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Stingrays, in contrast with many other aquatic animals, have flattened disk-shaped
bodies with expanded pectoral ‘wings’, which are used for locomotion in water.
To discover the key features of stingray locomotion, large-eddy simulations of a
self-propelled stingray, modelled closely after the freshwater stingray, Potamotrygon
orbignyi, are performed. The stingray’s body motion was prescribed based on
three-dimensional experimental measurement of wing and body kinematics in live
stingrays at two different swimming speeds of 1.5 and 2.5L s−1 (L is the disk length
of the stingray). The swimming speeds predicted by the self-propelled simulations
were within 12 % of the nominal swimming speeds in the experiments. It was
found that the fast-swimming stingray (Reynolds number Re = 23 000 and Strouhal
number St= 0.27) is approximately 12 % more efficient than the slow-swimming one
(Re= 13 500, St= 0.34). This is related to the wake of the fast- and slow-swimming
stingrays, which was visualized along with the pressure on the stingray’s body. A
horseshoe vortex was discovered to be present at the anterior margin of the stingray,
creating a low-pressure region that enhances thrust for both fast and slow swimming
speeds. Furthermore, it was found that a leading-edge vortex (LEV) on the pectoral
disk of swimming stingrays generates a low-pressure region in the fast-swimming
stingray, whereas the low- and high-pressure regions in the slow-swimming one are
in the back half of the wing and not close to any vortical structures. The undulatory
motion creates thrust by accelerating the adjacent fluid (the added-mass mechanism),
which is maximized in the back of the wing because of higher undulations and
velocities in the back. However, the thrust enhancement by the LEV occurs in the
front portion of the wing. By computing the forces on the front half and the back
half of the wing, it was found that the contribution of the back half of the wing to
thrust in a slow-swimming stingray is several-fold higher than in the fast-swimming
one. This indicates that the LEV enhances thrust in fast-swimming stingrays and
improves the efficiency of swimming.
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1. Introduction
Aquatic swimming has fascinated scientists for more than a century, with the

pioneering works of Breder (1926), Gray (1933) and Lighthill (1960) to explain how
body motion leads to propulsion. There are two main thrust generation mechanisms
employed by fish for steady propulsion using their body and caudal fin (figure 1):
(1) the added-mass (reactive) mechanism; and (2) the lift-based (vorticity, circulatory)
mechanism. In the added-mass mechanism, the propulsive movements of the fish’s
body, which are in the form of backward-travelling waves, or their pectoral fins
accelerate the adjacent fluid (Gray 1933; Webb 1984). The acceleration of adjacent
fluid generates a reactive (added-mass) force perpendicular to each propulsive element,
which has a component in the thrust direction as shown figure 1(a) (Gray 1933; Webb
1984). This mechanism is typically used by undulatory swimmers, such as eel, which
have large undulations from head to tail and short wavelengths for the propulsive
travelling wave (smaller than the fish length). In the lift-based (vorticity, circulatory)
mechanism, the thrust is generated by the oscillations of the large tail (caudal fin)
of the fish (Chopra 1976). The tail motion consists of heaving (moving side to side)
and pitching (changing the angle of attack) during each tail beat cycle, as shown
in figure 1(b). The flow circulation around the tail, which acts similar to an airfoil,
generates a lift force on the tail. This lift force acts perpendicular to the moving
direction of the flapper, in contrast to the added-mass force, which acts opposite to
the acceleration direction of the undulating body (figure 1). At each instant the angle
of the tail is such that the lift force has a component in the forward (thrust) direction
(figure 1b). Fish that use this mechanism, such as tuna, have fewer undulations of the
body and more oscillations of the tail. Breder (1926) classified the swimming modes
for body–caudal fin propulsion based on a continuum of propulsive movements from
undulatory to oscillatory.

Rosenberger (2001) also classified batoid fish based on a continuum of propulsive
movements from undulatory to oscillatory (flapping). Batoid fish include a diverse
variety of species such as the manta ray, stingray and sawfish with unique body
forms and ways of swimming. Batoids usually have flattened bodies, extended
pectoral fins and a calcified cartilage skeleton, and swim by some form of flapping,
wing undulation or a combination of both (Rosenberger 2001). For instance, a
freshwater stingray swims by passing a travelling wave across its pectoral disk
(undulatory) (Blevins & Lauder 2012), whereas a manta ray swims by flapping its
wings (oscillatory) (Fish et al. 2012). Because of the combination of undulations
and oscillations in batoids and their single, large propulsive fins, ray-like swimming
is a good test case for investigating new propulsive mechanisms. Nevertheless, the
lack of understanding of these alternative means of thrust production prohibits them
from being fully utilized in bio-inspired designs (Fish et al. 2012). Understanding
the underlying physics of different propulsion mechanisms can be achieved through
well-controlled experiments and simulations.

The added-mass mechanism, which is used by undulatory swimmers, has been
investigated through analytical approaches (Lighthill 1960; Wu 1960, 1971), numerical
simulations (Liu & Kawachi 1999; Kern & Koumoutsakos 2006; Borazjani &
Sotiropoulos 2009; Alben et al. 2012) and experiments (Gray 1933; Muller et al.
2001; Tytell & Lauder 2004; Clark & Smits 2006). The early work using elongated-
body theory has found relations for thrust, power and propulsive efficiency based on
the wave speed of the propulsive wave on the body V and the swimming speed U
(Lighthill 1960). The propulsive wave that passes through the fish body accelerates
the adjacent fluid (Gray 1933), but in this theory the thrust of all propulsive elements



Hydrodynamics of swimming in stingrays 409

Tail path of motion

Relative velocity to tail

Propulsive elements

Lift

(a) (b)

FIGURE 1. Schematic of propulsion mechanisms in aquatic swimming. (a) Thrust
generation by the added-mass (reactive) mechanism in which the propulsive elements
accelerate the adjacent fluid backwards perpendicular to the elements, thereby creating
a reaction force that has a component in the forward (thrust) direction. Adopted from
Webb (1984). (b) Thrust generation by the lift-based (circulatory, vorticity) mechanism in
which the tail/fin moves in such a way that the lift force created by the flow circulation
(vorticity) around the tail/fin has a component in the forward (thrust) direction. Symbols:
FA, added-mass force, which is normal to the propulsive element; FT , thrust force; FL,
lateral force; θ , angle between propulsive element and swimming direction.

cancel out through one tail beat cycle, except at the tail, i.e. the thrust is generated
at the tail (Lighthill 1960). Nevertheless, this method overestimates the thrust and
drag by several-fold relative to estimates obtained based on drag coefficients for
streamlined bodies at similar Reynolds numbers and fineness ratios (Lighthill 1971).
Clark & Smits (2006) built an elliptical undulatory robotic fin experimental apparatus
and reported the thrust production and wake structure of the fin in cross-flow. In
more recent studies, the hydrodynamics of this apparatus was explored (Dewey,
Carriou & Smits 2012), in which the wake structure and its relation to efficiency
were discussed. They report that the swimming motion is more efficient when the
leading- and trailing-edge vortices of subsequent cycles coalesce at the location where
the streamwise fluid momentum is concentrated in the wake of the fin. It was shown
that the Strouhal number (St) can have large effects on the fin’s hydrodynamics.
Clark & Smits (2006) report that the efficiency grows to a maximum as the Strouhal
number approaches 0.25 and decreases steadily with Strouhal numbers greater than
0.25. Furthermore, at St = 0.15, the wake consists of a set of interconnected vortex
tails; however, at St = 0.25, the wake structure changes to consist of twisted vortex
structures. This shows that subtle differences in the Strouhal number can have a large
impact on the accompanying hydrodynamics. Moored et al. (2012) found that, if the
undulatory frequency of the fin matches the resonant frequency of the trailing-edge
velocity profile, optimal propulsive efficiency occurs, similar to that found in Lewin
& Haj-Hariri (2003).

The above experimental studies (Clark & Smits 2006; Dewey et al. 2012) utilize
particle image velocimetry to visualize the associated flow fields on the midplane of
the fin. However, to the best of our knowledge, there has been no investigation to date
that has elucidated the three-dimensional (3D) flow over ray-like swimmers, and only
one kinematic study with 3D data necessary for input into computational models. Here
we present numerical simulations of a stingray whose body shape and kinematics are
prescribed based on experimental measurement of 3D motion of the body and surface
of the freshwater stingray during self-propelled swimming.
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The lift-based mechanism, which is used by oscillatory swimmers, has been
investigated both computationally and experimentally through heaving and pitching
foils with simple geometries (Koochesfahani 1989; Anderson, Streitlien & Barrett
1998; Lewin & Haj-Hariri 2003; Dong, Mittal & Najjar 2006) – see the review by
Triantafyllou, Techet & Hover (2004) – and fish-like swimmers (Wolfgang et al.
1999; Nauen & Lauder 2001; Zhu et al. 2002; Borazjani & Sotiropoulos 2008) –
see the review by Fish & Lauder (2006). The flapping two-dimensional (2D) foil
experiments of Anderson et al. (1998) have indicated that high efficiency is associated
with the formation of a moderately strong leading-edge vortex (LEV) on alternating
sides of the foil per half-cycle, which is convected downstream and interacts with
trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street.
The simulations of Dong et al. (2006) for low-aspect-ratio foils have also shown the
shedding of the LEVs similar to the experiments. Lewin & Haj-Hariri (2003) also
showed that the foil efficiency reduces when the LEV gets separated. Simulations of
straight-line swimming of a Danio by Wolfgang et al. (1999) and Zhu et al. (2002)
also indicated that the constructive interaction of the vorticity shed by the body and
the wake results in efficient propulsion.

Borazjani & Sotiropoulos (2008, 2009, 2010) investigated different modes of steady
swimming, defined consistent thrust and efficiency measures that do not depend on
a reference pressure, and found that the large-scale features of the wake structure
are dependent on Strouhal number and that the efficiency–Reynolds number relation
depends on the type of swimming. In mackerel-like swimming with lift-based thrust
generation, the efficiency is maximized in the inertial flow regime (high Reynolds
number); whereas in eel-like swimming with added-mass (reactive) thrust generation,
the efficiency is maximized in the transitional flow regime (intermediate Reynolds
number Re≈ 4000) (Borazjani & Sotiropoulos 2010). Furthermore, kinematics has a
larger effect than body shape on these trends (Borazjani & Sotiropoulos 2010). These
simulations also showed that there are more fluctuations in the thrust generated by the
lift-based mechanism than by the added-mass mechanism (Borazjani 2015). Fast-start
escape behaviours of different fish species have also been investigated numerically
(Borazjani et al. 2012; Borazjani 2013b).

The focus of most previous numerical and experimental studies has been on the
trailing wake generated by the fins. In fact, there is no investigation that reports LEV
formation, which is one of the most important force enhancement features for the
lift-based mechanism in insects, birds and bats (Ellington et al. 1996; Van Den Berg
& Ellington 1997; Birch & Dickinson 2001; Sane 2003; Videler, Stamhuis & Povel
2004; Muijres et al. 2008; Lentink & Dickinson 2009b; Chang et al. 2013; Thielicke
& Stamhuis 2015). Borazjani & Daghooghi (2013) reported for the first time the
LEV reattachment on the fish’s tail, enhancing the thrust generation by the tail, in
the inertial flow regime at Strouhal numbers commonly seen in fish swimming. LEV
reattachment happens when the angle of attack of the foil increases until the flow
separates at the leading edge. The flow reattaches at the trailing edge of the foil, thus
maintaining the Kutta condition (Kuethe & Schetzer 1950). This separation on the
leading edge creates a strong suction pressure, increasing thrust and lift (Earnshaw
1962). From another viewpoint, the additional vorticity in the LEV increases the
circulation around the wing/foil, and thus increases the lift (Ellington et al. 1996).
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The LEV has been estimated to increase the lift by as much as 40 % during slow
flight of bats by showing that the ratio of the circulation of the leading to the trailing
vortex is around 40 % (Muijres et al. 2008). Borazjani & Daghooghi (2013) reported
that the delta shape is not required to produce a stable LEV on the tail by showing
the reattachment of the flow and the LEV on a rectangular tail (no swept-back angle).
We also report LEV formation on the disk-shaped stingray wings here and show that
the LEV generates a low-pressure region that enhances thrust generation in these rays.

LEV dynamics have been widely studied, and the LEV often grows and starts
shedding for translating 2D foils (Dickinson & Gotz 1993; Wang 2000; Kim &
Gharib 2010; Beem, Rival & Triantafyllou 2012; Pitt Ford & Babinsky 2013) or 2D
flapping foils (Anderson et al. 1998; Dong et al. 2006), but it remains stable/attached
for 3D rotating blades (Ellington et al. 1996; Van Den Berg & Ellington 1997; Aono,
Liang & Liu 2008; Lentink & Dickinson 2009b; Ozen & Rockwell 2012; Harbig,
Sheridan & Thompson 2013; Cheng et al. 2014). A spanwise flow that causes the
LEV spiral towards the tip (Maxworthy 1981; Ellington et al. 1996; Van Den Berg
& Ellington 1997; Wang 2005; Lentink & Dickinson 2009b) and recently vorticity
annihilation (Wojcik & Buchholz 2014) is suggested as a stabilizing mechanism
by providing a sink of vorticity to balance the vorticity flux of the leading-edge
shear layer. Spanwise flow magnitude was found to be related to the Reynolds
number (Re) (Aono et al. 2008). Spanwise flow was not observed at low Re (Birch
& Dickinson 2001), but existed at higher Re (Birch, Dickson & Dickinson 2004).
Wojcik & Buchholz (2014) observed that an opposite-sign vorticity layer is extracted
by the LEV, and suggested that vorticity annihilation due to interaction between them
might be an important mechanism for LEV stabilization. The secondary vortex has
been observed on delta wings as well (Gad-el Hak & Blackwelder 1985). Lentink &
Dickinson (2009a,b) suggest rotational acceleration, which scales with Rossby number
(Ro), as the stabilizing mechanism on insect wings. They state that the condition for
stability of the LEV is Ro of order one, and at high Ro (e.g. translating wings)
LEV becomes unstable (Lentink & Dickinson 2009b). Nevertheless, the stability
mechanism of the LEV in insect flight and aquatic swimming might be different,
and the dynamics of the LEV on the surface of freely swimming fish remains poorly
studied.

The effect of fin/wing deformations of a flexible structure on the LEV is not
fully understood either. The fin/wing deformations can be generated actively, e.g.
by muscles, actuators, etc., or passively, e.g. by deformation of a flexible structure
due to fluid forces. Pederzani & Haj-Hariri (2006) analysed the effects chordwise
flexibility on a vertically oscillating foil, and compared it against rigid foils. Pederzani
& Haj-Hariri (2006) found that flexible foils are more efficient than rigid ones, and
also produce more thrust because of snapping, which sheds vortices with increased
strength, thus increasing thrust. Simulations of a flexible wing have shown that wing
deformations might be responsible for stabilizing the LEV, and hence augmenting
the aerodynamic force generation relative to a rigid wing (Nakata & Liu 2012).
In another study for low to medium angles of attack, in contrast, as flexibility of
the wing was increased, its ability to generate aerodynamic forces was decreased
monotonically (Zhao et al. 2010). The flexibility at high angles of attack might not
have the same effect and can slightly increase the forces (Du & Sun 2010). The
flexibility of bumblebee wings also increases their lift generation (Mountcastle &
Combes 2013). More recently, it was shown that the forces are maximized at the first
and second structural resonant frequencies of the wing (Eberle, Reinhall & Daniel
2014). Quinn, Lauder & Smits (2014) also report a localized boost to net thrust
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near resonant frequencies for flexible plates. Note that, in the above studies, the
deformation of the fin/wing was passive, whereas in our simulations of the stingray
the deformation of the wing is prescribed from experiments, i.e. active deformations.

The work presented here investigates the hydrodynamics of stingray locomotion
using self-propelled simulations similar to our previous works (Borazjani & Sotiro-
poulos 2010; Borazjani & Daghooghi 2013) using the sharp-interface immersed
boundary method (Ge & Sotiropoulos 2007; Borazjani, Ge & Sotiropoulos 2008;
Borazjani et al. 2013) (§ 2). Stingray geometry is modelled accurately from laser-scan
data of a freshwater stingray (§ 2.1). Stingray body motion is prescribed based on
experimental measurements in which the 3D movement of 31 points on the dorsal
stingray surface is measured through time at two swimming speeds (Blevins & Lauder
2012). The body motion is prescribed (§ 2.2), but the motion of the centre of mass
is calculated through a fluid–structure interaction coupling (Borazjani et al. 2008).
The simulations are continued until the stingray reaches quasi-steady state, i.e. the
average swimming velocity is constant, at which the swimming performance and the
3D wake is analysed (§ 3). Finally, the results are discussed in § 4.

2. Materials and methods
2.1. Measurements of the stingray body motion and geometry

Five sets of experimental data are used in this work based on the 3D body motion
measurements of a freshwater stingray, P. orbignyi (Blevins & Lauder 2012). Blevins
& Lauder (2012) carried out their experiments at two different swimming speeds: a
fast speed of U = 2.5L s−1 (L is the disk length of the ray) and a slow speed of
U = 1.5L s−1. Three of the sets of experimental data are from experiments at the
fast speed, while two are from stingrays swimming at the slower speed. These
experimental data provide 3D coordinate positions of 31 nodes scattered in a grid-like
manner across the stingray’s pectoral disk over approximately one swimming cycle, as
shown in figure 2 (Blevins & Lauder 2012). For details on the experiments, the rays
and data collection methods, see Blevins & Lauder (2012). These measurements are
analysed here to create a semi-analytical model of the stingray motion as described
in the following section.

The body of a stingray was scanned using a 3D laser scanner to obtain the
body geometry of a stingray (figure 3a). The laser-scan geometry was smoothed
and asymmetry in the laser scanner geometry, created by asymmetric folding of
the stingray wings during the scan, was removed for the simulations. Furthermore,
the stingray’s pelvic fins were removed from the geometry because they are tucked
underneath the ray’s caudal region during swimming and thus have minimal effect on
the hydrodynamics of locomotion. The smoothed stingray surface was meshed with
triangular elements for use in our simulations (figure 3b).

2.2. Stingray body motion analysis
Body and pectoral undulations are measured for 31 points on the stingray (figure 2).
The motion of the other locations on the stingray body needs to be determined
from these measurements. Fourier series are used to create a kinematic description
of the swimming motion of the stingray because of the wave-like nature of the
undulations. The Fourier method used here can be considered as a 2D extension of
the method employed by Videler & Hess (1984) for saithe and mackerel. Because
an infinite number of terms can be used in the Fourier series, the number of terms
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FIGURE 2. (Colour online) Measurement of 3D coordinate positions of 31 points on the
stingray’s body and pectoral fin during free swimming at two speeds. See Blevins &
Lauder (2012) for details. Note that the y direction is directed out of the page.

(a) (b)

FIGURE 3. Geometry of the stingray’s body and pectoral fin. (a) Stingray shape from
the original laser-scan data, in which the asymmetries and curling of the fins due to the
body position when this animal was preserved are evident. (b) The smoothed stingray after
removing the asymmetries and meshing the surface with triangular elements.

that adequately capture the motion of the experimental data must be discovered. To
uncover how many terms adequately capture the swimming motion, the y component
of the experimental data (highest undulation direction) was curve-fitted with a Fourier
series using a nonlinear least-squares approximation similar to Videler & Hess
(1984):

y(t)= a0 +
N∑

q=0

aq sin(qωt)+ bq cos(qωt), (2.1)

where aq and bq are the Fourier coefficients, ω is the natural frequency, t is time
and N is the total number of Fourier terms. The Fourier series is reformulated into a
travelling wave as follows:

y(t)=
N∑

q=0

hq cos(qω(t− φq)), (2.2)
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FIGURE 4. Fourier analysis of the body motion: (a) the first three Fourier coefficients and
(b) the phase angle φ1 for marker points 15, 19 and 23 on the body. The first Fourier
coefficient h1 is dominant and the phase angle varies linearly to a good approximation
along the axial (z) direction.

where hq=
√

a2
q + b2

q and φq= (1/qω) tan−1(bq/aq). The first three Fourier coefficients
aq and bq were obtained by the nonlinear least-squares curve-fitting, and the Fourier
coefficient hq and phase angle φq were calculated for the experimental nodes in the
distal–medial to distal–posterior region of the pectoral disk, as they have the most
prominent undulations. It was found that the first Fourier coefficient h1 is dominant in
all cases. Furthermore, the phase angle φ1 varies almost linearly with the position z
along the ray body from head to tail, i.e. τ1 = Cz (C is a constant), as shown in
figure 4 for nodes 15, 19 and 23 that lie on the same row (x position) on the stingray
wing – see figure 2. Analysis in the lateral direction showed similar results but with
a frequency double that in the y direction. Note that there are no undulations in the
axial (swimming) direction z. Therefore, we can use the first Fourier mode as a good
approximation for the motion of the stingray as follows:

x(t)= Ax(y, z) cos(kz− 4πft), (2.3)
y(t)= Ay(y, z) cos(kz− 2πft), (2.4)

z(t)= z(0), (2.5)

where k is the wavenumber, f is the frequency of the undulatory motion, and Ax

and Ay are the amplitudes of the motion in the vertical and lateral directions. In
what follows we describe how these constants are obtained from the five experimental
datasets.

The frequency f is obtained from the period of the undulations of the experimental
data. Because of noise in the experimental measurements, the measured positions are
first smoothed using a moving-average method, and the period for each experimental
node is obtained from the smoothed measured positions. The frequency for each
dataset is obtained by averaging the frequencies of all the experimental nodes after
eliminating the outliers. The frequency for the slow and fast cases is obtained by
averaging the frequencies of the relevant two and three datasets, respectively. The
frequency is found to be f = 2.385± 0.276 and 3.384± 0.517 Hz for slow and fast
swimming, respectively.
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FIGURE 5. (Colour online) Schematic representation of bilinear interpolation of movement
amplitudes: (a) point P on the surface of the stingray for which the amplitudes need
to be obtained; (b) the four experimental nodes around point P are found; and (c) the
amplitudes at point P are reconstructed by bilinear interpolation from the amplitudes at
the surrounding experimental nodes.

The wavenumber k= 2π/λ (λ is the wavelength) of the ray’s body wave, travelling
backwards in the swimming (z) direction, is obtained by calculating the wave speed
V from the vertical (y) component of the experimental data, i.e. k= 2πf /V . The wave
speed is obtained by determining the speed at which the peak of the travelling wave
progresses across the fish. The wave speed for the experimental nodes is obtained and
averaged to find the average wave speed for each dataset. The wave speeds for the two
slow and the three fast swimming datasets are averaged to find the wave speed for the
slow and fast cases, respectively. The wave speed is found to be V= 253.568± 48.518
and 359.482± 85.656 mm s−1 for slow and fast cases, respectively. The wavenumber
non-dimensionalized by L is, therefore, k = 7.565 ± 4.572 and 7.571 ± 4.851 for
slow and fast cases, respectively. It can be observed that the nominal wavenumber is
basically the same in both slow and fast cases considering its large deviations, i.e. the
wavenumber (wavelength) does not change between fast and slow cases – see Blevins
& Lauder (2012) for more details.

The amplitude for a given point P is obtained by bilinear interpolation from the
amplitude of the four surrounding experimental nodes (figure 5). Owing to the grid-
like structure of the experimental nodes, we can find the four surrounding nodes by
comparing the axial (z) and lateral (x) location of point P with the experimental points
at time zero, i.e. initial stretched state (figure 5b). The surrounding nodes will not
change at later times in the cycle. The amplitudes Ax and Ay at all experimental
nodes are set to the average of the amplitudes of the same node in the five datasets,
because the amplitudes did not change significantly with the swimming speed, i.e. they
were similar in fast and slow cases. The amplitudes in the vertical direction Ay were
typically several-fold larger than the amplitudes in the lateral direction Ax.
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Inertial frame

Non-inertial frame

FIGURE 6. Schematic of the inertial and non-inertial reference frames. The non-inertial
frame is attached to the centre of mass of the stingray and moves with it; xnon-int and
xint are position vectors in the non-inertial and inertial reference frames, respectively; the
origin of the non-inertial reference frame is positioned at xctr from the inertial reference
frame; and Ω is the instantaneous angular velocity of the non-inertial frame.

2.3. The governing equations and the numerical method
To simulate stingray locomotion, we use the curvilinear immersed boundary (CURVIB)
method (Ge & Sotiropoulos 2007; Borazjani et al. 2008) with prescribed body motion
(relative to the centre of mass) from experimental measurements (as described in the
previous sections), and calculated the motion of the centre of mass based on the net
fluid forces, i.e. self-propelled simulations (Borazjani & Sotiropoulos 2010; Borazjani
& Daghooghi 2013), under realistic Reynolds numbers using large-eddy simulations
(LES). The governing equation for the motion of the stingray’s centre of mass is
Newton’s second law:

Mred
dU∗

dt
= F∗. (2.6)

Here Mred = m/(ρL3) is the reduced mass (m is the mass of the swimmer and ρ is
the density of the fluid), which is set at 14.5 in this work; F∗ = F/(ρU2L2) is the
force coefficient acting on the swimmer (U is the swimming speed of the ray from
experiments); and U∗ is the swimming speed of the swimmer non-dimensionalized by
U. The system is restricted in the rotational directions to avoid roll, pitch and yaw.
Because the coordinate frame is attached to the centre of mass of the swimmer, this
is the velocity of the coordinate system as well (figure 6). This equation is coupled
with the fluid equations of motion using our strongly coupled partitioned approach
(Borazjani et al. 2008) similar to our previous self-propelled simulations (Borazjani
& Sotiropoulos 2010; Borazjani & Daghooghi 2013).

The governing equations for the fluid flow are the incompressible Navier–Stokes
equations in a general non-inertial frame of reference (attached to the centre of
mass of the self-propelled stingray – see figure 6) in curvilinear coordinates
(ξ r = ξ r(x1, x2, x3) to easily handle curvilinear or stretched grids) and filtered
for LES, which in tensor notation (repeated indices imply summation) read as
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follows (q, r, s,m= 1, 2, 3):

J
∂Ur

∂ξ r
= 0, (2.7)

∂Ur

∂t
= ξ r

q

(
− ∂

∂ξ s
((Us − V s)uq −Uswq)− ∂

∂ξ s

(
ξ s

q

J
p
ρ

)
+ ∂

∂ξ s

(
ν

gsm

J
∂uq

∂ξm

)
− ξ s

m

ρJ
∂τqm

∂ξ s

)
. (2.8)

Here J = |∂(ξ 1, ξ 2, ξ 3)/∂(x1, x2, x3)| is the determinant of the Jacobian of the
transformation, ξ r

q = ∂ξ r/∂xq; grm is the contravariant metric of the transformation,
grm = ξ r

qξ
m
q ; p is the filtered pressure; ρ is the density; ν is the kinematic viscosity;

Ur= umξ
r
m/J and V r= vmξ

r
m/J are the filtered contravariant velocities for the fluid and

the grid, respectively; and uq, vq and wq are the filtered Cartesian velocities defined
as follows (Beddhu, Taylor & Whitfield 1996; Kim & Choi 2006; Borazjani et al.
2013):

uq = unon-int
q + vq =Qqruint

r , (2.9)
vq =wq + uctr

q , (2.10)

wq = εqlmΩlxint
m , (2.11)

where uctr
q = uctr

q (t) and Ωq =Ωq(t) are the translational and rotational velocity of the
non-inertial frame, respectively, relative to the inertial frame; and unon-int

q = unon-int
q (xr, t)

and uint
q = uint

q (x
int
r , t) are the Cartesian components of the filtered velocity vector as

observed by a viewer in the non-inertial and inertial frames, respectively. Note that
uq = uq(xr, t) is not equal to the absolute (inertial) velocity (uint

q ) if the non-inertial
frame is rotating. In fact, it has the same magnitude but has been rotated similar to
the rotation of the non-inertial frame relative to the inertial frame. One can consider
vq = vq(xr, t) as the components of the grid velocity vector due to the motion of
the non-inertial reference frame, while wq = wq(xr, t) are the components of the grid
velocity vector due to the rotation of the non-inertial reference frame, and εqlm is the
alternating tensor indicating the cross-product of the vectors Ω(t) and xint(t). Finally,
Qqr is the orthogonal rotation tensor that rotates the non-inertial frame to the inertial
frame orientation, i.e. xq = xnon-int

q = Qqr(xint
r − xctr

r ) (q, r = 1 to 3) (see figure 6);
xq = xnon-int

q = xq(t) and xint
q = xint

q (t) are the components of the position vectors in
the non-inertial and inertial reference frames, respectively; and the origin of the non-
inertial reference frame is positioned at xctr = xctr(t) from the inertial reference frame
(see figure 6). The equations in the inertial reference frame can easily be recovered
by setting the translational and angular velocities of the non-inertial frame to zero.

The τqm in (2.8) is the subgrid stress (SGS) tensor for LES. The SGS terms
are modelled using the Smagorinsky model (Smagorinsky 1963) τqm − (τrrδqm)/3 =
−2µtSqm, where the overline denotes the grid filtering operation, and Sqm is the
filtered strain-rate tensor. The eddy viscosity is given by µt = ρCS∆

2|S|, where CS

is the Smagorinsky constant, ∆ is the filter size, and |S| =
√

2SqmSqm. The filter
size is taken as the cube root of the cell volume. The Smagorinsky constant (CS) is
computed using the dynamic Smagorinsky model (Germano et al. 1991) implemented
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and applied in the context of our immersed boundary method (Kang et al. 2012;
Borazjani & Daghooghi 2013; Daghooghi & Borazjani 2015).

Equations (2.8) are solved over curvilinear grids using a fully staggered discretization
with central schemes for the convective and viscous terms. The equations are
integrated in time using an efficient second-order-accurate fractional-step methodology
with a Jacobian-free Newton–Krylov solver for the momentum equations, and a
GMRES solver enhanced with multigrid as a preconditioner for the Poisson equation
(Ge & Sotiropoulos 2007; Borazjani et al. 2008). The code is parallelized using
MPI and the parallel libraries of PETSc (Balay et al. 2004) to efficiently utilize the
supercomputing facilities available to the authors.

To handle the moving boundaries (body motion of the stingray), a sharp-interface
immersed boundary method is used (Gilmanov & Sotiropoulos 2005; Ge &
Sotiropoulos 2007; Borazjani et al. 2008; Borazjani 2013a). In this method, the
fluid grid is fixed and does not move with the boundary, which is more suitable
for large deformations because it does not create highly skewed grids (Mittal &
Iaccarino 2005). The original immersed boundary, pioneered by Peskin (Peskin 1972,
1977; Peskin & McQueen 1989), smeared the effect of boundaries over several grid
nodes, which required additional resolution near the boundary. Since then, a number
of sharp-interface methods have been developed (Mittal & Iaccarino 2005). Here,
the sharp interface is maintained by reconstructing the boundary conditions at the
nodes that are exterior to, but adjacent to, the immersed boundary surface using wall
functions along the local normal to the boundary (Khosronejad et al. 2011; Kang
et al. 2012):

u
u∗
=


y+ if y+ 6 y+0 ,
1
κ

ln y+ if y+ > y+0 ,
(2.12)

where y+ = y/uν is the non-dimensional distance from the wall, u is the velocity
magnitude at the nearest node to the wall, y is the distance off the wall, u∗ is the shear
velocity, κ is the von Kármán constant, ν is the kinematic viscosity, and y+o is chosen
to be 11.53 because the departure from the linear relation is significant (>25 %) for
y+ > 12 (Pope 2000). The immersed boundary surface is discretized using triangular
elements and tracked in a Lagrangian manner. The background non-conforming grid
nodes at each time step are classified into fluid, wall and boundary nodes using
an efficient ray-tracing algorithm described in detail in Borazjani et al. (2008). The
LES with wall functions has been used to simulate aquatic swimmers (Borazjani
& Daghooghi 2013; Daghooghi & Borazjani 2015), sediment transport in channels
(Khosronejad et al. 2011) and hydrokinetic turbines (Kang et al. 2012).

2.4. Numerical simulations and computational details
The self-propelled simulations are initialized with at-rest conditions, i.e. all velocities
are set to zero at the initial time. The body motion is prescribed and the fluid is
solved about the swimmer and the centre-of-mass motion is calculated based on the
forces generated by the ray’s body motion. The simulations are continued until the
ray reaches its terminal velocity, at which the average propulsive forces are zero.

All the governing equations, body kinematics and the computational domain are
non-dimensionalized with the stingray’s disk length L and the experimental swimming
velocity U. This results in two non-dimensional parameters in the equations: Reynolds
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Case U (L s−1) f (Hz) L (cm) k Re St U∗ P∗ T∗ U∗/P∗ ηf

Slow 1.5 2.385 12.8 7.57 13 500 0.34 0.88 0.0135 4.556× 10−3 65.04 22.87
Fast 2.5 3.384 12.8 7.57 23 000 0.27 0.90 0.0079 4.553× 10−3 114.05 34.1

TABLE 1. Stingray performance for slow and fast swimming: U, experimentally measured
swimming speed; f , body motion frequency; L, experimentally measured stingray disk
length; k, body motion wavenumber; Re, Reynolds number; St, Strouhal number; U∗,
average simulated non-dimensional swimming speed; P∗, average power coefficient; T∗,
average thrust coefficient; U∗/P∗, power efficiency; and ηf , Froude efficiency.

number, Re=UL/ν, and Strouhal number, St= fA/U, where f is the frequency of the
swimmer’s undulations, A is the maximum amplitude of the undulations and ν is the
kinematic viscosity of water.

The stingray’s body kinematics were measured under two different swimming
speeds: a slow and a fast swimming speed of U = 1.5 and 2.5L s−1 (0.20 and
0.33 m s−1), respectively. Accordingly, two different simulations, called slow and fast
cases hereafter, are conducted with two different sets of non-dimensional parameters
– see table 1. The characteristic disk length of the stingrays used in the experiments
is L= 12.8± 0.8 cm. The stingray’s undulation frequency is f = 2.385 and 3.384 Hz
for slow and fast swimming, respectively, and the maximum amplitude of the
undulations is approximately A= 0.2L. Using these characteristic values, the nominal
non-dimensional parameters are Re = 13 500 and 22 500 and St = 0.34 and 0.27 for
the slow and fast swimming cases, respectively.

The computational grid used for both of the simulations is a 5.5L × 7L × 12.5L
box. The virtual swimmer was positioned 4.5L from the inlet in the z direction
and was centred in the x and y directions. The region directly surrounding the ray
comprised a 1.1L × 0.5L × 1.5L cuboid with uniform grid spacing of ds = 0.008L,
i.e. non-dimensional wall spacing is y+ ≈ 6 and 10 for Re = 13 500 and 22 500,
respectively. The grid was stretched from the uniform cuboid to the outer edges of
the computational domain using a hyperbolic tangent function. The x–y–z directions
are discretized with 193 × 133 × 269 nodes, with the total number of fluid nodes
approximately 6.9 million. Far-field (Neumann) boundary conditions with a correction
to satisfy the conservation of mass are applied on the outer boundaries of the
computational domain. The non-dimensional time step was set to 0.004 corresponding
to Courant–Friedrichs–Lewy (CFL) number of approximately 0.5 for both slow and
fast cases. We have carried out extensive grid sensitivity studies and found that such
domain size and grid resolution do not affect the results of our simulations.

2.5. Calculation of swimming forces and efficiency
We have simulated the inline swimming of the stingray along the x3 direction. The
component of the instantaneous hydrodynamic force in the x3 direction, i.e. z direction
(which for simplicity will be denoted as F), can be readily computed by integrating
the pressure and viscous forces acting on the body as follows (repeated indices imply
summation):

F(t)=
∫

A
(−pn3 + τ3jnj) dA, (2.13)
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where nj is the jth component of the unit normal vector on dA and τij is the viscous
stress tensor. Whenever F(t) is in the same direction as the swimming direction, i.e.
positive x3 direction, it is considered as thrust type, i.e. thrust T is defined as follows
(Borazjani & Sotiropoulos 2008):

T(t)= 1
2

[∫
A
−pn3 dA+

∣∣∣∣∫
A
−pn3 dA

∣∣∣∣]+ 1
2

[∫
A
τ3jnj dA+

∣∣∣∣∫
A
τ3jnj dA

∣∣∣∣] . (2.14)

The power loss due to lateral and vertical undulations (i=1,2 for x and y directions)
of the ray (P) is calculated as follows (Borazjani & Sotiropoulos 2008):

P=
2∑

i=1

∫
A
(−pniḣi) dA+

∫
A
(τijnjḣ) dA, (2.15)

where ḣi is the time derivative of the displacement of the swimmer, i.e. the velocity
of undulations, in the i direction.

The mean quantities of thrust and power are obtained by averaging the instantaneous
values over several swimming cycles when all swimmers reach steady state. We non-
dimensionalize power and thrust using characteristic velocity and length as follows:

T∗ = T
ρU2L2

, P∗ = P
ρU3L2

, (2.16a,b)

where T and P are the mean thrust force and mean side power, respectively. Finally,
the Froude propulsive efficiency ηf based on the thrust force for constant-speed inline
swimming is defined as follows (Borazjani & Sotiropoulos 2008):

ηf = TU
TU + P

= T∗U∗

T∗U∗ + P∗
. (2.17)

It is important to note that the Froude efficiency equation (2.17) can only be applied
under inline constant-speed swimming when the thrust force is balanced exactly by
the drag force and the net mean force acting on the fish body is zero (Borazjani &
Sotiropoulos 2008, 2009). Therefore, (2.17) is used to compute the efficiency only
when the virtual swimmer has reached the quasi-steady state of constant mean velocity,
similar to our previous work (Borazjani & Sotiropoulos 2010).

3. Results
3.1. Swimming performance

The self-propelled simulations are carried out for both slow and fast cases, and
the calculated swimming speed U∗, non-dimensionalized by the swimming speed in
experiments, is shown in figure 7. The swimmers start from rest, and as they start
their body motion the swimming speed increases until it reaches the quasi-steady
state, at which the average swimming speed is constant. The average swimming
speed U∗ is close to one (figure 7), which indicates good agreement between the
calculated swimming speed and the nominal swimming speed U because U∗ is
non-dimensionalized with U. In fact, it is 0.9 for the fast case and 0.88 for the slow
case (see table 1). This indicates approximately 10 % and 12 % difference for the
fast and slow cases, respectively, in the calculated swimming speed relative to the
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FIGURE 7. (Colour online) Calculated non-dimensional swimming speed U∗ for slow
(Re = 13 500, St = 0.34) and fast (Re = 23 000, St = 0.27) cases. The inset shows the
velocity fluctuations in the last cycles.

swimming speed in the experiments from which the kinematics are derived. Such
differences are reasonable considering the large standard deviations in the kinematics,
e.g. see frequency f , wavenumber k, amplitude A and length of the fish L in § 2.2. For
example, the St calculated based on these values is 0.34± 0.037 and 0.27± 0.041 for
slow and fast cases, respectively. These standard deviations are approximately 10.9 %
of the nominal St for the slow speed case and 15.3 % for the fast case, which are
of the same order of magnitude as the deviations of the calculated speed from the
nominal speed.

Swimming velocity during the quasi-steady state is not constant, and fluctuates
slightly around the average swimming speed (figure 7). The inset in figure 7 shows
more closely the velocity fluctuations, which are approximately 0.5 % and 1.5 % of U∗
for slow and fast cases, respectively, i.e. the fast case has slightly higher fluctuations.
In addition, the slow case has two peaks per cycle while the fast case has only one
peak per cycle. Because the swimming speed is the integral of the acceleration of
the swimmer, the difference in the time history of the hydrodynamic force, which
is directly proportional to the acceleration of the swimmer, equation (2.6), creates
different swimming fluctuations.

The time history of the force and power coefficients are shown in figure 8. The
positive values of force are in the thrust direction (thrust type) and the negative
values are in the drag direction (drag type). There are high-frequency oscillations
in the force history which are much higher than those in the previous simulations
(Borazjani & Sotiropoulos 2008, 2009, 2010) using the same method at lower Re
or with the inviscid assumption (no-flux through instead of no-slip condition) mainly
because of the turbulence in the LES simulations at these realistic Re values. It can
be observed that the force coefficient for the slow case has two local maxima and
two local minima, whereas the fast case has only one maximum and one minimum.
In fact, at the beginning of each cycle, e.g. t/T = 27, the force coefficient has an
inflection point and continues to increase, whereas the force coefficient for the slow
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FIGURE 8. (Colour online) The force coefficient (a) and power coefficient (b) for slow
(Re= 13 500, St= 0.34) and fast (Re= 23 000, St= 0.27) stingray swimming cases.

case decreases to reach a local minimum. The other local maxima and minima occur
almost at the same time instant in the cycle. The reasons behind such differences
in the hydrodynamic force time history will be clarified by examining the wake and
vortical structures in the fast and slow cases in the next section. Nevertheless, it can
be observed that the magnitude of the force coefficient (figure 8a) in the fast and
slow cases is similar. However, the power coefficient of the slow case is generally
higher than that of the fast case (figure 8b). This can be better seen quantitatively in
the average values of these coefficients.

The swimming performance (cycle-averaged values) parameters are calculated when
the swimmer reaches the quasi-steady state (terminal velocity), which are reported in
table 1. It can be observed that the thrust coefficient T∗ (2.14) is similar for both fast
and slow swimming cases. However, the power coefficient P∗ in the fast case is almost
half of that in the slow case. This can be explained by the fact that during quasi-steady
state the thrust balances drag forces, and these forces in the swimming (z) direction
are mainly a function of Re, which do not vary much for Re> 10 000 in the inertial
regime. In fact, the average viscous drag coefficient is 0.0037 and 0.0032 for slow and
fast swimming cases, respectively. In contrast, the power coefficient P∗ (2.15) depends
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on the velocity of the body in the lateral direction relative to the swimming speed, i.e.
St number, when the amplitudes of undulations (Ax and Ay in (2.3)–(2.4)) are similar
in both cases. The St for the fast case is smaller than for the slow case, which results
in smaller power coefficient P∗. This trend is in agreement with previous simulations
of mackerel (Borazjani & Sotiropoulos 2008, 2009, 2010), which showed the decrease
in lateral power coefficient as St was decreased.

The lower power consumption of the fast case results in the higher efficiency of the
stingray in terms of both Froude efficiency ηf and power efficiency U∗/P∗ (table 1).
Power efficiency U∗/P∗ can be considered as the power required to reach a certain
velocity, similar to the concept of fuel economy (miles per gallon) in cars. It can be
observed that the fast case (lower St and higher Re relative to the slow case) has
almost double the power efficiency of the slow cases. Again, this trend is in agreement
with our previous simulations, in which we observed an increase in the efficiency
as Re was increased and St was decreased for mackerel (Borazjani & Sotiropoulos
2008, 2010). These differences in performance are related to the wake. Therefore, we
investigate the wake generated by the slow and fast cases in the next subsection.

3.2. Wake structure and the pressure field
We investigate vortex dynamics during stingray swimming by visualizing flow
structures using the isosurfaces of q-criteria (figures 9 and 10). On the same figures,
we also visualize the pressure on the surface of the stingray geometry to relate the
vortical structures generated by body and wing motion to the pressure on the stingray
surface, which generates the hydrodynamic thrust force. Furthermore, we visualize
the footprints of q-criteria along with the flow on the midplane of the stingray
(figure 11) and the midplane of the stingray wing (figures 12 and 13). The pressure
force on the stingray is along the normal direction to the surface. Therefore, the angle
that a surface makes with the swimming direction (defined as angle θ in figure 1)
determines how much of the pressure force is in the swimming (thrust) direction, e.g.
a surface parallel to the swimming direction does not contribute to thrust and drag,
but if it is perpendicular to the swimming direction all the pressure force is in the
swimming direction. The angles that the wing geometry make with the swimming
direction are better observed in these planar views (figures 12 and 13). Note that
the pressure distribution on the surface is the result of several mechanisms, such as
the acceleration of the adjacent fluid (added mass), and the flow circulation around
the stingray wings. We try to identify the dominant mechanisms by investigating the
vortical structures along with the pressure on the surface (figures 9–13) as well as
the hydrodynamic force history (figure 8a) for both slow and fast swimming cases.

For both cases, a horseshoe vortex is generated at the nose of the stingray, which
stays attached throughout the cycle (denoted by vortex V-A in figures 9 and 10). At
the same time a low-pressure region is also present at all times in the frontal region
of the stingray underneath this vortex (figures 9 and 10). This low-pressure region
can be due to either the horseshoe vortex or the curvature of the body, i.e. the flow
over curved bodies accelerates and its pressure reduces, similar to flow over airfoils.
To identify which is the case, we have plotted the pressure contours and velocity
vectors on the midplane of the stingray along with the footprint of the q-criteria on
that plane in figure 11. It can be observed that the regions enclosed by the q-lines
have low pressure in both high curvature (footprints of the horseshoe vortex) and low
curvature (footprint of vortex V-C just below the front of the stingray). Furthermore,
if the pressure was mainly dominated by the curvature, then after the peak the
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FIGURE 9. (Colour online) Flow visualization for the slow case (Re= 13 500, St= 0.34):
3D vortical structures visualized with the isosurfaces of q-criteria (left-hand column,
see also supplementary movie 1 available at http://dx.doi.org/10.1017/jfm.2015.702) along
with pressure contours on the surface of the stingray from perspective and side views
(right-hand column) at different time instants in the cycle: (a) t/T = 27, (b) t/T = 27.25,
(c) t/T = 27.5, and (d) t/T = 27.75.

http://dx.doi.org/10.1017/jfm.2015.702
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FIGURE 10. (Colour online) Flow visualization for the fast case (Re= 23 000, St= 0.27):
3D vortical structures visualized with the isosurfaces of q-criteria (left-hand column, see
also supplementary movie 2) along with pressure contours on the surface of the stingray
from perspective and side views (right-hand column) at different time instants in the cycle:
(a) t/T = 27, (b) t/T = 27.25, (c) t/T = 27.5, and (d) t/T = 27.75.

pressure would have steadily increased. However, after the peak the pressure does
not increase steadily and remains almost constant in the figure 11(a), and increase
and decrease because of the vortices in figure 11(b). Therefore, the low pressure is
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FIGURE 11. (Colour online) Pressure contours and velocity vectors along with the
footprints of q-criteria (thick blue lines) are plotted on the midplane of the stingray at
t/T = 27.5 for (a) the slow swimming case (Re = 13 500, St = 0.34) and (b) the fast
swimming case (Re = 23 000, St = 0.27). For clarity, only every other velocity vector is
plotted, and the stingray body has been made transparent.

mainly due to the horseshoe vortex and not to the curvature of the stingray body. The
low-pressure region is stronger (lower pressure) in the fast case relative to the slow
case (figures 9 and 10). In addition, it is stronger when it is connected to the vortex
created at the leading edge of the wing (vortex V-B) in both cases. Nonetheless, the
low-pressure region in the front of the stingray, created by the horseshoe vortex at
all times, enhances the hydrodynamic force in the thrust direction.

In the slow swimming case at the beginning of the cycle (figure 9a), there are no
vortical structures on the top of the leading edge of the wing. However, there is a
vortical structure (denoted by vortex V-C in figure 9a) on the bottom side of the
leading edge. Vortex V-C is connected to the tip vortex, which is being shed into
the wake. To better visualize this vortex, the flow on a plane passing through the
middle of the wing is visualized in figure 12(a). There is a low-pressure region due
to the vortex V-C underneath the leading edge (figure 9a), which contributes to drag.
However, this contribution is small because the leading edge is almost parallel to the
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FIGURE 12. (Colour online) Flow visualization for the slow swimming case (Re= 13 500,
St= 0.34): vorticity magnitude and velocity vectors along with the footprints of q-criteria
(thick red lines) are plotted on the midplane of the wing at different time instants in the
cycle: (a) t/T = 27, (b) t/T = 27.25, (c) t/T = 27.5, and (d) t/T = 27.75. For clarity, only
every other velocity vector is plotted.

swimming direction at this time instant (figure 12a). The high pressure on the top side
of the front half of the wing contributes to thrust (denoted by H1 in figure 9a), but
the high pressure on the top side in the back half of the wing cancels that out and
contributes to drag (denoted by H2 in figure 9a). Therefore, overall the net force at
this instant is near zero (figure 8a) for the slow swimming case.

For the fast swimming case, at the beginning of the cycle (figure 10a) an LEV
(vortex V-B), in contrast to the slow swimming case, is starting to form on the top
side of the leading edge, whereas vortex V-C on the bottom side of the leading edge
is starting to diminish. The footprints of these vortices can be viewed in figure 13(a).
There is a low-pressure region underneath vortex V-B (denoted by LV-B in figure 10a),
which does not exist in the slow swimming case. Nevertheless, the angle of the
leading edge relative to the swimming direction is close to zero. Consequently, the
low-pressure region created by LEVs does not contribute much to thrust. The high
pressure on the top side of the front half of the wing (denoted by H1 in figure 10a)
and the low pressure on the top side in the back half of the wing (denoted by L2 in
figure 10a) contribute to thrust. Therefore, the total force on the stingray is in the
thrust direction (figure 8a) for the fast swimming case.

After a quarter of a cycle at t/T = 27.25 in the slow swimming case, the vortex
V-B is completely visible (figure 9b). However, vortex V-C has almost diminished
on the leading edge but still exists on the tip of the wing (figure 9b). The flow
on the midplane does not show vortex V-C at the leading edge either, but V-B is
present (figure 12b). Underneath vortex V-B is a low pressure in the front of the
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FIGURE 13. (Colour online) Flow visualization for the fast swimming case (Re= 23 000,
St= 0.27): vorticity magnitude and velocity vectors along with the footprints of q-criteria
(thick red lines) are plotted on the midplane of the wing at different time instants in the
cycle: (a) t/T = 27, (b) t/T = 27.25, (c) t/T = 27.5, and (d) t/T = 27.75. For clarity, only
every other velocity vector is plotted.

wing (denoted by LV-B in figure 9b). In addition, the front of the wing also has a
low-pressure region (denoted by L3 in figure 9b) in a location where there are no
visible vortices. There is also a high-pressure region on the back of the wing (denoted
by H3 in figure 9b). The angle of the wing surface with the swimming direction at
this instant is such that the pressure force by LV-B, L3 and H3 has a component in the
thrust direction (enhances thrust). Therefore, the total force on the stingray is in the
thrust direction for the slow swimming case at this instant (figure 8a).

At time instant t/T = 27.25 in the fast swimming case, the vortex V-B has grown
relative to the start of the cycle and the vortex V-C has diminished at the leading
edge (figure 10b). The flow on the midplane also shows vortex V-B, but not the vortex
V-C at the leading edge (figure 13b) similar to the slow swimming case (figure 12b).
Underneath vortex V-B is a low-pressure region in the front of the wing (denoted by
LV-B in figure 10b). In addition, the front of the wing also has a low-pressure region
(denoted by L3 in figure 10b), and the back of the wing has a high-pressure region
(denoted by H3 in figure 10b). Considering all these regions and their angles with
the swimming direction (figure 10b), the total force on the stingray is in the thrust
direction for the fast swimming case at this instant (figure 8a).

Although at this time instant (t/T = 27.25) the force on both fast and slow
swimming stingrays is of thrust type, there are differences in the way this thrust
is produced. In both cases the low-pressure region LV-B is created by the LEV
V-B (figures 9b and 10b). In contrast, the low- and high-pressure regions, L3 and
H3, respectively (figures 9b and 10b), are mainly due to the added-mass effect
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(acceleration of the adjacent fluid) created by the propulsive wave (2.4) on the wings
of the stingray. Comparing LV-B, L3 and H3 in fast swimming (figure 10b) and slow
swimming (figure 9b), it can be observed that LV-B has a lower pressure in the fast
swimming case, whereas L3 is lower and H3 is higher in the slow case. This shows
that the contribution of pressure regions created by the undulatory motion (L3 and
H3) relative to the contribution of the LEV through the LV-B region to thrust at this
time in the cycle is higher for the slow swimming case than the fast swimming case.
In fact, comparing the thrust produced by the front half of the wing (z < L/2, z is
the axial direction) to the back half of the wing (z > L/2) shows that in the slow
swimming case the back half produces 61 % more than the front half, whereas in the
fast swimming case the back half only produces 15 % more. Note that the integration
surface is the complete surface of the stingray’s body divided into two halves (front
and back) at z= L/2.

Another look at the force time history in figure 8(a) shows that the main difference
between forces in the slow and fast swimming cases is in a time window between the
start of the cycle, e.g. time instant t/T = 27, to one-quarter into the cycle, e.g. t/T =
27.25. During this time, the force in the slow swimming case has a local minimum
at approximately t/T = 27.1, whereas the fast swimming case does not have this local
minimum. As discussed in the previous section, this additional local minimum in the
force generates the additional peaks in the swimming speed in the slow swimming
case. Now, based on the above discussion on the wake structure, we can identify
the origin of this local minimum. The main difference between the slow swimming
and fast swimming cases at the beginning of the cycle is the existence of vortex
V-B in fast swimming (figure 13a) but not in slow swimming (figure 12a), which
affects the force history. In the slow swimming case, there is no vortex V-B at the
beginning of the cycle (figure 12a) and vortex V-C contributes to drag by creating a
low-pressure region behind the leading edge as the angle between the leading edge
and the swimming direction increases after t/T = 27. This creates the local minimum
in the force history (drag type) at around t/T = 27.1, after which vortex V-C starts to
diminish and vortex V-B, which enhances thrust, starts to form until a quarter into the
cycle, when there is no vortex V-C but the vortex V-B is present (figure 12b). In the
fast swimming case, in contrast, the vortex V-B is already formed at the beginning of
the cycle (figure 13a), which contributes to thrust as the angle increases, and vortex
V-C, which contributes to drag, is diminished earlier than the slow swimming case.
Therefore, the thrust by vortex V-B cancels out the drag by vortex V-C, and the local
minimum of drag type is not formed in the fast swimming case between t/T = 27
(figure 13a) and t/T = 27.25 (figure 13b).

At half a cycle in the slow swimming (figure 9c), vortex V-B has grown relative
to the quarter cycle, and a new vortex V-C is starting to appear at the leading edge.
The footprints of these vortices are better observed in figure 12(c), which shows a
small vortex V-C but a much larger V-B. Underneath vortex V-B is a low-pressure
region (denoted by LV-B in figure 9c). In addition, the front and over the hump of
the wing has a low-pressure region (denoted by L4 in figure 9c), and the back of the
wing has a high-pressure region (denoted by H3 in figure 9c). The surface near LV-B
is almost parallel to the swimming direction, thus does not contribute much to thrust.
Because the low-pressure region L4 extends over the hump to the back of the wing,
it reduces the effect of low pressure in front of the hump, i.e. its contribution to the
thrust is reduced. The main contribution to the thrust at this time instant comes from
the high-pressure region at the back of wing H3. In fact, the back half of the wing
contribution to thrust is two-fold higher than the contribution of the front half of the
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wing. Overall, the total force on the stingray is close to zero in the thrust direction
at this instant (figure 8a).

At half a cycle in the fast swimming (figure 10c), vortex V-B has grown relative to
the quarter cycle, and has fully connected with the tip vortex. Vortex V-C, in contrast
to slow swimming, has not formed on the leading edge yet, as can be observed in
figure 13(c). There is a low-pressure region underneath vortex V-B (denoted by LV-B
in figure 10c), a high-pressure region in front of the hump of the wing (denoted by H4
in figure 10c), and another high-pressure region at the back of the wing (denoted by
H3 in figure 10c). The surface near LV-B is almost parallel to the swimming direction,
thus only contributes slightly to thrust. The high-pressure region H4 in front of the
hump of the wing contributes to drag, whereas the high-pressure region at the back
of hump H3 contributes to thrust. These two contributions from H3 and H4 cancel each
other out for the total force on the stingray to be close to zero in the thrust direction
at this instant (figure 8a).

The force history in figure 8(a) shows that the thrust peak is in between the
quarter (t/T = 27.25) and half cycle (t/T = 27.5) instants at around t/T = 27.4. The
reason for this force peak is that both the low- and high-pressure regions, LV-B and
H3, respectively, observed in figures 9(b,c) and 10(b,c) contribute to thrust within
this time window. In this time window, the angle of the leading-edge surface with
the swimming direction makes the pressure force due to LV-B have a component
in the swimming direction, while the high-pressure region H3 at the back of the
wing has a component in the thrust direction and pushes the stingray forwards. The
high-pressure region H3 is created by the added-mass (reactive force) effect because
of the acceleration of the adjacent fluid due to the undulatory motion. The added-mass
force is higher in the back of the wing due to larger undulations, which result in
higher accelerations of the surface and the adjacent fluid. The low-pressure region
LV-B enhances thrust because of the LEV V-B in front of the wing. Although these
two mechanisms are present in both slow and fast swimming, their contributions
are different in these two swimming conditions. The contribution of the back half
of the wing relative to its front half is much higher in the slow swimming case.
For example, at time instant t/T = 27.25, the back half contributes 61 % and 15 %
more than the front half in slow and fast swimming, respectively; and at time instant
t/T = 27.5, it contributes 218 % and 77 % more than the front half in slow and fast
swimming, respectively. Therefore, the low-pressure region caused by the LEV V-B
enhances thrust in fast swimming more than in slow swimming.

At three-quarters into the cycle for slow swimming (figure 9d), vortex V-B has
shrunk and moved away from the leading edge, but vortex V-C has grown relative
to the half cycle (figure 9c). The larger size of vortex V-C and smaller size of vortex
V-B are better observed in figure 12(d). There is a low-pressure region beneath the
leading edge where vortex V-C is visible (denoted by LV–C in figure 9d). In addition,
there is a low-pressure region in the back of the wing (denoted by L5 in figure 9d),
and a high-pressure region at the trough of the wing (denoted by H5 in figure 9d).
The angles that these surfaces, LV–C, H5 and L5, make with the swimming direction
are such that the pressure force on these surfaces has a component in the swimming
direction. Nevertheless, the back half of the wing contributes more than three times
the front half of the wing to thrust at this time instant.

At three-quarters into the cycle for fast swimming (figure 10d), vortex V-B is
diminishing while vortex V-C is forming at the leading edge. The footprints of these
vortices on the midplane of the wing, shown in figure 13(d), also show the formation
of the vortex V-C, which could not be observed at the half cycle (figure 13c). Because
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vortex V-C is not as strong as for the slow swimming at this instant, it does not create
a strong low-pressure region at the leading edge. Nevertheless, there is a low-pressure
region in the middle of the wing (denoted by L5 in figure 10d), a high-pressure region
in the front of the wing (denoted by H5 in figure 10d), and another high-pressure
region in the posterior region of the wing (denoted by H6 in figure 10d). The angles
that the surfaces H5 make with the swimming direction are such that the pressure
force on it has a component in the swimming direction. However, H6, which has
higher area with higher pressure, contributes to drag; L5 is almost at the valley of
the wing, where the angle with the swimming direction is almost zero. Thus, the L5
contribution to thrust is small. Overall, the total force on the stingray is of drag type
at this instant (a negative force value in figure 8(a) at this instant).

Here, we have discussed the wake structure along with the pressure and forces for
one wing-beat cycle. In the next section, we discuss the thrust generation mechanisms
and the contribution of the LEV in ray-like swimming.

4. Discussions and conclusions
4.1. Contribution of the leading-edge vortex to thrust

As discussed in the Introduction, there are two main mechanisms in aquatic propulsion
(figure 1): the added-mass (reactive force) mechanism, and the lift-based (vorticity,
circulatory) mechanism. The added-mass mechanism is observed in undulatory
swimming, whereas the lift-based mechanism is observed in oscillatory (heaving
and pitching) swimming.

The main parameter that controls the force generation using the added-mass
mechanism in undulatory swimming is the so-called slip velocity or slip ratio defined
as U/V , where V is the velocity of the propulsive wave that propagates backwards
on the stingray’s wings and U is the swimming speed (Lighthill 1960). In fact, when
the lateral velocity at the trailing edge is W, the water near the trailing edge is
pushed to the side with a speed much lower than W equal to w=W(V −U)/V <W
– see figure 5 of Lighthill (1969) for a simple explanation. It can be observed that
w (consequently, the added-mass force – see appendix B) becomes larger as U/V
decreases and tends to zero as U/V tends towards one as the fish would be slipping
through water without giving it any lateral displacement.

The main parameter that governs the lift-based mechanism is the circulation Γ
around the foil/wing. In fact, the lift force is L = ρUΓ , where ρ is the density
of the fluid. There are several mechanisms that enhance the circulation and the
generated lift, e.g. clap and fling (Weis-Fogh 1973), wing–wake interaction (Birch &
Dickinson 2003) and the LEV (Ellington et al. 1996) – see the review by Sane (2003).
In hovering insects and slow flying birds, the contribution from LEV to the lift is
thought to be significant. Ellington et al. (1996) estimated the contribution of the LEV
by assuming that the difference between the lift predicted by the steady aerodynamics
and the weight of the hawkmoth is produced by the LEV, i.e. the theoretical estimate
was around 20 % lower than the weight, which was assumed to be the contribution
from the LEV because the theory did not consider LEV. This approach cannot be used
to estimate the contribution of the LEV in aquatic swimming because the theoretical
estimates of thrust using elongated-body theory (Lighthill 1971) or other inviscid
methods (Newman & Wu 1975; Wu 2011), which do not account for the presence
of the LEV, tend to overestimate the thrust by several-fold. In fact, the mean thrust
coefficient for the stingray based on elongated-body theory is found to be much
larger than the calculated viscous drag coefficient from the simulations as shown in



432 R. G. Bottom II, I. Borazjani, E. L. Blevins and G. V. Lauder

appendix B. Thus, the theoretical thrust (which does not consider LEV) is typically
higher (not lower) than what is measured experimentally or calculated numerically
(which considers LEV), and cannot be used to estimate the LEV contribution. If the
theory underestimated the thrust, then the underestimated amount could have been
contributed to the LEV.

Another method to estimate the contribution of the LEV is to compare the
circulation within the LEV to the total circulation around the wing (Muijres et al.
2008; Thielicke & Stamhuis 2015). Muijres et al. (2008) estimated LEV to increase
the lift as much as 40 % during slow flight of bats by showing that the ratio of
the circulation of the leading to the trailing vortex is around 40 %. Nevertheless,
this method cannot be used in aquatic swimming because the cycle-averaged force
(circulation) during self-propelled swimming is zero and not a positive value as in
insect/bird flight. Anderson et al. (1998) stated that the timing of the shedding of
the vortices at the leading edge affects propulsive efficiency whether they interact
constructively or destructively with the trailing vortices. Lewin & Haj-Hariri (2003)
also observed that when the LEV gets separated the efficiency of heaving foils
decreases. Dong et al. (2006) also mentioned the importance of the LEV for efficiency.
However, none of these foil studies quantify the contribution of the LEV relative
to the total force and qualitatively correlated the efficiency with LEV dynamics
(Anderson et al. 1998; Lewin & Haj-Hariri 2003; Dong et al. 2006). Based on the
above discussion, we need another method to quantify the contribution of the LEV
to thrust.

Stingray swimming is in undulatory mode, which is known to suppress flow
separation (Taneda & Tomonari 1974; Shen et al. 2003; Borazjani & Sotiropoulos
2008). The experiments on a mechanical, undulatory ray wing also did not report
any flow separation on the wing (Clark & Smits 2006). Nevertheless, we observed a
vortex at the leading edge (vortex V-B in figures 9 and 10) that can enhance thrust.
Because of the undulatory swimming of the stingray, the added-mass mechanism
is thought to be the main mechanism for its propulsion, which is governed by slip
velocity U/V as discussed above. The slip velocity U/V is 0.76 and 0.89 for slow
and fast swimming, respectively. If it was a completely inviscid phenomenon, the
U/V value would have remained the same because the waveform is similar and
only the frequency is changed between fast and slow swimming. The higher slip
velocity indicates higher added-mass (reactive) force in slow swimming. This is
consistent with our results discussed in the previous section, because the majority of
the low-pressure regions for the slow swimming case were in locations where there
were no visible vortices, e.g. posterior and middle of the wing (figure 9b–d). In fast
swimming, in contrast, the low-pressure regions during most of the cycle were located
on the leading edge from vortex V-B (figure 10a–c). Therefore, the LEV contributes
more to thrust in fast swimming than in slow swimming.

To somehow quantify the contribution of the added mass versus LEV in slow and
fast swimming, we compare the thrust force created by the front half and the back
half of the wing. This can be a good measure because the added-mass force is mainly
generated by the back of the wing where there are higher undulations, whereas the
LEV force is mainly generated by the front of the wing. For the pressure force to be
independent of the reference pressure, it should be calculated over a closed surface A,
i.e.

∫
A dA= 0. This condition is satisfied in calculating the force over the half wing

because of the thin geometry of the wing. Comparing the forces produced by the front
half and back half of the wing in slow and fast swimming, it can be observed that
slow swimming consistently produces much more thrust at the back of the wing than
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fast swimming. For example, at t/T = 27.25 the back half produced 61 % and 15 %
more thrust than the front half in slow and fast swimming, respectively, and 218 % and
77 % at t/T= 27.5 in slow and fast swimming, respectively. This clearly shows that in
slow swimming more thrust is produced using the added-mass (reactive) mechanism
by the back half of the wing, whereas in fast swimming the thrust is enhanced by
the LEV at the font half of the wing. The thrust enhancement by the LEV in fast
swimming is consistent with its higher efficiency than slow swimming.

4.2. Leading-edge vortex in aquatic swimming versus flying
The LEV has been observed in insect flight (Ellington et al. 1996; Van Den Berg &
Ellington 1997), bat flight (Muijres et al. 2008, 2014), bird flight (Videler et al. 2004),
plant seeds (Lentink et al. 2009) and rotary machinery such as wind turbines (Tangler
2004; Sicot et al. 2008; Dumitrescu & Cardos 2012; Lee & Wu 2013). However,
LEV has not been reported in aquatic swimming, probably due to the overemphasis
on the trailing wake and the greater ease of visualizing it in studies of live swimming
fish (Barrett, Triantafyllou & Yue 1999; Muller, Stamhuis & Videler 2000; Nauen &
Lauder 2001; Liu 2005; Clark & Smits 2006; Kern & Koumoutsakos 2006; Mittal
et al. 2006; Borazjani & Sotiropoulos 2008; Dong et al. 2010) and the fact that the
flow does not separate along the body of undulating swimmers (Taneda & Tomonari
1974; Shen et al. 2003; Borazjani & Sotiropoulos 2008). Previous simulations of
Borazjani & Daghooghi (2013) have provided the first evidence of a stable LEV
on fish tails using 3D high-resolution numerical simulations of self-propelled virtual
swimmers with different tail shapes. They showed an attached, stable LEV with
high efficiency at low St ≈ 0.25, but a separated LEV with low efficiency at higher
St≈ 0.5 (Borazjani & Daghooghi 2013). Our results here also show the existence of
the LEV on the stingray wings for the first time (figures 9 and 10). The existence
of the LEV on the stingray wing with undulatory motion is quite unique because
undulatory motion is known to remove separation (Taneda & Tomonari 1974; Shen
et al. 2003; Borazjani & Sotiropoulos 2008). Quinn et al. (2014) also report stable
LEV on 2D flexible foils at a very high St> 1, but vortex shedding from the leading
edge at lower St.

Considering the ubiquity of the LEV (Ellington et al. 1996; Van Den Berg &
Ellington 1997; Videler et al. 2004; Muijres et al. 2008; Lentink et al. 2009;
Borazjani & Daghooghi 2013), it can be regarded as a convergent evolutionary
feature in biological propulsion systems, which should serve as an inspiration to
enhance force generation/energy harvesting of man-made systems. To apply LEV
dynamics in such systems, the mechanisms for generation of a stable LEV need
to be understood. For translating 2D foils (Dickinson & Gotz 1993; Kim & Gharib
2010; Beem et al. 2012; Pitt Ford & Babinsky 2013) or heaving and pitching 2D foils
(Anderson et al. 1998; Wang 2000; Lewin & Haj-Hariri 2003; Dong et al. 2006), the
LEV grows and starts shedding, but it remains stable/attached for 3D rotating blades
(Ellington et al. 1996; Van Den Berg & Ellington 1997; Aono et al. 2008; Lentink
& Dickinson 2009a,b; Ozen & Rockwell 2012; Harbig et al. 2013; Cheng et al.
2014). A spanwise flow, which causes the LEV spiral towards the tip (Maxworthy
1981; Ellington et al. 1996; Van Den Berg & Ellington 1997; Wang 2005; Lentink &
Dickinson 2009b), is suggested to stabilize the LEV by providing a vorticity sink to
balance the vorticity flux of the leading-edge shear layer. However, the spanwise flow
was not observed for a model insect wing at low Re (Birch & Dickinson 2001), but
it was observed at higher Re (Birch et al. 2004). Here we observe the spiral flow in
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FIGURE 14. (Colour online) Flow visualization of the slow swimming case (Re= 13 500,
St = 0.34): the 3D vortical structures are visualized with the isosurfaces of q-criteria.
Streamlines are drawn in the region near the leading edge, which show the spiral flow
of the LEV.

the LEV in stingrays as shown in figure 14 similar to what was found for fish tails
(Borazjani & Daghooghi 2013). Recently, vorticity annihilation due to interaction
between the LEV and the opposite-sign vorticity layer has been suggested as an
important mechanism for LEV stabilization (Wojcik & Buchholz 2014). However, the
conditions that lead to generation of the spiral flow or vorticity annihilation are still
not well understood. Lentink & Dickinson (2009a,b) suggest rotational acceleration,
which scales with the inverse of Rossby number (Ro), as the stabilizing mechanism
on insect wings. They state that the condition for stability of the LEV is Ro≈ 1, and
at high Ro LEV becomes unstable and sheds (Lentink & Dickinson 2009b).

Despite great similarities in the structure of the LEV in hovering insects and in
our results for aquatic swimmers, there are several important differences. A major
difference is that in insects the rotation of the wing around its root does not change
the geometric angle of attack (Lentink & Dickinson 2009a) similar to purely rotating
wings (Usherwood & Ellington 2002; Birch et al. 2004). However, there is no such
rotation in fish tails or stingray wings, and the motion can be considered as a flapping
(heaving and pitching) plus an undulatory motion, which changes the geometric angle
of attack at each time instant. Furthermore, the Ro number is higher for freely
swimming swimmers relative to hovering insects due to higher free swimming speed
and a smaller radius of rotation, i.e. rotational acceleration (Lentink & Dickinson
2009b) probably does not stabilize LEV in aquatic swimming. In fact, LEVs have
only been seen in slow flying bats/birds (Muijres et al. 2008; Thielicke & Stamhuis
2015) and hovering insects (Ellington et al. 1996; Birch et al. 2004), and not in
freely flying ones except bumblebees (Bomphrey, Taylor & Thomas 2010), probably
because of their small wings that reduce Ro. In fact, Muijres et al. (2014) report that
the LEV is visible during slow but not fast flight. Therefore, the stability mechanism
for the LEV in aquatic swimming might be different from those in insect/bird flight,
which requires further research.
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4.3. Conclusions
We have carried out LES of a stingray whose motion is prescribed based on
experimental measurements of the 3D body and pectoral fin kinematics in a fast and
a slow swimming stingray. Swimming velocity calculated through the self-propelled
simulations is within 10–12 % of the nominal experimental swimming speed. During
the quasi-steady state at which the average swimming speed remains constant, the
average force over the cycle is zero. The average thrust coefficients in fast and slow
swimming are similar, whereas the average power coefficient of fast swimming is
half that of slow swimming. Consequently, the stingray swimming at the higher
speed (Re= 23 000, St = 0.27) has approximately 12 % higher Froude efficiency and
almost two times higher power efficiency than the one swimming at lower speed
(Re= 13 500, St= 0.34) – see table 1.

The main reason for this higher efficiency was found to be the higher contribution
of the LEV to thrust in the fast case through the generation of a low-pressure
region in front of the wing (LV-B in figure 10b,c). We showed that the front of the
wing consistently contributes more to the total thrust in fast swimming than in slow
swimming, as discussed in § 4.1. The added-mass (reactive) force, which generates
thrust by the acceleration of the adjacent fluid by the backward-travelling wave on
the fish’s body, is higher in the back of the wing because of higher undulations and
velocities. The higher force generation by the back of the wing in slow swimming
through the added-mass mechanism is consistent with the low- and high-pressure
regions on the posterior sections of the wing, which were not close to the vortical
structures (L3,4 and H3,4 in figure 9b,c). The horseshoe-like vortex on the nose of the
stingray created a low-pressure region in the front of the stingray for both cases at all
times which enhanced thrust (V-A in figures 9 and 10). The presence of the horseshoe
vortex is due to the shape of the ray’s head (figure 11). The effect of a smoother and
streamlined shape which does not allow separation (but creates a lower-pressure region
through curvature) on the hydrodynamic force is not investigated here. Therefore, we
cannot comment on the efficiency/benefit of enhancing the hydrodynamic force in the
thrust direction through a horseshoe vortex relative to other means.

The fast swimming stingray had higher velocity fluctuations than the slow
swimming one (figure 7). The reason behind the higher velocity fluctuations is a
higher contribution of the LEV in thrust generation during fast swimming. The
LEV contributes in only part of the cycle (vortex V-B in figure 10a,b), whereas the
added-mass mechanism continuously generates thrust by accelerating the adjacent
fluid. The mackerel-like swimmers, which generate LEV on their tails (Borazjani &
Daghooghi 2013), also have higher velocity fluctuations than the eel-like swimmers,
which generate thrust using the added-mass mechanism by their undulatory motion
(Borazjani 2015).

The velocity and force history in the slow swimming case shows two peaks per
cycle, but there is only one peak in fast swimming. In fact, the beginning of the cycle,
e.g. t/T = 27, is an inflection point in fast swimming, after which the force increases,
but in slow swimming the force decreases and reaches a minimum. We found the
reason for this force decrease after the start of the cycle in slow swimming to be
the existence of a vortex underneath the leading edge (vortex V-C in figure 12a),
which contributes to drag by generating a low-pressure region behind the leading
edge. Instead, in fast swimming the vortex underneath is diminishing (vortex V-C in
figure 13a) and a vortex above the leading edge (vortex V-B in figure 13a) forms,
which contributes to thrust and cancels out the effect of vortex V-C.
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The spanwise/spiral flow through the centre of the LEV, which is thought to
stabilize the LEV by convecting the vorticity out of the LEV, was observed on the
stingray wings as well (figure 14). Nevertheless, the stability mechanism of the LEV
formed on fish tails and stingray wings during self-propelled swimming might be
different from the LEV in hovering insects or the slow flight of birds/bats because
of the high Rossby numbers in free swimming, as discussed in the previous section.
Investigating the stability mechanisms of the LEV in aquatic swimming will be
pursued as part of future work.
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Appendix A. LES of flow over a cylinder

We carry out LES of the flow over a cylinder at Re = 3900, which is considered
a canonical test case for LES (Beaudan & Moin 1994; Mittal & Moin 1997; Breuer
1998; Jordan 1999; Kravchenko & Moin 2000). The computational grids used for the
simulations are a 3D× 10L × 15D box, where D is the diameter of the cylinder, in
the x, y and z directions, respectively. The length of the cylinder is the x direction.
The centre of the cylinder is positioned 5D from the inlet in the z direction and was
centred in the y direction. The inlet is a uniform flow (with no turbulence), and the
outlet is a far-field (Neumann) boundary condition with a correction to satisfy the
conservation of mass. The boundary conditions in the x and y directions are slip walls.
The x–y–z directions are discretized with two grids: one with 101× 201× 301≈ 6.0
million nodes and another with 101 × 253 × 349 ≈ 8.9 million nodes. The region
directly surrounding the cylinder comprised a 3D × D × D cuboid discretized with
a uniform grid spacing of h = 0.02D and h = 0.01D for the coarse and fine grids,
respectively. The grid was stretched from the uniform cuboid to the outer edges of
the computational domain using a hyperbolic tangent function. The non-dimensional
time step was set to 0.02 for simulations on both grids.

The simulations are carried out at Re = 3900 and 8000 to compare with the
experimental data. They are initialized with uniform flow, the time averaging is
started when the total kinetic energy of the domain reaches quasi-steady, and the
simulations are continued until the average quantities do not vary much as the
averaging continues. The instantaneous and the time-averaged flows over the cylinder
are visualized using isosurfaces of q-criteria in figure 15. The unsteady vortex
shedding is observed in the instantaneous flow field, while the separated region
is observed in the time-averaged flow in figure 15. The time-averaged wake for

http://dx.doi.org/10.1017/jfm.2015.702
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FIGURE 15. (Colour online) Flow visualization of LES of a cylinder (Re= 3900): the 3D
vortical structures are visualized with the isosurfaces of q-criteria for (a) the time-averaged
flow and (b) the instantaneous flow.
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FIGURE 16. Streamwise velocity on the centreline in the wake of a circular cylinder at
Re= 3900. The experimental results of Ong & Wallace (1996) and Lourenco & Shih were
extracted from the paper by Kravchenko & Moin (2000).

Re = 3900 is compared against the experimental measurements of Ong & Wallace
(1996) and Lourenco & Shih (Kravchenko & Moin 2000) in figure 16. The velocity
in the axial direction on the centreline of the wake behind the cylinder shows that
the finer grid (h = 0.01D) can capture the separation region more accurately than
the coarse grid. The velocity outside the separation region (z/D > 3) and the peak
backward velocity are similar on both grids. Comparison of the pressure coefficient
on the cylinder against experimental data of Norberg (1987) in figure 17 shows that
our CURVIB method can capture the pressure accurately on the cylinder at both
Re 3900 and 8000.
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FIGURE 17. Comparison of the pressure coefficient CP of the LES at Re = 3900 and
8000 on the fine grid (h= 0.01D) with the experimental measurements of Norberg (1987).
Experimental data were extracted from the paper by Jordan (1999).

Appendix B. Thrust force based on elongated-body theory
Here we compute the thrust force for our undulatory swimmer based on the

elongated-body theory (EBT) of Lighthill (1971). According to EBT the thrust is
given by (equation (11) of Lighthill 1971)

T =
[

mw
(

W − 1
2

w
)]

z=L

− ∂

∂t

∫ L

0

(
mw

∂h
∂z

)
dz. (B 1)

Here h is the displacement from the stretched straight position because of the
undulations, z is the axial direction from the head (z = 0) to the end of the tail
(z = L), W = ∂h/∂t is the lateral velocity, w = ∂h/∂t + U∂h/∂z is the velocity of
water that is pushed laterally near the trailing edge, and m is the virtual mass per
unit length, approximated by

m= 1
4πs2ρβ, (B 2)

where ρ is the water density, s is the depth of the cross-section and β is a non-
dimensional parameter that is close to one for different cross-sections (Lighthill 1971).
Lighthill (1971) shows that

w=W(V −U)/V, (B 3)

where U is the swimming velocity and V is the wave speed of the travelling wave.
Using the fact that the mean value of the integral in (B 1) is zero, the time-averaged
thrust coefficient, T∗ is given by

T∗ = T
ρU2L2

=
[

m
ρL2

w
U

(
W
U
− 1

2
w
U

)]
z=L

. (B 4)



Hydrodynamics of swimming in stingrays 439

Substituting w from (B 3) and β = 1, we get

T∗ =
[

1
8
π
( s

L

)2
(

W
U

)2
(

1−
(

U
V

)2
)]

z=L

. (B 5)

Based on the above equation, we can estimate the thrust and compare it with our
numerical results. We approximate the depth s/L of the fin to be equal to one because
of the disk shape of the body. We approximate the lateral velocity by W = Af (A
and f are the amplitude and frequency of the undulations, respectively). Therefore, the
non-dimensional W/U= Af /U is the Strouhal number St, which is 0.34 and 0.27 for
slow and fast swimming, respectively; U/V is the slip velocity, which is 0.76 and 0.89
for slow and fast swimming, respectively. Consequently, the mean thrust coefficient
based on (B 5) is 0.019 and 0.006 for slow and fast swimming, respectively, which is
much larger than the mean viscous drag coefficient of 0.0037 and 0.0032 computed
numerically for the slow and fast cases, respectively.
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