, that the three-

dimensional motions of aquatic animal appendages or

bodies should have been well studied, in fact there are

extremely few papers in which the three-dimensional

conformation of propulsive surfaces has been measured

through time. The lack of data on the motion of appendages

through time and space is a serious constraint on both

computational and experimental analyses of animal loco-

motion in water, as without this information analyses are

necessarily simplified into two dimensions.

Figure 2 shows three different views of one position of

the pectoral fin of a bluegill sunfish at the mid-fin beat

time (near the transition time from outstroke to instroke)

during steady locomotion at one body length per second
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(approximately 10 cm/sec in this case). The conformation of

the fin is complex and involves cupping of the upper and

lower margins to form two simultaneous leading edges, a

wave of bending that travels from root to tip, and chordwise

deformation, which changes through time (Lauder et al.

2006; Lauder and Madden 2007). Given the complex kine-

matics of this pectoral fin, using a flat-plate model or a

highly simplified representation of the fin that does not allow

for changes in fin area through time or chordwise or span-

wise dimensional changes is not likely to lead to advances in

our understanding of pectoral fin propulsion. This accurate

representation of the three-dimensional motion through time

of a fish pectoral fin was critical to using computational

fluid dynamics to understand the mechanism of thrust pro-

duction by the sunfish pectoral fin (Bozkurttas et al. 2009).

Accurate three-dimensional kinematic data of propulsor and

body surface deformation through time are key elements of

computational fluid dynamic modeling.

However, data such as those shown in Fig. 2 are difficult

to obtain. Multiple synchronized high-speed cameras with

reasonable resolution (1 K by 1 K at least) are needed to

obtain three-dimensional kinematics when there is con-

siderable deformation and folding of moving appendages.

Often the propulsive surfaces of swimming animals are

either not well marked naturally, or are difficult to place

clear markers on to facilitate quantification of motion.

Ideally, up to several hundred points would be measured at

each time step to give an accurate representation of surface

deformation, and a measurement frequency of five to ten

times the movement frequency will be needed to capture

transient components of three-dimensional motion. And,

once some system of identifying points has been devel-

oped, the job of digitizing the x, y, and z locations in space

and through time begins. None of this is trivial. And

although computer-assisted quantification techniques are

increasingly being developed for insects (e.g., Fontaine

et al. 2009; Wang et al. 2008) to reduce the manual work

needed to reconstruct three-dimensional propulsor confor-

mations, these approaches have not yet yielded a bounty of

three-dimensional kinematic data for swimming animals.

The three-dimensional motions of swimming animal

propulsors are the result of a complex fluid–structure

interaction, complex in part due to the (mostly unstudied)

non-linear material properties of biologic propulsors. The

observed motion will be a function of the material prop-

erties of the body and appendages (which change along the

chordwise and spanwise directions), interacting dynami-

cally with fluid-generated forces. Quantification of three-

dimensional motion could thus also be used to test fluid–

structure interaction computational models which, if cor-

rect in a particular case, should be able to predict the

resulting movement pattern.

Fig. 1 Anatomy of a bluegill

sunfish to illustrate changes in

cross-sectional shape down the

body and the non-streamlined

textured surfaces of the fins.

Bluegill image in upper right
shows the location of anatomic

features. a cleared and stained

image of the dorsal fin region of

a bluegill sunfish (bones are

stained red, and muscle and skin

have been cleared) to show the

bony spines and rays that

support the thin fin membrane.

b–g micro-CT sections through

a bluegill sunfish to illustrate

changes in shape down the

body. Note the relatively

rounded shape of the body until

the tail region where sections

are flat with sharp upper and

lower edges. Fin surfaces are

bumpy (see sections c and g)

with projecting fin rays. All

micro-CT images are shown at

the same scale
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For swimming fishes, examples of three-dimensional

data on fins include efforts to quantify the curvature of fish

fin rays in three dimensions during a variety of natural

locomotor movements (Lauder et al. 2006; Standen and

Lauder 2005; Standen and Lauder 2007; Standen 2008;

Taft et al. 2008), and these data have proven very useful for

understanding how the structure of fish fin rays (Alben

et al. 2007; Lauder and Madden 2007) deforms under in

vivo locomotor conditions. In addition, it is clear that fish

propulsive surfaces frequently undergo substantial changes

in area during both the movement cycle at one swimming

speed, and also when compared across changes in speed or

locomotor behavior (Tytell et al. 2008). So analyses of fish

locomotion very much need to account for area changes in

fins during motion. I am not aware of any three-dimen-

sional experimentally obtained kinematic data for swim-

ming mammals.

2.3 What are the hydrodynamic effects of propulsor

deformation during locomotion?

Although quite a few papers have investigated the effects

of flexibility on aquatic locomotor performance (e.g.,

Alben et al. 2004; Alben 2008; Blondeaux et al. 2005;

Bozkurttas et al. 2006; Shen et al. 2003; Shoele and Zhu

2009), we still lack basic information on how flexible

natural biologic systems are and hence on how much

changes in flexibility affect locomotor parameters such as

thrust generation and efficiency. Only limited three-

dimensional data are available for swimming fishes, and

some two-dimensional estimates of fluke camber changes

through the tail stroke are available for marine mammals

(Fish and Lauder 2006; Fish et al. 2008).

For example, one form of natural flexibility in motion is

the cupping and bending motions of pectoral fins in

swimming fishes (e.g., Fig. 2). One possible benefit of this

motion is the control of both positive and negative lift

forces during the outstroke and instroke, as the production

of simultaneous up and down forces could act to minimize

center of mass oscillation (Lauder and Madden 2007).

Another example of the control of propulsor deformation is

the caudal fin (tail) of swimming fishes. Researchers as

early as Bainbridge (1963) noticed the substantial change

in fish fin shape during the tail beat (also see Lauder 1989;

Lauder 2000), and this has been quantified for swimming

fishes and related to the vortical flow patterns shed by the

tail (Tytell 2006). In addition, Flammang and Lauder

(Flammang and Lauder 2008; Flammang and Lauder 2009)

showed that these conformational changes in tail shape are

actively produced with intrinsic musculature, and caudal

fin shape change varies greatly in concert with the type of

maneuver being performed by the swimming fish.

Changes in fin area with swimming speed (Standen and

Lauder 2005; Standen and Lauder 2007; Tytell et al. 2008)

have obvious implications for hydrodynamic force pro-

duction, and the evidence is now clear that swimming

fishes actively adjust their fin area as speed changes.

However, the pattern of fin area change with speed can

differ considerably between species, with swimming trout

and bluegill sunfish showing different patterns of fin area

change as speed increases.

Radially symmetrical jellyfish greatly simplify the

problem of quantifying body deformation, and recent

studies of jellyfish hydrodynamics have shown in detail

how the flexible body moves to produce thrust and generate

specific wake vortex patterns (Dabiri et al. 2005; Dabiri

et al. 2006).

The study of propulsor deformation and its possible

hydrodynamic consequences is one area in which a robotic

approach (see Question 8 below) can be extremely useful,

Fig. 2 Three views of a single

time during the fin beat cycle

(just after the transition from fin

outstroke to instroke) to

illustrate bending and

conformational changes in a fish

pectoral fin. The three fin

images are color coded by

z-position, which indicates the

distance of the fin element from

the body. Note the bent and

cupped shape of the fin at this

time. Arrow #1 points to the

wave of bending that travels

from root to tip of the fin, while

arrows labeled #2 point to the

region of the fin surface that

generates thrust during the

outstroke
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permitting controlled alterations in flexibility of elements

scaled to the naturally observed bending of biologic tissues

during movement. Study of a range of flexible propulsors

in a flapping robotic apparatus allowing measurement of

efficiency and energy consumption simultaneously with

wake dynamics will allow more definitive statements about

the hydrodynamic consequences of flexibility than is now

possible.

Additionally, a computational fluid dynamic approach

can be used to investigate models of varying flexibility

to compute resulting changes in efficiency and wake

dynamics. Examples of this approach applied to fish pec-

toral fins allowed the conclusion that structural flexibility

of pectoral fin rays may increase both thrust and efficiency

(Shoele and Zhu 2009; Zhu and Shoele 2008).

2.4 How are locomotor kinematics and dynamics

altered under unsteady conditions?

Fish often move in an unsteady manner. And even when

the time-averaged center of mass velocity is constant, the

motion of individual propulsors is dynamic. So under-

standing the hydrodynamics of aquatic animal locomotion

requires understanding how body motions and induced

flows change with time. This in turn requires both time-

resolved kinematics and experimental fluid dynamic data.

Only in the past ten years has there been increasing

focus on investigating the fluid dynamics of unsteady

locomotor behaviors such as maneuvering locomotion.

There are still no experimental analyses of maneuvering

fluid dynamics or changes in propulsor conformation dur-

ing maneuvers by aquatic mammals. Most analyses of

acceleration or other unsteady behaviors such as braking,

stopping, or backing up have occurred in fishes, where

particle image velocimetry and kinematic analysis have

demonstrated the considerable changes in wake dynamics

and the shape and area of propulsive surfaces that

accompany maneuvers (Flammang and Lauder 2009;

Shirgaonkar et al. 2008; Tytell 2004). The study of

unsteady locomotor dynamics is an area of swimming

hydrodynamics that is very much in need of further

analysis.

One unsteady behavior in fishes that has received a great

deal of attention from fish biologists and neurobiologists is

the so-called c-start escape response. In this behavior, the

fish rapidly (5–30 ms) bends its body into a c-like shape

during stage 1, followed by a strong tail movement during

stage 2 to move the center of mass away from the stimulus

(Wakeling 2006). This behavior is controlled by a well-

understood neuronal network, and has been the subject of

nearly a thousand papers over the years. But virtually

nothing is known about the fluid dynamics of this can-

nonical unsteady locomotor behavior.

Figure 3 shows one result from the analysis by Tytell

and Lauder (2008) who quantified the fluid dynamics of the

escape response in bluegill sunfish. The rapid pattern of

body bending during the c-start escape produces three

distinct vortical flows, nearly orthogonal to each other.

Summing the estimated forces along the direction of the

escape response calculated from particle image velocime-

try data produced an estimate for body momentum that was

not significantly different from that calculated from the

body motion itself. Generally similar flow patterns were

also found by Epps and Techet (2007) in their study of

rapid turning maneuvers. A great deal of more experi-

mental study is needed on rapid locomotor behaviors,

which are frequently exhibited by fishes and which form a

very important part of their natural locomotor repertoire.

Another key area of unsteady swimming hydrodynamics

is the behavior exhibited by fishes swimming in turbulent

flows. Although natural turbulence in streams may be hard

to replicate in a laboratory setting, it is possible to generate

controlled turbulence using cylinders in a flow. Producing a

Karman street and inducing fish to swim there reveals a

number of novel locomotor modes (Liao et al. 2003a, b;

Liao 2004) that had not previously been observed by fishes

swimming steadily in the typical laboratory setting. The

control system used by fishes to interact with turbulent

flows is mostly unknown, although there is a great deal of

information about individual fish sensory systems (Collin

and Marshall 2003; Coombs and Van Netten 2006; Webb

et al. 2008). Analyses of aquatic animals swimming in

well-characterized unsteady flows is just in its infancy, and

a great deal more research is needed in this area.

2.5 What is the three-dimensional structure of aquatic

animal vortex wakes?

There are now numerous reconstructions, using data from

two-dimensional planar particle image velocimetry, of the

vortex wakes shed by swimming animals. Examples

include simplistic views of the vortex wake produced by

the tail of swimming fishes (Lauder and Drucker 2002;

Nauen and Lauder 2002a; Videler 1993; Wilga and Lauder

2004), pectoral fin vortex rings (Drucker and Lauder 1999;

Drucker and Lauder 2000), and more sophisticated esti-

mates of the vortical patterns shed by the tail as well as

dorsal and anal fins (Tytell 2006; Tytell et al. 2008) of

swimming fishes. These data have been generated using

time-resolved particle image velocimetry, with framing

rates up to 1000 Hz, which gives good resolution of the

evolution of the wake in a single plane. Some progress has

also been made in understanding the vortical wake and

patterns of wake momentum using stereo particle image

velocimetry which results in three velocity components for

a single plane (Nauen and Lauder 2002b; Sakakibara et al.
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2004; Willert 1997), but a key future goal should be to use

more technically sophisticated methods to estimate the

three-dimensional structure of wake vorticity.

There are unavoidable difficulties in using planar data to

reconstruct three-dimensional structures, especially when

freely swimming fishes are studied. Phase averaging is

possible, although difficult, because each fin beat is slightly

different both in the timing and excursion of fin and body

motion, and fishes rarely swim in a constant absolute

position (Lauder and Madden 2007; Lauder and Madden

2008). Extrapolating from data obtained in one plane to a

three-dimensional vortex structure is also challenging. To

some extent, these difficulties can be mitigated by using a

scanning approach in which the laser light sheet is scanned

rapidly through the moving fin (Brücker and Bleckmann

2007; Lauder and Madden 2007; Zhang et al. 2008), or

reorienting the laser light sheet into orthogonal orienta-

tions to evaluate vorticity in multiple planes (e.g., Drucker

and Lauder 1999). Such approaches have permitted

considerable progress in reconstructing vortex dynamics

and analyzing momentum fluxes associated with the

moving body and propulsors, and inaccuracies have been at

least reduced by using time-resolved particle image ve-

locimetry which provides a high-sample rate of flow

dynamics (200–1000 Hz) relative to the frequency of body

and appendage motion (typically 1–10 Hz).

Nonetheless, future advances in understanding locomo-

tor dynamics would be greatly aided by the ability to

reconstruct the full three-dimensional flow pattern gener-

ated by moving organisms. Technically, this is just now

becoming feasible, but there are as yet no examples of

volumetric data showing the full three-dimensional vortex

wake structure behind a swimming body or moving animal

surface. The technology to generate such data is just now

available, with tomographic, holographic, or defocusing

approaches becoming more common, and allowing the

calculation of all three velocity components within a vol-

ume at an instant in time, thus providing a snapshot of the

Fig. 3 Wake flow patterns

(yellow velocity vectors)

generated by a bluegill sunfish

exhibiting a c-start escape

response to show the

unexpected hydrodynamic

patterns that can emerge from

unsteady locomotor behaviors.

Each rapid c-start produces

three nearly orthogonal jet flows

(labeled Jet 1, Jet 2, and Jet 3)

as the fish bends its body during

the escape. The stimulus is

visible in the lower left of each

image, and the laser light sheet

intersected the mid-body region.

Image from Tytell and Lauder

(2008)
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full wake structure (Hain et al. 2008; Pereira et al. 2000;

Svizher and Cohen 2006; Troolin and Longmire 2008;

Wieneke 2008).

2.6 To what extent are observed body and propulsor

deformations actively controlled?

The extent to which observed body and propulsive surface

deformations are primarily active, passive, or a complex

interaction between the two, is one of the most difficult

questions facing investigators studying the locomotor

dynamics of swimming organisms. This is a non-trivial

question, and addressing this issue comprehensively requires

not just approaches from fluid mechanics, but also the use of

electrophysiological techniques such as electromyography to

determine when muscles are active to power locomotion.

Because most swimming animals have bodies and/or

moving propulsive surfaces with intrinsic muscles that can be

activated to varying degrees, the stiffness of the body and

surfaces can be altered from moment to moment. And,

changes in body stiffness often accompany changes in speed

of swimming animals (e.g., Long 1998; Long and Nipper

1996). Bony fish, in particular, possess fin architectures that

allow them to control the stiffness of their appendages by

activating muscles at the base of the fin, even though no

muscle tissue resides within the fin itself (Alben et al. 2007;

Geerlink and Videler 1987; Lauder 2006; Lauder and Madden

2006). This makes interpreting observed correlations between

movement and wake-flow patterns very difficult.

There is at least one situation in which it is possible to

conclusively state that animals are actively moving their

bodies and appendages: if motion occurs into external flow

so that body motion opposes the direction of flow. Alben

et al. (2007: Fig. 8) show an example of this from the

sunfish pectoral fin during a maneuver. But in almost all

cases, the observed deformation will be neither clearly

actively generated nor purely a passive result of flow-

induced pressure on the surface.

At least two distinct approaches can be taken to the

problem of determining the extent of active versus passive

control of surface deformation. First, measurements can be

made of muscle activity patterns during swimming to

determine if the appendages or body regions under analysis

are being activated by the animal’s musculature as the

appendages move into oncoming fluid. In addition, muscle

activity recordings will show if an animal is resisting fluid

loading on the body or appendages even though they are

being deformed by fluid forces. Examples of such data for

fishes are given in Flammang and Lauder (2008, 2009) for

fish tail function, and muscular control of fish body

deformation is reviewed in Shadwick and Lauder (2006).

Second, a computational approach is possible. Gener-

ating a coupled fluid–structure model for a particular

appendage will allow computing both flows and shapes of

the appendage with a prescribed root movement pattern.

The computed and predicted movement patterns can then

be compared to the body and appendage motions observed

during natural locomotion (Zhu and Shoele 2008).

Progress in addressing this question will depend in part

on our ability to generate a much greater array of data on

the material properties of biologic tissues, and data on how

these properties can be actively controlled. Most important

will be the development of new methods for determining

the in vivo stiffness of tissues of swimming animals, and

how stiffness changes during movement of the body and

appendages.

2.7 What is the response of the body and appendages

to external perturbations?

Despite the many analyses of propulsion in aquatic animals

ranging from jellyfish to a diversity of fishes to marine

mammals, very few papers have attempted to perturb

directly the freely swimming animal with a controlled

stimulus. And yet such perturbations could be exception-

ally informative about the instantaneous mechanical

properties of the moving body or fins, and also reveal many

aspects of both the hierarchical locomotor control system

and the dynamics of body stability.

Webb (2004b) conducted an exemplary study of the

responses of fishes to jets of water impinging on their body,

and showed that the fish species studied appeared to be

more sensitive to roll disturbances and attempted to correct

for roll torques more rapidly than for yaw or pitch torques;

also see Webb (2006, 2004a) for more general discussions

of fish stability. But further experiments are needed to

assess how aquatic animals maintain stability and to

understand the role that different sensory systems play in

regulating stable body posture.

Figure 4 shows an example of an experimental arrange-

ment used to perturb swimming bluegill sunfish. A syn-

thetic jet vortex generator was used to produce a single

vortex ring that propagated toward the swimming fish. This

jet is visualized by filling the cavity in the vortex generator

with dye, and jets can be aimed at both pectoral fins

(Fig. 4a) and the caudal fin (Fig. 4b, c). If the impinging

vortex ring is not too strong, fish do not attempt to escape,

and fins exhibit a passive response to the vortex jet. In this

case, the strength of the vortex ring impacting the swim-

ming fish was determined to be in the range of forces

generated by fish fins during locomotion: fin and vortex

impulses ranged from 0.1 to 1.0 mNs.

Another type of perturbation can be achieved by altering

the viscosity of the liquid in which animals move, either

by altering viscosity directly by adding polymers or by

changing the temperature (Horner and Jayne 2008; Hunt
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von Herbing and Keating 2003; Johnson et al. 1998).

Studies of this kind promise new insights into the regula-

tion of locomotor dynamics in swimming animals by

greatly extending the parameter space within which ani-

mals must perform locomotor actions.

Perturbation studies of swimming animals are still in

their infancy, and a great deal more remains to be done,

especially in the development of controlled systems for

generating appropriate stimuli that induce a response

(either active or passive) in the swimming animal, and in

methods of analyzing responses of animals to stimuli.

2.8 How can robotic models help us understand

locomotor dynamics?

The last 10 years have seen a rapid increase in the devel-

opment of robotic devices that can swim (e.g.,

Bandyopadhyay 2002; Kato 2000; Long et al. 2006; Tan

et al. 2007; Triantafyllou and Triantafyllou 1995). In some

cases, robotic animal-like swimmers are developed to

answer engineering questions about underwater propulsion.

But robotic models have an important role to play in helping

biologists understand how aquatic animals function to move

effectively. Robotics can inform biology in many useful

ways. One key area in which robotic swimming devices are

useful is in allowing isolation of individual factors that might

influence propulsion. For example, comparative analyses of

fish locomotion are hampered by the fact that species of

fishes differ in many mechanical attributes. If one is inter-

ested in the effect of fish tail shape on propulsion, a com-

parison can be done between fish of different species that

have different tail shapes, but there are many other features

of these species that will differ also. Similarly, if one is

interested in how changes in fish body or fin flexibility alter

propulsive efficiency, a comparison could be made between

different species that differ in flexibility, but these species

will also differ in many other attributes, any of which could

affect propulsion. The many ways in which species differ

from each other make it very difficult to isolate individual

components and thus to investigate key biomechanical

questions to better understand aquatic locomotion.

Robotic models are a great advantage in allowing iso-

lation of individual components of design, but this can also

come at the cost of simplifying the biology to such an

extent that key features of animal design are lost. However,

it is possible to undertake a range of studies from simple

physical models of propulsion to more highly biomimetic

robotic devices that allow one to investigate fundamental

questions about propulsion with much greater control than

can be achieved using live animals.

As one example of this approach, an overview of a

diversity of robotic approaches from our recent research on

fish propulsion is shown in Fig. 5 (Lauder et al. 2007). We

have attempted to range from the study of simple flexible

plastic foils where we can easily change material properties

and shapes (even though these systems are not as biolog-

ically realistic) to more highly biomimetic designs with fish

pectoral fin robots that closely resemble the pectoral fins

of live fishes (Tangorra et al. 2007). Even complex fish

locomotor surfaces such as a ray wing can be modeled

simply using a two-actuator system to understand basic

properties of surface deformation and its effect on pro-

pulsion. One critical feature of these robotic test platforms

is that they are self-propelling: they generate propulsive

forces and swim against oncoming flow on a low-friction

air carriage so that they can be studied easily using stan-

dard kinematic and fluid dynamic approaches (Lauder et al.

2007). The ability to study robotic models under conditions

of self propulsion is critical to understanding the body and

fin motions and how wake-flow patterns are produced.

Fig. 4 Vortex perturbations of a freely swimming bluegill sunfish.

Images are individual frames from 500-Hz digital videos of generated

vortices impacting the fish during locomotion. a The sunfish (18 cm

in length) and the vortex generator used to perturb the fish which is

freely swimming in a recirculating flow tank at 0.5 L/s. A small

vortex (48 mN impact force) is about to hit the fish just posterior to

the center of mass. b A small vortex ring moving toward the fish near

the tail fin. c Impact of this vortex ring 28 ms later on the tail. The

original movie clearly shows rapid and passive deflection of the tail

within 10 ms resulting from vortex impact
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Robotic test platforms have many advantages: control of

specific structural parameters such as flexibility, precise

motion control, direct measurement of force (difficult in

freely swimming fishes), and exploration of a wider

parameter space of motion than seen in live animals.

Robotic devices also facilitate three-dimensional kinematic

studies and correlated hydrodynamic analyses, as the

location of the locomotor surface can be known accurately.

And, individual components of a natural motion (such as

outstroke vs. instroke of a flapping appendage) can be

programmed separately, which is certainly difficult to

achieve when working with a live animal.

2.9 How do propulsive surfaces interact

hydrodynamically during natural motions?

One aspect of aquatic animal propulsion that is clearly

evident in fishes, and to a lesser extent in marine mammals,

is the possibility that the different control surfaces used for

locomotion can interact with each other hydrodynamically.

The idea of hydrodynamic interactions among propulsive

surfaces is an old one, but recently this idea has received

more attention. One aspect of this question is the extent to

which flow encountered by the trailing edge of the swim-

ming animal is altered by body motions upstream, and this

has been a topic of some discussion for swimming fishes

(Lauder and Tytell 2006; Müller et al. 2001; Tytell and

Lauder 2004). But the possibility of hydrodynamic inter-

actions between flapping appendages (acting as two indi-

vidual foils) has also been a topic of interest, although most

research to date has been on insect wings during flight

(Birch and Dickinson 2003; Lehmann et al. 2005; Lehmann

2008; Lehmann 2009; Usherwood and Lehman 2008).

There is certainly a great deal more that could be studied

on the interesting topic of hydrodynamic interactions

among propulsive surfaces of swimming animals.

Experimental studies of live fishes have shown that

upstream fins such as the dorsal and anal fins actively

generate vortex wakes that travel downstream and

encounter the tail (Drucker and Lauder 2001; Standen and

Lauder 2007), and that the tail experiences greatly altered

flows that are quite different from the free stream. This has

clear implications for locomotor efficiency, as well as for

the hydrodynamic mechanisms that are involved in lift and

thrust production during swimming. One computational

study (Akhtar et al. 2007) analyzed a range of phase

relationships between the flapping dorsal fin and tail of

swimming bluegill sunfish, and compared the biologic

values to the values of thrust and efficiency calculated for a

diversity of parameter values. Interestingly, the optimal

computed phase difference of 48� is different than the

observed 108� observed during swimming sunfish. This

result is still unexplained, but suggests that fish are subject

to constraints on fin shapes, location, and movement pat-

terns that limit their ability to move propulsive surfaces in

a hydrodynamically optimal fashion.

2.10 What new computational approaches are needed

to better understand locomotor hydrodynamics?

There is only so much that can be learned from experi-

mental studies of live animals. Data that are important for

understanding hydrodynamic mechanisms and flow phys-

ics, such as surface pressure distributions, are extremely

hard to obtain on freely swimming animals. Small local-

ized transducers can be attached (see, e.g., the classic

papers by DuBois et al. 1976; Dubois and Ogilvy 1978),

but data from one point on the swimming animal gives only

a very general impression of the forces exhibited by the

surface as a whole.

A computational approach, particularly when married

with experimental analysis of live animals and robotic

devices, permits exploration of a large parameter space,

alteration of movement patterns, and a focused investiga-

tion of hydrodynamic mechanisms underlying locomotor

performance. And computational approaches are an excel-

lent way to simplify biologic structures and movement

patterns, and compare them to more canonical engineering

solutions such as heaving and pitching foils.

There have been a number of recent computational fluid

dynamic analyses of aquatic locomotion, which involve

study of either whole body deformations (Borazjani

and Sotiropoulos 2008; Borazjani and Sotiropoulos 2009;

Fig. 5 Diagrammatic overview of one approach to fish biorobotics

that includes both simple physical models (flapping flexible plastic

foils—on the left) and more highly biomimetic models of fish and

their fins (biomimetic pectoral fin—on the right). Simple physical

models with one or two actuators allow easy alteration of flexibility

and shape to model fish tail diversity, while more complexly actuated

designs permit study of motion similar to that in freely swimming

fishes. Some positive and negative aspects of each extreme approach

are listed
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Carling et al. 1998) or propulsive surfaces such as pectoral

fins (Bozkurttas et al. 2009; Mittal et al. 2006; Ramamurti

et al. 2002). To date no study that I am aware of has

included both moving fish bodies and fins together. Since

fish fins are actively moved by intrinsic musculature

(Lauder 2006) and shed their own vortex wake, computa-

tional approaches to fish locomotion in the future could

certainly be extended by incorporating both body and fin

motions. The computational studies of Borazjani and col-

leagues (2008; 2009) in particular show how understanding

difficult issues in comparative hydrodynamics can be

greatly enhanced by a computational approach, as they

were able to directly compare computationally fish swim-

ming in an anguilliform versus carangiform locomotor

mode, something that would not be possible to achieve by

studying live fishes.

Computational approaches also have recently contrib-

uted considerably to the analysis of experimental data, as

evidenced by recent work on a Lagrangian approach to

wake dynamics and identification of an ‘‘upstream wake’’

(Dabiri 2005; Peng and Dabiri 2008a; Peng and Dabiri

2008b).

Future contributions of computational approaches are

likely to be enhanced by the development of more

sophisticated internal body models of swimming animals

(e.g., Bowtell and Williams 1991; Bowtell and Williams

1994) and then coupling these to fluid dynamic model for a

comprehensive analysis of body and control surface inputs

and outputs during swimming. However bright the pros-

pects for such an approach, this work will be challenging,

as full three-dimensional analyses of all propulsive sur-

faces will be needed, as will knowledge of the dynamic

material properties of the body and moving surfaces. As

noted above, acquiring time-varying geometries on moving

organisms is not a simple task, although recent techniques

such as proper orthogonal decomposition (POD) allow

simplification of the movement pattern, once acquired, for

subsequent computational analysis (Bozkurttas et al. 2009).

An additional challenge will be the ability to run compu-

tational analyses at Reynolds numbers high enough to

reflect the speeds and sizes of most adult swimming

organisms, in the range of 5,000 to 20,000.

3 Conclusions

There are many unresolved questions in the study of the

swimming hydrodynamics of animals, and the papers col-

lected in this volume exemplify many of the new avenues

of research that will lead to future advances. In this con-

tribution, I have gathered together ten key questions that in

my view might, especially for students contemplating

research in this area, guide plans for future studies of

swimming hydrodynamics. Addressing even a portion of

one of these questions could form the basis for thesis

research or even the focus of an entire research program for

several years.

There are certainly many other possible questions that

could be addressed, and in the interest of brevity I have

omitted many interesting areas of research. But I believe

that if, in the next decade, we are able to make as much

progress as we have in the past one, the field of swimming

hydrodynamics will have demonstrated remarkable inno-

vation and growth that promises many new discoveries

about how swimming animals interact with their fluid

environment.
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