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Speciation is a multifaceted process that involves numerous aspects of the

biological sciences and occurs for multiple reasons. Ecology plays a major

role, including both abiotic and biotic factors. Whether populations experi-

ence similar or divergent ecological environments, they often adapt to

local conditions through divergence in biomechanical traits. We investigate

the role of biomechanics in speciation using fish predator–prey interactions,

a primary driver of fitness for both predators and prey. We highlight specific

groups of fishes, or specific species, that have been particularly valuable for

understanding these dynamic interactions and offer the best opportunities

for future studies that link genetic architecture to biomechanics and repro-

ductive isolation (RI). In addition to emphasizing the key biomechanical

techniques that will be instrumental, we also propose that the movement

towards linking biomechanics and speciation will include (i) establishing

the genetic basis of biomechanical traits, (ii) testing whether similar and

divergent selection lead to biomechanical divergence, and (iii) testing

whether/how biomechanical traits affect RI. Future investigations that

examine speciation through the lens of biomechanics will propel our

understanding of this key process.
1. Introduction
The quest to understand the origin of species requires integration across all facets

of the biological sciences. Biochemical, molecular, behavioural, physiological and

morphological levels of variation routinely contribute to the process of speciation.

Although not all species evolve from natural selection, most do, even in the face of

gene flow. The evolution of complex genetic architectures (numbers, location and

effects of genes) contributing to reproductive barriers can be rapid, and involve

similar or different solutions to the same problem [1]. Ecology, therefore, plays

a critical role in speciation [2–4].

Selection is often multifaceted, from abiotic habitat characteristics to biotic

interactions. Yet, when looking to the fossil record and across extant taxa, sub-

stantial evidence suggests that predator–prey interactions have repeatedly and

consistently produced long-term behavioural and morphological (e.g. loco-

motion and feeding) trends in various clades (e.g. [5,6]). Evolutionary

branching has been commonly induced by ecological interactions between pre-

dators and their prey [7,8]. Alternatively, predator culls of prey can reduce

interspecific competition and stifle speciation under some circumstances

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2016.1294&domain=pdf&date_stamp=2016-09-14
mailto:thigham@ucr.edu
https://dx.doi.org/10.6084/m9.figshare.c.3461766
http://orcid.org/
http://orcid.org/0000-0003-3538-6671
http://rspb.royalsocietypublishing.org/


ecospace

function space

morphospace

ancestral 
population

population
no. 2

population
no. 1

reproductive isolation due to
functionally inferior hybrids 

pe
rf

or
m

an
ce

 

hybrids

population divergence

functional trait

ecological speciation no speciation

genetic
basis

phenotypic
plasticity

Figure 1. (Caption opposite.)

Figure 1. (Opposite.) The theoretical framework for ecological speciation. A
species will be divided by an abiotic or biotic isolating mechanism (bottom
panel). This will result in the occupation of different regions of ecospace (e.g.
two lakes with completely different structural and biotic attributes), followed
by divergence of the two populations away from the ancestral population, result-
ing in the occupation of two distinct regions of function space. The differential
functional demands will ultimately drive the alteration of underlying physiological
(not shown) and morphological traits. If this is a result of phenotypic plasticity, no
speciation will likely occur. With a genetic basis, and assuming reduced fitness of
hybrids, speciation will likely occur. However, variation in morphology and bio-
mechanics will likely exhibit a combination of plasticity and genetic-basis. In
addition, we are not implying that some plasticity will hinder speciation.
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(e.g. [9]). Understanding the mechanistic nature of these

interactions and their evolutionary consequences requires a

multidisciplinary approach that integrates structure, function

and performance—that is, a biomechanical approach.
Biomechanics represents the study of biological structure

and function using physical principles. Organismal perform-

ance represents the primary substrate upon which selection

acts [10–12], and variation in performance often arises

via variation in biomechanics. For instance, changes in organis-

mal performance are often reflected in morphological shifts,

such as muscle and bone size, shape, and arrangement, ulti-

mately leading to an alteration of the forces acting within an

animal, or between an animal and its environment. Such

changes can occur during adaptation to new ecological con-

ditions [13]. For example, consider a single fish population

that is split into two new habitats (figure 1). One habitat is a

low-flow environment, much like the ancestral condition. The

other is a high-flow environment, imparting new selective

pressures. The biomechanical demands in a high-flow environ-

ment favour a more streamlined and slender body to minimize

drag, and higher aspect-ratio caudal fins to maximize thrust

[14–16]. Drag is a force that resists the forward motion of an

animal, and thrust is a force that propels an animal forward.

Thus, the response to changes in selective pressures is directly

related to the resistance and/or production of force. As these

two populations diverge over time, they may become reproduc-

tively isolated for several reasons, including decreased fitness of

immigrants and hybrids if these individuals show maladaptive

functional traits compared with residents. This simple illus-

tration of the biomechanical basis of reproductive isolation

(RI) highlights the potential for biomechanical approaches to

enlighten our understanding of the mechanisms of speciation.

The tight fits between form and function suggest the influ-

ence of adaptive evolution; however, the prevalence of

adaptive traits, the mechanisms by which they arise and the cor-

responding phenotypic and molecular responses to selection are

subjects of extensive debate. Here, we present a unique multi-

dimensional approach to studying how natural selection

influences speciation, with the ultimate goal of building an

understanding of the origin of species through the study

of the adaptive evolution of biomechanical traits and their

effects on RI. The lens of biomechanics can open up new predic-

tions about the evolution of whole-organism performance in

particular ecological environments. Moreover, biomechanical

consequences of phenotypic variation are not always straightfor-

ward, sometimes leading to mismatches between morphological

changes and functional changes [17]. Thus, assumptions of

functional inferiority based on morphology alone are not

adequate for predictions about speciation.

We highlight a quantitative framework for understanding

population divergence and speciation built on a biomechani-

cal foundation—i.e. study the evolution of organismal
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function to uncover insights into the evolution of RI. As func-

tion diverges, as a result of altered or similar selective

pressures, lower-level morphological and physiological

traits also diverge (figure 1). Population divergence can

lead to reproductive incompatibility, either in the presence

or absence of gene flow, and can occur during the expansion

of populations into new habitats [18,19] or as habitats are

fragmented or modified [20,21]. Although genetic drift and

intrinsic incompatibilities may contribute to RI in these cir-

cumstances, here we focus on extrinsic forms of isolation

resulting from functional mismatches (e.g. functional inferior-

ity of migrants and hybrids in foraging, feeding, avoiding

predation, attracting mates and mating). That is, functional

divergence begets lineage splitting via functional incompat-

ibility of the diverging populations, although additional

(non-biomechanical) mechanisms also could hasten or

restrain the evolution of RI. Of course, not all hybrids or

migrants will be functionally inviable or even inferior, as in

hybrid vigour [22], highlighting the need for empirical

investigation of organismal function in the context of speciation.

Our thesis that the ‘lens of biomechanics’ provides insight

into the speciation process relies on the following well-

supported assumptions: (i) changes in ecological factors

will result in differential selective pressures on one or more

functional systems [23]. (ii) Multiple solutions to a functional

problem are probably common [24], and can lead to func-

tional divergence between populations experiencing similar

selective pressures. (iii) Functional capabilities of animals

emerge from the combination of underlying physiological

and morphological traits [25]. (iv) Functional and morpho-

physiological traits are commonly genetically based (e.g.

[26]). (v) As function diverges between populations, immi-

grant and intermediate forms may be functionally inferior

to resident forms [27], and thus speciation can occur by redu-

cing migration and excluding any hybrids that might form

between populations, resulting in RI.

Unlike other studies that have discussed biomechanics

and speciation [13], we leverage the strong foundation of

knowledge in fishes to describe approaches that directly

link biomechanics and speciation, detailing multiple modes

of selection, multiple isolating barriers and modern bio-

mechanical techniques that are critical for quantifying

function. While applicable to a wide range of animal systems,

we focus on fishes because of their extensive ecological,

phylogenetic and phenotypic diversity, as well as their preva-

lence as model systems for studying speciation, many-to-one

mapping, and biomechanics. Predator–prey interactions in

fishes have been a major focus of research over the past several

decades [28,29], where survival depends on both the ability to

escape from predators and to catch prey [30]. Locomotor and

feeding traits underlie predator–prey interactions, and both

respond to selection and contribute to RI [31,32], making

predator–prey interactions central to the study of speciation.

Despite the incredible diversity among fishes, common biome-

chanical links between form and function persist in the

evolution of feeding and locomotion across broad phylogenetic

groupings [33,34]. The groups that we propose as model systems

are outlined in the electronic supplementary material and high-

lighted in figure 2. We illustrate a framework that identifies the

key ecological variables shaping predator–prey interactions,

links genetic architecture to phenotype, biomechanics and per-

formance, determines the fitness consequences of functional

variation and quantifies its effects on RI (figure 3).
2. Predator – prey interactions
(a) Prey capture
Suction feeding, the primary mode of prey capture among

fishes, involves the rapid expansion of the mouth cavity that

causes a sharp drop in pressure [55], driving nearby water

and prey towards the mouth. Suction affects only a small area

near the jaws [56], meaning that the fish must use locomotion

to accurately position the mouth close to the prey for successful

capture [57]. Thus, prey capture involves the tight functional

integration of locomotion and feeding [58–61]. Key locomotor

factors include approach speed, acceleration/deceleration, tra-

jectory, stability and timing [59]. The functional divergence in

response to selection for enhanced feeding performance on

different prey can lead to a wide array of multivariate pheno-

typic changes. For example, Gobiomorus dormitor populations

that have colonized inland blue holes in the Bahamas experi-

ence shifts in the available prey, driving changes in body

shape, mouth morphology, suction generation capacity, strike

kinematics and feeding performance on different prey types [62].
(b) Predator evasion
Fishes evade predation attempts using rapid escape beha-

viours. An example is the C-start, whereby powerful

muscle contractions bend the fish into a C-shape and rapidly

accelerate the animal [63]. Much research has focused on

describing escape behaviours induced by controlled stimuli,

yet in reality, changes in ecological and predatory parameters

can significantly alter these patterns. The sensory signals that

mediate the prey’s response and the motor behaviours leading

to escape have been investigated for decades. Research on zebra-

fish found that prey are startled by the visual cues produced by

an approaching predator. Specifically, fish initiate a C-start

when the appearance of the predator, from the perspective of

the prey, increases in size above a critical rate (apparent looming

threshold) [28], meaning that fish will most probably respond to

a close and fast-moving predator. The flow-sensitive lateral line

system is also crucial for detecting a predator’s attack [64–66].

Zebrafish larvae use the lateral line to detect the subtle disturb-

ance of water ahead of a swimming predator [65], and larvae

without the lateral line are over three times more likely to be cap-

tured [64]. Ecologically divergent populations of three spine

stickleback exhibit considerable differences in lateral line mor-

phology [67] that are related to their ecological conditions (e.g.

vegetation, amount of visual cues, habitat complexity), poten-

tially impacting the fitness of migrants or hybrids.
3. Key ecological variables
Many environmental factors can affect whole-organism

performance capabilities, and can influence selection on func-

tional traits (figure 3). Here, we focus on the set of factors that

represent the most widespread importance for speciation in

fishes. Substantial evidence points to predator–prey interactions

as major drivers of diversification in fishes, strongly influencing

the evolution of locomotion and feeding [4,29,68]. Important fac-

tors that can affect predator–prey interactions in fishes include

abiotic variables such as temperature, flow conditions, dissolved

oxygen, salinity and pH, as well as biotic variables such as pred-

ator density and type, interspecific competitors, population

density and prey resource quality and type (figure 3).

http://rspb.royalsocietypublishing.org/


Labeotropheus trewavasae

Lepomis macrochirus

Gasterosteus aculeatus

Cyprinodon variegatus

Danio rerio

Gambusia hubbsi

Poecilia reticulata

in
te

rs
pe

ci
fi

c
ec

ol
og

ic
al

 d
iv

er
ge

nc
e

m
or

ph
ol

og
ic

al
di

ve
rg

en
ce

bi
om

ec
ha

ni
cs

as
so

ci
at

ed
 w

ith
ec

ol
og

ic
al

di
ve

rg
en

ce

ge
ne

tic
 b

as
is

 o
f

bi
om

ec
ha

ni
ca

l
tr

ai
t d

iv
er

ge
nc

e

re
pr

od
uc

tiv
e

is
ol

at
io

n 
lin

ke
d

to
 b

io
m

ec
ha

ni
cs

A, B
[36]

A, B
[96]

A, B
[46] 

C, PC
[35–37]

C, PC
[39,41]

C, PC
[43–45]

C, PC
[47,50]

PC
[51]

C, PC
[31]

— 

L, F
[35,37,38]

L, F
[40,57]

L, F
[43,45]

F
[47,48] 

L
[51,97]

L, F
[68,69]

— 

Q
[38]

CG
[39] 

Q, CG
[42–44] 

RAD
[48,49]

CG
[97]

CG
[31,69]

AS
[53]

R
[36] 

— 

R
[42]

R
[49] 

— 

R
[31,69]

— 

A, B
[39]

A, B
[4]

A, B
[49]

A, B
[51]

A, B
[31]

A, B
[52]

ci
ch

lid
s

ce
nt

ra
rc

hi
ds

th
re

es
pi

ne
st

ic
kl

eb
ac

k
T

ri
ni

da
di

an
gu

pp
ie

s

pu
pf

is
h

ze
br

af
is

h
m

os
qu

ito
fi

sh

in
tr

as
pe

ci
fi

c
ec

ol
og

ic
al

 d
iv

er
ge

nc
e

A, B
[14,31] 

Figure 2. Representative line drawings of the seven species/groups of fishes highlighted as model systems for locomotion and feeding. Species names are listed by
each drawing. Tabular information indicates whether the group has been examined in each of the categories. The citations are merely examples [35 – 53]. A, abiotic;
B, biotic; C, cranial; PC, post-cranial; L, locomotion; F, feeding, Q, quantitative trait loci; CG, common garden; RAD, RADseq; AS, artificial selection; R, reproductive
isolation confirmed.
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4. How to obtain and quantify phenotypic
variation?

Understanding phenotypic variation is critical for assessing

which forms provide an advantage in a given set of conditions.

To obtain this information, we can (i) directly assess existing

phenotypic variation in natural populations and test how this
translates into differences in performance and fitness [69], (ii)

manipulate animals by altering their morphology (including

sensory systems) [64], (iii) use robotics/physical models [70],

theoretical models and computational fluid dynamics to

explore phenotypic space [71], and (iv) segregate phenotypic

differences using experimental crosses between genetically

and phenotypically distinct populations (e.g. [72]) (figure 3).

http://rspb.royalsocietypublishing.org/
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Determining the phenotypic changes that produce bio-

mechanical differences affecting performance, as well as the

genetic underpinnings of these changes, requires quantification

of morphology in different regions of morphospace, which is a

multivariate representation of shape and structure of a species

or multiple species. Photography, microscopy and radiography

are commonly employed for quantifying morphology. More

recently, techniques such as microcomputed tomography

(mCT) allow three-dimensional modelling and visualization of

hard and soft tissue components.

Measuring phenotypic covariation patterns is key to

capturing the nature and extent of variation present in a

system,andinunderstandingevolutionaryresponses of multiple

traits to selection. The action of selection on the developmental-

genetic architecture underlying functionally correlated traits

relatively stronger covariation between such traits as a unit, in

comparison to the rest of the phenotype [73,74]. Covariation is

also influenced by drift and gene flow [75,76], and can constrain

the range of possible phenotypes available for selection [77,78]

and bias the direction of evolution [79]. Alternatively, patterns

of phenotypic covariation can facilitate adaptive change without

compromising function [74,80–82].
5. Quantifying functional consequences of
phenotypic variation among fishes

Two important steps in understanding how different pheno-

types differ in function or performance are first, to quantify

organismal function and any differences among populations

or species, and second, to generate testable hypotheses about

both the consequences and causes of these functional differ-

ences. This process is often quite challenging, but in recent

years a number of techniques (below) have become available

that permit a much better understanding of organismal function

and enable testing of the causes of differences among species.

(a) Three-dimensional kinematics
High-speed videography can be used to capture extremely

small or rapid motions to quantify kinematics and ultimately

performance. When coupled with approaches explained

below, this can provide a powerful tool for understanding

the biomechanics of fish locomotion and prey capture [57].

(b) Hydrodynamics
Fishes exert forces on the surrounding fluid using multiple con-

trol surfaces (locomotion) or by the rapid expansion of the

mouth (feeding). Force production in fluids involves the trans-

fer of momentum from the animal to the fluid, leading to

the shedding of vorticity [83]. Quantifying the motions of

fluid around moving structures can be achieved with engineer-

ing techniques such as digital particle image velocimetry

(DPIV). With DPIV, water surrounding the fish is seeded

with neutrally buoyant particles, a laser sheet illuminates

those particles, and the movement of the particles can then

be imaged with high-speed video. The two-dimensional and

three-dimensional global flow fields can be calculated from

spatial cross-correlation techniques to help reveal the fluid

basis of fish function and behaviour [84]. For example, three-

dimensional suction accuracy in centrarchid fishes was recently

modelled and related to capture success [85].
(c) Robotics
One of the most challenging aspects of organismal biomecha-

nics is separating cause from effect, and identifying the

specific functional consequences of phenotypic traits in live

animals. It is difficult to fully and accurately understand func-

tional observations given the inability to control all relevant

variables: individuals and species always differ in numerous

traits other than the one of interest. One avenue of research

that minimizes such confounding factors is the use of a robotic

system to alter only the parameters of interest. Robotic systems

offer the advantage of facilitating force measurement, the abil-

ity to explore a large parameter space of possible parameters,

and greater control over flow visualization measurements.

We believe that there will be increasing use of robotic systems

in comparative biology to allow more precise understanding of

the relationship between the phenotype and performance

[86,87], especially where interspecific comparisons involve

such distantly related species that one cannot have confidence

in comparisons of biological systems or can serve as ‘surrogate

organisms’ in cases where animal function cannot be directly

observed. The design of robotic models that capture key pheno-

typic features of these hard-to-get species may be of use in

testing the performance consequences of interspecific pheno-

typic differences that arise during the process of speciation.

(d) Computational fluid dynamics
Computational approaches share some of the same advantages

that robotic systems have in serving as an abstracted version

of biological reality that can be manipulated with relative

ease to explore a large parameter space. Computational fluid

dynamics mathematically simulates how fluids interact with sur-

faces using the Navier–Stokes equations. The main challenge

associated with computational models of swimming and feeding

in fishes is the rapidly developing and unsteady nature of the

flow patterns that are produced (e.g. [88]). And the phenotypic

features of fishes involved in feeding and swimming are flexible

and complex biomechanically, making development of an accu-

rate three-dimensional structural model challenging and the

analysis of structure–fluid interactions difficult. Centrarchid

fishes have served as the basis for computational models of

both feeding [89] and locomotion [90], and these have provided

considerable insight into the link between structure and function.

For example, sunfish (Lepomis) pectoral fins deform in a complex

way during slow speed labriform swimming and computatio-

nal fluid dynamic analysis showed, unexpectedly, that this

deformation pattern results in thrust generation on both the

outstroke and instroke of the fin beat cycle.

(e) Neuromechanics
Our understanding of how fish trigger escape responses has

been advanced by a wide variety of techniques, including

electrophysiological recordings of the Mauthner cells [91],

laser ablations of the Mauthner cells [92], and the addition of

extra neurons during development [93]. Work on fish as preda-

tors has helped us understand how visual information is

processed for hunting [94]. Work on the lateral line system is

revealing how information encoded by a single mechano-

receptor elicits behaviour [95]. Further investigation of the

neuromechanics of predator–prey encounters promises to

yield insight into the unique demands of different habitats.

For example, using calcium imaging or electrophysiology to
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measure the differential activity of nerves in different environ-

mental conditions (e.g. still versus turbulent water) will help us

understand the basis of how habitat affects performance.
.royalsocietypublishing.org
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6. Biomechanics of locomotion and feeding
in fishes

Fish typically respond to two ecological shifts related to

predator–prey interactions: (i) changes in trophic niche and

(ii) changes in predation pressure. For example, rapid jaw evol-

ution is observed in pupfish as they specialize on different types

of prey (e.g. hard prey or scales). Comparable patterns are

observed in African cichlids. In stickleback, divergence within

a lake due to competition or among lakes due to predation

pressure has led to shifts and divergence in the type of prey con-

sumed. Across most groups, fish that become more pelagic will

tend to eat zooplankton whereas benthic ecotypes tend to focus

on benthic macroinvertebrates. Although shifts in trophic niche

can occur as a result of competition [96], sometimes leading to

sympatric divergence in feeding structures (e.g. stickleback, cen-

trarchids), predation pressure can induce a trophic shift in prey

by driving a change in habitat use. The latter is common in a

number of the groups outlined in the electronic supplementary

material. And in guppies and mosquitofish, variation in pred-

ation risk also leads to evolution of functional divergence

independent of trophic niche (e.g. predator evasion, [69,97]).

A major question in evolutionary biology concerns the

predictability and repeatability of evolutionary change and

its role in the origin of species. With divergent fish lineages

repeatedly experiencing similar environmental/ecological

gradients, this provides an opportunity to gain insight into

the predictability of functional divergence at multiple scales

(e.g. genetics, morphology, kinematics, performance, RI).

The bright future in this area is exemplified by the fact that

we were able to highlight seven model systems in this

paper (figure 2). Thus, there is great promise for shedding

light on the extent of parallelism in functional evolutionary

patterns at different scales among disparate groups.
7. Framework for the biomechanics of
speciation: the functional link from
genetics to reproductive isolation

Selection is a common driver of speciation [2,3], but the func-

tional mechanisms linking adaptive changes in genotype

and phenotype to the evolution of RI are still largely unknown

[1]. Relatively recently, a framework for linking morphology,

performance and fitness was solidified [10,11]. But little work

has extended this framework to speciation. We propose that

biomechanics provides a necessary piece as it bridges mor-

phology and performance (figure 3), and generates testable

predictions for evolutionary divergence and RI [13,14,68].

Biomechanics is critical for defining the limits (constraints) to

performance, and morphology is defined, at least in part,

by genetics. Using an integrative framework that recognizes

connections from genetics to RI, we can identify functional

mechanisms of speciation: e.g. using model fish groups to pre-

dict the evolution of divergent morphologies and post-zygotic

isolation based on biomechanical and ecological knowledge,

and test the genetic basis of the reproductive isolating barriers
[98]. The primary impediment to such an integrative analysis is

the lack of study system for which all of the variables can be

studied, but locomotion and feeding in fishes represents a

promising avenue as they represent a suite of integrated char-

acters that routinely exhibit convergent evolution in association

with adaptations to similar environments or ecological niches.

Thus, our suggestion to focus on fish predator–prey inter-

actions is based on the vast amount of existing information

and the utility of the system. Insights gleaned from fish into

the biomechanical basis of speciation will be applicable for

almost all animals that capture prey or get eaten by a predator.

The primary reasoning for including genetics in this

framework is not necessarily to pinpoint the genes for particu-

lar traits per se, but rather to uncover the nature of multi-trait

divergence (e.g. genetic correlations versus independent

evolution) and establish the extent to which population diver-

gence reflects genetic differentiation, phenotypic plasticity or

both (e.g. common-garden experiments). If performance

exhibits adaptive plasticity, this could minimize genetic diver-

gence and slow speciation. By contrast, identifying a genetic

basis for a critical biomechanical trait will potentially reveal

the functional basis of speciation. Once the extent of the genetic

basis has been characterized, testing the outcomes of hybridiz-

ation or migration will be more productive with biomechanical

approaches, because these traits have definitive links to function

in association with the environment and, as a consequence,

more probably represent targets of selection.

Adaptive divergence in biomechanical traits can facilitate

speciation under two primary scenarios: (i) divergent selection

favours different aspects of performance in different ecological

environments, and divergence in traits increases RI among

populations (i.e. ecological speciation), and (ii) populations

respond to similar selection on performance by evolving differ-

ent adaptive solutions that enhance RI among populations

(i.e. mutation-order speciation). Under both scenarios, popu-

lations must persist following adaptive peak shift [26]

(figure 1) and the biomechanical traits involved in adaptive

divergence must directly or indirectly cause RI (e.g. immigrant

inviability, extrinsic hybrid inviability, behavioural isolation

via mate choice (reject individuals with ‘wrong’ form or

performance), mechanical isolation). Prior work has so far

centred on the first scenario, revealing that divergent selection

appears to drive functional divergence, with some studies link-

ing biomechanical traits to RI—e.g. Bahamas mosquitofish that

have evolved different body forms to accommodate different

swimming abilities in different predatory environments have

consequently evolved enhanced RI due to immigrant inviabil-

ity and assortative mating for body shape [31,69,99]. Little

research to date has addressed the second scenario, although

given the ubiquity of non-parallel phenotypic responses to

similar environmental gradients [1], combined with the poten-

tially widespread phenomenon of many-to-one mapping of

form to function [100], this could prove quite important. That

is, the selection surface for biomechanical traits might often

be quite complex, with multiple adaptive peaks of similarly

high fitness levels—and different populations could traverse

different peaks. This is because performance reflects how

good an animal is at executing an ecologically relevant task

[101], and this execution emerges from the integration of mul-

tiple underlying traits that could be combined in various ways

to create similar levels of performance.

To determine the biomechanical basis of RI, we must do the

following things: (i) identify ecological divergence (e.g. lake
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versus stream), (ii) identify divergent morphological and

biomechanical traits across populations/species inhabiting

similar/different environments (population divergence),

(iii) quantify the performance outcomes, (iv) determine the gen-

etic basis or plasticity of these traits and (v) uncover the role of

these traits in speciation by linking them to fitness, RI or lineage

diversification rates. Several of these steps will necessarily exhi-

bit complex interactions, such as performance driving ecological

differences and ecology driving performance differences.

Figure 3 illustrates and expands on this framework.

Studies of recent divergence are best suited to test hypoth-

eses of the effects of adaptive biomechanical variation on RI.

This is because the observed phenotypes and genotypes

involved are more likely to reflect RI that evolved in association

with divergence rather than variation that evolved following the

evolution of RI and speciation. Recent studies of adaptive traits

provide frameworks for testing RI in fishes, such as immigrant

inviability [102,103], extrinsic hybrid inviability [98], behaviour-

al isolation via mate choice [99] and mating incompatibility

(mechanical isolation) [104]. Examining the role of physiological

and biomechanical divergence among nascent populations will

be important for examining mechanistic underpinnings of RI

[105]. Studies of older divergence can use phylogenetic com-

parative methods to test for associations between evolution of

biomechanical traits and lineage diversification.
8. Conclusion
From bee pollination to the function of the heart, biomechanics

is crucial for understanding evolution. We provide a specific

framework for incorporating biomechanics into the study of

ecological and mutation-order speciation. Considering specia-

tion through the lens of biomechanics, specifically through
measuring biomechanical traits associated with locomotion

and prey capture, offers a holistic way of measuring traits

that are often the targets of selection in fishes, and indeed

across taxa. Although the groups of fishes presented here rep-

resent the best targets for understanding speciation through

the lens of biomechanics, it should by no means exclude

other fishes that clearly contribute to these questions (e.g. sal-

monids [106]). We propose that the low-hanging fruit in the

movement towards linking biomechanics and speciation will

include (i) establishing the genetic basis of biomechanical

traits, (ii) testing whether similar and divergent selection lead

to biomechanical divergence, and (iii) testing whether/how

biomechanical traits affect RI. The next steps could be exper-

imental tests that directly demonstrate links with RI. For

example, using controlled crosses under a common-garden

design, the genetic basis of biomechanical traits could be estab-

lished while performance trials could test the prediction that

hybrids are functionally mismatched for these traits. Because

of the strong link of biomechanical traits with function in

association with the environment, the opportunities to test

the alternative consequences of hybridization and migration

with these approaches will contribute to the quest for the

origin of species.
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