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The mechanics of active fin-shape
control in ray-finned fishes
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We study the mechanical properties of fin rays, which are a fundamental component of fish fin
structure. We derive a linear elasticity model that predicts the shape of fin rays, given the
input muscle actuation and external loading. We then test the model using experiments that
measure (i) the ray deflection for a given actuation at the muscular interface, and (ii) the
force–displacement response under conditions of actuation and non-actuation. The model
agrees well with the experiment; both show a concentration of curvature at the ray base or at
the point of an externally applied force, and a variation in ray stiffness over more than an
order of magnitude depending on actuation at the bases of the fin rays.
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1. INTRODUCTION

Ray-finned fishes are a group of over 28 000 species,
comprising more than half of all vertebrates, that have
diversified into a wide variety of aquatic habitats and
are known for their diversity of locomotory styles. One
of the key characteristics of ray-finned fishes is the
presence of fins that extend into the water and act as
control surfaces during locomotion (Lauder & Drucker
2004; Lauder 2006). Ray-finned fishes possess both
median (midline) and paired fins (figure 1), which allow
fishes to control body position and to generate force
during locomotion. Fish fins are important for steady
rectilinear locomotion, and also for manoeuvring during
which fishes can vector forces through control of fin
shape and orientation (e.g. Drucker & Lauder 2003).

The structure of ray-finned fish fins is generally
characterized as being composed of individual ray-like
components made of small segmented bony elements,
connected to each other through a collagenous mem-
brane (figure 1). This basic fan-like design allows fishes
to change fin area during locomotion, and this
architecture provides a balance between stiffness and
flexibility, which potentially allows for finely tuned
hydrodynamic interaction. Since fins provide the
structural interface between the fin muscles and the
fluid environment, understanding the mechanics of fin
function is an essential component of a complete
analysis of how locomotor forces are transmitted by
fishes to the aquatic environment.

The fins of ray-finned fishes possess one remarkable
design feature not present in other swimmers, i.e.
fishes can actively control the curvature of individual
fin rays, and hence the curvature of the whole fin
surface (McCutchen 1970; Geerlink & Videler 1987;
orrespondence (alben@deas.harvard.edu).
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Lauder 2006). Fish fin rays are bilaminar in structure
(figure 1) and the two halves of each ray can slide past
each other when actuated at the base by fin muscles
(figure 1d). As the base of one-half ray is pulled past
the other, the fin ray will curve or resist the imposed
hydrodynamic loading. While the anatomy of fish fin
rays has been previously characterized in the litera-
ture, there is only limited information on how fin rays
function and on the mechanical properties of this
anatomical design.

In this paper, we study fin-ray function using a
simple mechanical model intended to abstract the
essential physiological features. We address the
following questions. What is the relationship between
input and output forces and displacements as a function
of the fin-ray geometry and material properties? In
particular, how does the tapering of the ray and
stiffness of its components influence its operation? In
§2, we describe the experimental techniques used to
study these mechanical properties. We then derive an
equation for the fin ray using linear elasticity (§3), and
present solutions that are evaluated by comparing their
predictions of ray shapes and force–displacement
behaviour with results from real fin rays (§§4 and 5).
We find that the fin-ray mechanism allows the fish to
actively vary fin-ray stiffness over more than an order of
magnitude. The ability of the fish to dramatically
stiffen fins compared with a passive flexible body may
be instrumental to understanding fin-based swimming
behaviour.
1.1. Previous models

To our knowledge, the only previous model using
equations for the fin ray was proposed by McCutchen
(1970). He found an expression relating the axial shift
along the ray to its curvature and intraray spacing, and
J. R. Soc. Interface (2007) 4, 243–256
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Figure 1. (a) A photograph of a bluegill sunfish. (b) Schematic showing the location of the fish fins. The pectoral fin is highlighted
with the blue box. (c) A photograph of a cleared and stained pectoral fin. The short segments can be seen along the length of the
rays. (d) Schematic showing dorsal views of a fin ray with two hemitrichs. Muscles (not shown) exert forces on the tendons
attached to the head of each hemitrich. (e) Single cross-section slice from amicroCT scan of a pectoral fin. The upper panel shows
multiple rays and the lower panel shows an expanded cross-section of two rays. Each of the two rays is composed of two
hemitrichs. The bright white regions are bony areas and the grey is softer tissues (fin membrane and connective tissues). The
separation between the two hemitrichs of the left ray is labelled ‘distZd ’. ( f ) Apparatus for holding ray hemitrichs. The ray
(label ‘i’) is held by two clips (label ‘ii’). The upper clip can move to apply an offset between the hemitrichs. The inset image
shows the end-on view. The upper clip holds one hemitrich and the lower clip holds the other hemitrich.
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a further expression for the balance between the
moment on the ray due to tension and compression in
the two ray halves and the moment due to hydro-
dynamical forces. Using this expression, he deduced
that the fin ray can support only a single load
distribution, up to an overall multiplicative constant.
However, it is clear from experiments that a fin ray can
in fact support many different load distributions,
including a point-force load and a distributed load (as
occurs in hydrodynamic interaction).

Here, we derive a new model based on linear
elasticity. We first show how McCutchen’s (1970)
geometrical equation may be derived more system-
atically, and then introduce internal mechanics. The
internal forces arise through bending rigidity and the
elastic properties of the collagenous intraray material,
which are seen to be essential to understanding the shape
of the ray in our experiments. This is accomplished by
starting with the picture of the fin-ray mechanism
proposed by Geerlink & Videler (1987), and writing
down the corresponding linear elasticity equations.
J. R. Soc. Interface (2007)
2. EXPERIMENTAL METHODS

Bluegill sunfish (Lepomis macrochirus) were obtained
from White’s Pond in Concord, MA. Six fishes with fins
of similar size (maximum ray length Z40.3G0.8 mm,
meanGs.e.) were euthanized with tricaine methane-
sulphonate (MS-222), and their fins were removed.
Individual fin rays were dissected for testing and
a three-dimensional micro-computed tomography
(microCT) scan was made from one of the fins. The
microCT specimen was preserved in formaldehyde and
ethanol for transport to the imaging facility (Universityof
Texas High-Resolution X-ray CT). The remaining
experiments were performed with the rays submersed in
waterwithin 48 h of euthanizing the fish. Fins andfin rays
were stored inwater at 48Cbetween the time of dissection
and experiments.

Slices from the microCT scan show a good contrast
between the bone, the soft tissue and the background
(figure 1e). Image slices were thresholded to isolate the
bony regions after which the area, centroids and area
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moments of inertia were calculated for the ray halves
(called ‘hemitrichs’) and for whole rays as a function of
length s along the ray. The distance d between the
hemitrichs was calculated as the separation between
the hemitrich centroids.

Experiments to measure mechanical properties were
done on 24 separate rays. Fish pectoral fin musculature
can activate to offset the hemitrichs at the ray base. To
reproduce the motion, an apparatus was built to hold
each of the two hemitrichs with small clips (figure 1f ).
Moving one of the clips relative to the other offsets the
hemitrichs and the ray will then curve. Both the base
offset distance and the tension or compression force are
measured. A set of two experiments measures the
relationships between the hemitrich base offset and the
ray curvature and between the hemitrich base force and
the ray curvature. During these experiments, some rays
were snipped at the distal end to see if the offset- and
force-to-curvature relationships change.

Two further experiments measure the force needed
to prevent the rays from curving when either an offset
or a force is applied to the hemitrich base (see §5.1).
The force that resists the ray curvature is applied at a
single point about two-thirds of the way along the ray.

Experiments were also done comparing the stiffness
(force per unit deflection) of the fin ray when both
hemitrich bases are fixed to prevent sliding to the
stiffness when one hemitrich base is fixed and the
second is free to slide (see §5.2). The cantilevered ray
was deflected by applying a point force about two-
thirds of the way along the ray.
f (0) f (s)S (s)

Figure 2. (a) A photograph of a single fin ray (ray 4 out of 13 in
the pectoral fin of a bluegill sunfish) held by force calipers in the
experimental set-up. The upper hemitrich base is displaced to
the left relative to the lower hemitrich base, leading to an
upward deflection. (b) A schematic of the physical mechanism
of fin-ray bending proposed by Geerlink & Videler (figure
adapted from the original figure in Geerlink & Videler 1987).
We introduce here the notation s for the arc length along the
‘centre line’—the line at the average position of the initially
opposite hemitrichia; d for the distance between midpoints of
opposing segments; f for the displacement of the segment in
the direction tangent to the centre line. Subscripts denotes
segment number i. (c) The model we consider in this work,
which is the continuum limit of the diagram in (b).
3. LINEAR ELASTICITY MODEL

Our fin-ray model consists of two identical, inextensible
beams represented by the elastica theory (Antman
2005). Between the beams is a thin, incompressible
layer of material with varying shear modulus, the
distribution of which determines the shapes the fin ray
may assume. Our modelling begins with a one-dimen-
sional approximation to the deformation of this layer.

In the unstressed state, the central axes of each beam
are assumed to be a mirror image of the other, reflected
about the centre line between them (figure 2b). The
actual rays show a slight asymmetry, which is typically
small relative to the spacing between the rays. The
distance between the corresponding points at arc length
s on each beam in the unstressed state is denoted by
d(s). The material between the beams (predominantly a
collagenous gel network; Videler 1993) is approximated
as an incompressible linearly elastic material, for the
sake of simplicity. Real collagen behaves nonlinearly for
large shear strains (stiffening as the collagen fibres
stretch; Sacks & Sun 2003), but in this first analysis of
the fin-ray mechanism, we will mainly use a linear
resistance to shear for simplicity.

Our model expresses all geometrical and material
quantities as functions of distance along the centre line of
the two-beam system, where the centre line is defined as
the average of the two beams’ trajectories (figure 2c,
dashed line). After assuming linear elasticity and
symmetry of the beams, our next assumption is incom-
pressibility of the intraray material at leading order,
J. R. Soc. Interface (2007)
because the collagen gel is mainly fluid by volume.
Incompressibility canbe expressed in termsof the relative
motionofoppositepoints on thebeamswith respect to the
centre line. For an incompressible material confined to a
thin layer, this motion at leading order is ‘simple shear’
(Segel 1987), i.e. material in planes aligned with the
centre line slide over each other, but do not change their
distance normal to the centre line. In our model, the
central axes of the two beams are two lines, with the
two-dimensional area between them as the intraray
material. The actual rays have a finite thickness, which
is small relative to length, allowing the use of the beam
model. In the actual rays, the cross-section of the intraray
material is roughly cylindrical (figure 1e). Nonetheless,
the two-dimensional model captures the basic mechanics
of a single-ray bending in a plane.
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In two dimensions, incompressibility means that the
x- and y -components of displacements u and v obey
vxuCvyvZ0. Now consider a thin layer of height d in
the y-direction (figure 2c). For a given shift f0 applied
at the bases, vxuwf0/L and vyvwDd/d, where Dd is the
local change in layer thickness. Incompressibility in the
thin layer thus implies that Ddwdf0/L. Thus, two
points initially opposite undergo a displacement normal
to the centre line that scales as the tangential shift f0

times the aspect ratio d/L/1. Taking the limit that
Dd goes to zero simplifies our two-dimensional model to
an essentially one-dimensional problem. A similar
approximation occurs in the lubrication theory of fluid
flow in thin layers (Batchelor 1967).

In the actual fin rays, the hemitrichia consist of one
continuous bony region at the base, followed by smaller
bony segments connected by collagen in the main,
flexible part of the ray (figures 1c and 2a). The
separation between the ray heads is somewhat larger
than that between the smaller bony segments. There
are four muscle attachments onto the ray heads of all
but the first ray in each fin (figure 1d; Videler 1993).
These muscles apply a combination of forces and
moments to the rays both within and out of the plane
of the fin. As our model is two-dimensional, and is
intended to model only the fully segmented portion of
the ray, we assume that the forces from muscle
attachments are transmitted to the ‘base’ of the ray
(defined as the point beyond which the rays are fully
segmented) as simply a net force and net bending
moment on each hemitrich, which are the only
boundary conditions needed in our beam theory.

After giving the equations and boundary conditions,
we will consider the relative magnitudes of the physical
and non-dimensional parameters, and their distribution
along the ray.
3.1. Equations

We begin with the equations for two inextensible
beams, each described by the elastica equation
(Antman 2005)

KvsðvsðBðk1KkeqÞÞn̂1ÞCvsðT1ŝ1ÞCfnCfsCf1extZ0

KvsðvsðBðk2CkeqÞÞn̂2ÞCvsðT2ŝ2ÞKfnKfsCf2extZ0

)
:

ð3:1Þ

Here, the force per unit length resisting bending is
defined in terms of the product of B(s), the bending
rigidity, with the difference between beam i’s curva-
ture ki and its rest curvature keq. Note that keq has
opposite signs for the two mirror-image beams. Since
d(s)/2 is the distance from the undeformed hemitrich
to the centre line, keqZvssd=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kvsd

2
p

Þ. Here, ŝi
and n̂i are the unit vectors tangent and normal to the
two beams.

The tension force in beam i is Ti, an axial force
maintaining inextensibility. Additional loads are the
following: fn, a normal force per unit length that
maintains constant normal distance of the beams with
respect to the centre line; fs, a tangential force per
unit length that resists a relative tangential motion of
J. R. Soc. Interface (2007)
the beams (due to shearing of the intraray material);
and fi ext, the force per unit length on beam i due to
external forces, such as a hydrodynamic pressure.

Hence, each beam in our model experiences four
different internal forces—two forces from internal beam
mechanics and two from beam–beam interactions
through the intraray material. Inextensibility is a
good approximation to the fin ray, which undergoes
negligible axial stretching in experiments.

The normal force per unit length from the intraray
material is fn, which preserves d(s), the component of
the distance between the beams normal to the centre
line. It may be expressed as a spring force,

fn Z k1ððX1KX2Þ$n̂avg=dK1Þn̂avg; ð3:2Þ

where n̂avg is the unit normal to the centre line between
the two beams. We then take the modulus of
compression k1/N, hence

d Z ðX1KX2Þ$n̂avg: ð3:3Þ

The quantity k1ððX1KX2Þ$n̂avg=dK1Þ acts as a
Lagrange multiplier, which preserves the constraint of
fixed normal distance.

The shear force per unit length fs is a spring force due
to the shearing of the intraray material. It may be
expressed in two different ways. First, in terms of the
shear modulus G of an isotropic elastic material, in
which case

fs ZG
f

d
ŝavg; ð3:4Þ

where
fZ ðX2KX1Þ$ŝavg; ð3:5Þ

is the shift, or the relative tangential displacement of
initially opposite points on the two beams.

Second, we may consider the elasticity of the intraray
material as arising from stretching of collagen fibres with
ends anchored in opposite segments of the hemitrichia.
The undeformed length of these fibres is d, while the

stretched length is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2Cf2

p
(figure 2c). In this case,

fs Z k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Cðf=dÞ2

q
K1

� �
ŝavg; ð3:6Þ

with spring constant k2. We shall mainly use expression
(3.4) for fs in terms of G, for simplicity, though many
analogous results hold for the second nonlinear case.
3.1.1. Centre-line equation. Having introduced the
mechanics of the two beam system, we now use the
thin-layer approximation to replace the two beam
equations with a single equation for the position of the
centre line of the layer.

We can express f in terms of the already-introduced
intraray spacing d(s) and the curvature of the centre
line kavg as follows. First, we note from equations (3.3)
and (3.5) that d and f are the components of X1KX2 in
the centre-line frame,

X1KX2 Z dn̂avgKfŝavg: ð3:7Þ

Differentiating equation (3.5) with respect to s yields

df

ds
ZKkavgdK

1

4
ðk1Kk2ÞðX1KX2Þ$ðn̂1Kn̂2Þ: ð3:8Þ
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We restate our thin-layer assumption that d/L/1.
Since kavg may be as large as O(1/L), the first term on
the right-hand side is O(d/L). Each of the three factors
in the second term on the right-hand side is O(d/L), as
may be seen by differentiating equation (3.7) to obtain
k1Kk2 and n̂1Kn̂2. Hence, the second term in equation
(3.8) is O((d/L)3), so we may drop it with a relative
error of (d/L)2.

Hence to a very good approximation,
df

ds
ZKkavgd; ð3:9Þ

fZf0K

ðs
0
kavgd; ð3:10Þ

where f0 is a free parameter set directly using clamps or
indirectly by muscle action, in terms of the boundary
conditions discussed in §3.2. Equation (3.10) shows
that a shift between the beams f can be reduced by
increased centre-line curvature, in proportion to the
intraray spacing d.

We derive the single centre-line equation from the
internal elastic energy of the two-beam system,

U Z

ð1
0

Bk2 C
G

2

f

d

� �2� �
ds; ð3:11Þ

U Z

ð1
0

B
vsf

d

� �2

C
G

2

f

d

� �2� �
ds; ð3:12Þ

which expresses that the fin shape is a trade-off between
the bending energy and the shear energy of the intraray
material. We take the variation with respect to f and
integrate by parts to obtain

dU Z

ð1
0
K2vs

Bvsf

d2

� �
CG

f

d2

� �
df ds

C 2
Bvsf

d2

� �
df

� �1
0

: ð3:13Þ

Using equation (3.9), we see that the expression
multiplying df in the integral is the derivative of the
internal bendingmomentof the two-beamsystemdivided
by d. In the absence of the shear term Gf/d2, this would
be 2vs(Bk/d), the value for the two beams.When the ray
is in equilibrium, we may put this expression for the
internal bending moment of the system in balance with
the moment due to external forces,

K2vsðBvsf=d2ÞCGf=d2 CvsðMext=dÞZ 0: ð3:14Þ
Here,Mext is the hydrodynamicalmoment of the external
forces on the ray, whether from point forces in the
experiments below, or from fluid-pressure loading.
Equation (3.14) is a second-order differential equation
for f, which we term the ‘centre-line equation’. If we
model the resistance to shear as that due to collagenfibres
modelled as linear springs (equation (3.6)), the corre-
sponding equation is

K2vsðBvsðfÞ=d2ÞCk2 1K
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Cðf=dÞ2
q

0
B@

1
CAf=d2

CvsðMext=dÞZ 0: ð3:15Þ
This completes our derivation of the centre-line

equation, which depends only on the elastic parameters
J. R. Soc. Interface (2007)
B and G and the geometrical parameter d. We now
discuss the appropriate boundary conditions.
3.2. Boundary conditions

We employ different boundary conditions correspond-
ing to each of the experiments with which we compare
the model. The boundary term in equation (3.13)
implies one boundary condition on f at each end of the
ray. Either f is fixed, or free, in which case

2B

d2
vsfZ 0: ð3:16Þ

In the first set of experiments (§4.2), the shift at the
base of the ray is set to f0. If instead a tension/
compression force T0 is specified at the bases, we may
relate T0 to f0 by taking the variation of the energy
with respect to f0 : T0ZdU/df0.

In a second experiment (§5.2), the ray is deflected by
a point force with zero relative force applied between
the bases, in which case equation (3.16) is applied there.

At sZ1, we assume that the ray ends are either
‘fused’ or ‘free’. We have performed CT scans, as shown
in figure 1e, at the tips of the rays, which find that the
two hemitrichia appear to be fused there. The tips are
also the location of the actinotrichia, which are
involved in ray growth (Videler 1993). However, it is
unclear whether the hemitrichia tips are always fused,
so we also consider the hemitrichia being free at the
tips, which also occurs when we remove a portion of
the ray in the first set of experiments (§4.2). Allowing
the tips to be free also allows us to separate the
mechanical effect due to shearing of the collagen gel
from that of the tips being fused.

We impose the boundary condition that the rays are
fused at sZ1 by setting f(1)Z0. Alternatively, if the
ray tips are not fused, we apply the boundary condition
in equation (3.16).

Having solved for f with the two boundary
conditions, we obtain the ray curvature k using
equation (3.9). We assume that the mean position of
the ray base is set to 0, so that xZyZ0 at sZ0, and that
the mean tangent angle q0 at sZ0 is given. We use
q0Z0 throughout this paper. Using these boundary
conditions, one obtains the trajectory of the ray as

ðx; yÞZ
ðs
0
ðcos q; sin qÞds; ð3:17Þ

qZ q0 C

ðs
0
k ds: ð3:18Þ

3.3. Non-dimensionalization

We now non-dimensionalize equation (3.14), i.e. we
non-dimensionalize all lengths d, f, 1/k by the ray
length L, the bending rigidity B by its value B0 at sZ0,
andG (or k2) byB0/L

2.We note that the dimensionalG
has dimensions of three-dimensional shear modulus
times area, because by its definition in equation (3.11),
it is the three-dimensional shear modulus times the
cross-sectional area of the intraray material. We
henceforth use the same notation for the non-dimen-
sional quantities with the assumption that they have
been non-dimensionalized.
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We study the behaviour of ray shape k or alternatively
f in terms of the parameters d, B, G (or k2).
3.4. Physical scalings

A beam is a familiar mechanical structure, but the
mechanics particular to the two-beam fin ray
containing a material with moderate shear modulus G
confined to a thin layer d is less well known. Here, we
give some simple estimates for the order of magnitude
of the three important parameters, B, G and d, with
respect to their use in bluegill pectoral fin swimming.

First, the order ofmagnitude of the bending rigidityB
can be predicted from the simple observation that fins
bend in normal swimming conditions. One way to
quantify this property is to say that under peak
hydrodynamic loading in steady swimming, a fin ray
should bend significantly—i.e. the fin radius of curva-
ture 1/k would be of the same order of magnitude as its
length L. Hence, there is a balance of stored elastic
energy (within the beam model) with the kinetic energy
of the fluid with which the ray interacts. We take this
amount of kinetic energy to be that contained in a
volume of fluid swept out by the fin ray. Because there
are about a dozen rays per pectoral fin, this quantity of
volume is assumed to be 1/12 the volume swept out by
the whole fin. The fluid kinetic energy in a three-
dimensional potential flowpast a square finof side length
L broadside-on to the flow scales as rU2L3, so we use
L3/12 for the volume of the fluid whose kinetic energy
undergoes an order-one change due to the bending of a
single fin ray.We put this fluid kinetic energy in balance
with the stored bending energy in the two beams,

B=LzrU 2L3=12; ð3:19Þ
where the quantity on the left-hand side is the stored
elastic energy per unit length of the two hemitrichia,
Bk2, times the length of the ray L. Using the density of
water, LZ4 cm for the length of a typical bluegill fin
ray, UZ6 cm sK1 for a typical bluegill swimming speed
and we obtain Bz10K6 J m. In our experiment, we
have found using three-point bending tests that the
‘composite’ Young’s modulus corresponding to the
whole structure is Ez108–109 N mK2, with the aver-
age area moment of inertia Iz10K6 cm4. Hence, the
measured BZEIz10K6–10K5 J m. The most plausible
reason for our underestimate of B from the scaling
argument is an underestimate of the flow speed U
needed to induce order-one bending.

In subsequent sections we will determine a value for
G by fitting the model and experiment, but here we give
a simple estimate for the order of magnitude of G using
physical considerations. From equation (3.14), we
estimate GzB0/L

2. Using LZ4 cm again, we have
Gz6!10K4 N. This gives a shear modulus of the
intraray fish collagen of roughly 103 Pa. For compari-
son, type 1 collagen found in mammal skin has a shear
modulus of 10–102 Pa (Velegol & Lanni 2001).

The size of d is related to the function of the ray as a
force transducer.A large axial forceT is appliedat the ray
base (figure 1d) over a distance of the base shift f0,
resulting in a deflection of the ray y against a normal fluid
force per unit length f. Thus,Tf0wfyL. Aswe assumed in
J. R. Soc. Interface (2007)
the estimate of G, to induce an order-one curvature in
equation (3.11), we require dwf0. If the deflection is of
the order of the ray length, dwfyL/TwfL2/T. Using our
estimate of fwrU 2L/12 above, we find d/Lw(rU 2L2/
12)/T. This has the interpretation that the ray aspect
ratio is simply the ‘mechanical advantage’, i.e. the ratio of
typical fluid force to muscle force.
4. UNLOADED RAY

4.1. Simple solutions

We present some simple exact solutions to equation
(3.14), which show the effect of varying the parameters
d(s), B(s) and G(s), with fin tip both fused and free.
4.1.1. Fused ends. First, we consider the basic case
where the shear stiffness G is zero, but the tips are
fused. A ray with fused ends also arises as the limit of
very large shear modulus concentrated at the tip. We
solve for the ray trajectory directly by integrating
equation (3.14) with the boundary conditions f(0)Zf0

and f(1)Z0. We obtain

kðsÞZ

�
f0d

B

�
�ð1

0

d2

B

� ; ð4:1Þ

for the ray curvature. We see that the curvature equals
f0/d when d and B are uniform. Hence, decreasing the
intraray spacing with the base shift held constant
results in a more curved ray.

Considering now a tapered ray, for which d decreases
as s increases, we consider the physically relevant cases
where B(s) is proportional to da, aO1. The actual rays
are somewhere between a ray that tapers with constant
out-of-plane width W (in which case aZ3) and a ray
that tapers with constant cross-section (aZ4). In both
the cases, the right-hand side of equation (4.1) increases
towards the tip, so the curvature increases towards the
tip for a tapered ray (figure 3, dashed-dotted line).
Hence, having a fused tip (or concentrating shear
stiffness at the tip) with tapering is a way of
concentrating curvature at the tip.
4.1.2. Uniform ray. The next simple case is where B, d
and G are all uniform, with the ends not fused.
Then, with the boundary conditions f(sZ0)Zf0 and
vsf(sZ1)Z0, equation (3.14) has the solution
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We have indicated here that f and k asymptote to

decaying exponentials for s[
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p
. The inset to

figure 4 shows that for large
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p
, solutions are
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Figure 3. Three representative trajectories of the fin-ray
model with a base shift of f0Z0.01, where the undeflected ray
(f0Z0) lies along the x-axis: 1, a ray with zero shear modulus
and fused end (equation (4.1); solid line); 2, a uniform ray
(equation (4.3); dashed line); and 3, a ray with G increasing
towards the end as 11s10, d linearly tapered as 0.02(1.5Ks),
and BZd 3 (dashed-dotted line), intended to simulate the case
of a tapered ray with shear modulus weighted towards the tip
(see §4.1.3). Inset, the curvature as a function of arc length for
the three cases. The curvature either decreases (dashed line),
remains constant (solid line) or increases (dashed-dotted line)
towards the end.
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Figure 4. Solutions to the centre-line equation (3.14) for rays
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bending modulus (BZ1) and base shift f0Z0.01. Deflection
increases with G. Inset, the five rays plotted with distances
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the base of the ray where bending is concentrated.
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essentially the same when the distance from the base is
scaled by

ffiffiffiffiffiffiffiffiffiffi
G=B

p
. Hence, in contrast to the previous

case with fused tips (i.e. with G concentrated at the
tip), ifG is spread out uniformly over the ray, and much
larger than B, curvature is concentrated at the base,
J. R. Soc. Interface (2007)
increasingly so as G increases. There is a simple
physical interpretation that the ray curves enough at
the base to take up nearly all the shift, leaving little
bending or shear in the remainder of the ray. This
concentration of curvature is consistent with the
bending energy and shear energies in equation (3.11)
being comparable, since G[B in this limit.

The solution above assumes free ends. To obtain the
solution with fused ends, we use the boundary condition
f(sZ1)Z0 instead of vsf(sZ1)Z0. The solution with
fused ends—and uniform G, B and d—is

fZf0

sinhð1KsÞ
ffiffiffiffiffi
G
2B
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(figure 3, dashed line), which has the same asymptotic

behaviour as the free-end solution for large
ffiffiffiffiffiffiffiffiffiffi
G=B

p
. The

free- and fused-end solutions are exponentially close,
because the dominant, exponentially decaying solution
nearly obeys both the free- and fused-end boundary
conditions, with an exponentially small error. We shall
see that the experimental rays compare well with
models at sufficiently large G/B that the two sZ1
boundary conditions give similar ray trajectories, so we
will henceforth use the fused-tip boundary condition
unless otherwise stated.
4.1.3. The effect of tapering. The first simple solution
showed that with zero shear modulus but fused ends,
the uniform ray has a uniform curvature. The second
simple solution, with uniform shear modulus, showed
the curvature becomes concentrated near the base of
the ray. One may therefore infer that by varying the
distribution of shear modulus, one may vary the
distribution of curvature along the ray. The extreme
case of distributing most of the shear modulus at the tip
of the ray approaches, in the limit, the case of zero shear
modulus but fused ends, leading to a uniform curvature.
At the other extreme, distributing most of the shear
modulus at the base of the ray is similar to a uniform
distribution of shear modulus, because the bending
occurs in the nearest location to the base that has
GzB, which is at the base in both the cases.

The bending rigidity B and the intraray spacing d
are correlated in the real rays, as the thickness of the
bony segments is positively correlated with the intraray
spacing. In the case of linear proportionality, we would
expect Bwd3W, where W is the width of the ray in the
direction out of the plane of bending. W may be
constant, or scale as d for a ray of constant cross-
sectional shape, or scale as 1/d for a ray of constant
cross-sectional area. In our measurements of actual rays
using CT scans, the width typically scales like d to a
power between 0 and 1. The rays may bifurcate towards
the ends, in which case the width may increase as d
decreases.

We shall now consider the effect of non-uniform B
and d for a ray, in which G increases towards the tip (if
G is uniform or decreases with axial distance, the ray
assumes the shape with bending concentrated at the
base as in figure 4, regardless of tapering). First, from
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equation (3.14), we see that if d decreases towards the
tip, the ratio G/d 2 increases towards the tip, effectively
increasing the shear modulus term towards the tip. The
ratio B/d 2 still decreases towards the tip in this case,
since B decreases faster than d 2 by the comments
above. Consequently, if there is a region in which
B[G near the base of the ray, the curvature actually
increases towards the tip there. An example with G
increasing sharply towards the tip as 11s10, and B and d
tapered similarly to actual rays—dZ0.02(1.5Ks),
BZd3—is shown by the dashed-dotted line in figure 3.
Hence, a simple way for a ray to distribute curvature
away from the base is by (i) tapering and (ii) increasing
the shear modulus G towards the tip.

We now present some comparisons of the centre-line
trajectory of the shifted fin ray in the experiment and
model, to check whether the two are generally in
agreement, and to quantify the distribution of shear
modulus along the experimental rays.
4.2. Comparison with experiment: estimate of
shear modulus of intraray material

Our model is determined by one geometrical para-
meter—the intraray spacing—and two material para-
meters—the single-hemitrich bending modulus and the
shear modulus of the intraray material. We now
describe how we can use the model with the first two
of these parameters—the spacing and bending mod-
ulus—as inputs in order to predict the third, the shear
modulus. To our knowledge, there have not yet been
direct measurements of the shear modulus of the
intraray fish collagen.

Using CT scans, we have measured directly the
intraray spacing d for five representative rays of the
13 in the bluegill pectoral fin. We have estimated the
distribution of bending rigidity of a single hemitrich
from measurements of its cross-sectional area. The
bending rigidity B is the product of Young’s modulus
and the second moment of area of a cross-section of a
hemitrich with respect to the centre line of the ray. In
a fin ray, the role of Young’s modulus is played by the
resistance to stretching of collagen fibres linking
adjacent (not opposite) bony segments (shown sche-
matically in figure 2b; see also Videler 1993). The
simplest assumption is that the elastic properties of
these fibres, and therefore also the effective Young’s
modulus in our beam model, are uniform along the
ray. Second, we extract the second moment of area
using CT scans at six nearly equally spaced locations
in the region being modelled, for ray 3 in a specimen,
which is similar to ray 4 in geometrical and
mechanical properties. We now use ray 4 of a single
specimen for the comparison between model and
experiment, and the determination of the shear
modulus G.

The shear modulus of the intraray material cannot
be deduced simply from geometrical properties. Here,
we attempt to estimate its value along the fin ray as one
of the primary uses of the mechanical model. We
consider one specimen’s fin ray 4, typically one of the
longest rays in the pectoral fin, though all the rays
beyond the first two have similar muscle attachments
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and lengthwise distributions of material properties
(Videler 1993). Hence, we take this ray to be a ‘typical’
fin ray for estimating bending and shear modulus.

In figure 5a, we compare 10 actual fin-ray tra-
jectories from an experiment (dashed-dotted lines)
with model fin-ray trajectories. The 10 experimental
trajectories consist of the whole ray 4 specimen
clamped at three different base shifts, and the same
specimen cut-off at two locations, and again clamped
at three to four different base shifts. By cutting off the
ray ends, we test two properties of the rays: (i) the
lengthwise distribution of the intraray shear modulus,
and (ii) the importance of the intraray shear modulus
relative to that of the fused ends (in the whole ray
only) in bending.

By measuring the base shift and centre-line tra-
jectories of the ray from photographs, and the
distribution of the intraray spacing from CT scans on
separate specimens, we have all the data needed for
input to the centre-line model, except for the shear
modulus. In appendix A, we describe how shifts and
centre-line trajectories are extracted from the fin-ray
photographs.

For each experimental trajectory, we determine the
model trajectory that minimizes least-square distance
from it, using uniform shear modulus G as a single
fitting parameter. Here, we assume a uniform shear
modulus for simplicity, though a shear modulus that
varies along the length can also be considered for better
agreement. The approximation of uniform shear
modulus could be expected to apply to the extent that
the intraray material has uniform density and aniso-
tropicity of collagenous fibres. The available micro-
scopic images of the fibres (Videler 1993) show at least
that these properties are not very obviously non-
uniform. The model trajectories in figure 5a fit the
experimental trajectories to within a mean-square error
of 0.8–4.1% in position relative to specimen length over
the 10 trajectory comparisons. Each comparison is
listed in a row of table 1, with the shear moduli of the
best-fit rays in the third column.

In figure 5b, we repeat the comparisonwith a different
metric for the best-fit rays, to validate our prediction of
G. Here, instead of trajectories, we compare the
distributions of curvature.Because curvature is a second
derivative of the trajectory with respect to the arc
length, this comparison ismore sensitive to deviations in
position than the bare trajectory comparison. The
method of obtaining the curvature distribution from
the experiment is described in appendix A. For each of
the 10 photographs, the shear moduli of the best-fit rays
from the curvature comparison are listed in the fourth
column of table 1.

The values of G listed in table 1 are given on a
logarithmic (base 2), not linear scale, in order to cover
a range of several orders of magnitude with relatively
few evaluations of the model. Also, the values of G
are only given in steps of 20.25, or about 10% precision.
However, this increment in G corresponds to a
difference of less than 1% in trajectory, in terms of
mean-square deviation.

The values of G we obtain range up to 300. At this
value of G, curvature is relatively concentrated near



Table 1. Non-dimensional shear modulus G estimated from
experimental ray trajectories.

ray fraction
(L/L0)

base shift
(f0/L)

trajectory-fit
log2G

curvature-
fit log2G

1 4.51!10K3 8.25 8
1 5.85!10K3 7.25 7
1 7.64!10K3 6.5 6
0.589 4.51!10K3 7.5 8
0.589 8.40!10K3 5.75 6
0.589 1.23!10K2 4.25 5.25
0.589 1.38!10K2 5.25 6.5
0.374 1.57!10K2 2.5 3.5
0.374 1.81!10K2 2.5 2.75
0.374 2.05!10K2 2.5 3
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the fin-ray base (as we have shown in figure 4 for a
uniform ray). Thus, in the unloaded case, we see a
concentration of curvature at the ray base. In §5, we
consider how loading may distribute curvature farther
from the base, which is of importance in the
hydrodynamic situations in which the ray evolved.
We see also in comparing the cut-off ray (lower two
panels, figure 5a) with the intact ray (top panel,
figure 5a) that the ray bends similarly even after the
tip is cut-off, which is further evidence for the
importance of the intraray material to ray bending.
In table 1, we see that the best-fit values of G obtained
by the two methods of fitting are within a factor of 2.2
in the third and fourth columns, which gives an
estimate of the precision with which we have
determined G through our curve-extraction and
curve-fitting procedures. In spite of this variation, we
find a systematic decrease of G as the ray is cut
shorter. This provides evidence that G is actually non-
uniform, so these best-fit values should be interpreted
as weighted averages of the true distribution of G over
the ray. In this interpretation, we find a significant
decrease in shear stiffness towards the base of the ray.
Along with the tapering, the effect of which is
described in §4.1.3, this distribution of shear stiffness
can distribute more curvature towards the tip of the
ray, relative to a ray with uniform shear modulus.
However, curvature is still concentrated near the base
for the rays in the experiment in this test.

In this comparison of the unloaded ray, we have
found that our simple model can help us understand the
concentration of curvature at the base for an unloaded
ray actuated by shifting at the base. We now consider
the behaviour of a fin ray under different types of
loading, in order to test our model further and
understand the fin-ray mechanics in situations closer
to its use in swimming.
5. LOADED RAY

5.1. Bending against a point force

For the case of a point force Q applied normally to a
uniform ray at s0, the external moment in equation
(3.14) is MextZQ(s0Ks) for s!s0 and zero for sOs0.
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The solution to equation (3.14) in this case is
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In figure 8b, we show the solution for f0Z0.01,

QZ220, dZ0.01, GZ200, BZ1 and s0Z2/3. Here, the
relevant dimensionless point-force parameter Qd/
Gf0z1, so the upward deflection due to the shift at
the base alone is comparable to the downward
deflection from the point force alone.

We now compare this solution with the actual fin ray
under a simple case of loading under a point force. One
hemitrich base is fixed in position and orientation
(clamped) and the second hemitrich is clamped to a
micrometer. As the micrometer is turned, the second
hemitrich base slides axially relative to the first, setting
f0. A probe pushes down on the fin ray near the tip,
measuring the force needed to hold vertical deflection to
zero at this point as f0 is increased.

Figure 6a shows ray 4 of a specimen for one value
of f0. The corresponding model ray, depicted as a
white dashed line, is shown for comparison. The
model ray has the same value of f0, distributions of B
and d taken from imaging of ray 6 in a different
specimen, and a constant value of GZ128, the mean
of G values for the fully intact ray in table 1, which is
the same specimen. We see that both the model and
the experiment show a sharp upturning beyond the
point where the force is applied. The experimental
ray shows an additional inflection point nearer to the
base while the model ray is relatively flat. This
discrepancy may result from the nonlinear elastic
properties of the actual fin ray.

The ray shape under this point force has a simple
physical interpretation. The point force prevents the ray
from bending upward sharply near the base, as in the
unforced solution shown in figure 4. Thus, the ray is
constrained to be relatively flatwith shear approximately
f0/d in this region. Just beyond the point of application
of the point force, the ray bends sharply to relievemost of
the shear energy in the collagenous gel in the remainder of
the ray, between the point force and the tip.

In figure 6b, we plot the point force versus f0

measured in the experiment. The force grows nonli-
nearly, which also occurs in a model with a nonlinear
shear behaviour—such as that provided by collagen
fibres as springs. In figure 6c, we replot the experimental
data from figure 6b (triangles) with the behaviour of the
models, with linear shear material with rigidity G
(circles) and with the collagen springs with stiffness k2
(crosses). For the linear shear material, there is a linear
force–shift relationship, whereas the collagen spring
model shows a cubic growth. This cubic behaviour arises
because the second term in equation (3.15) grows
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Figure 6. (a) A comparison between the model (dashed line) and the experimental trajectory (photograph), when a point force is
applied (aluminium triangle in the photograph) at two-thirds the distance from the base to the tip of the ray. The point sZ0 for
the model is defined as the point where both hemitrichs appear fully segmented in the photo, though here the agreement is
relatively insensitive to where sZ0 is defined, since the bending occurs mainly beyond the point force. (b) Experimental
measurements of the force versus base shift, for a point force which holds a point two-thirds along the ray fixed as in (a). (c) The
data in (b) replotted on a log–log scale (green triangles), together with the corresponding data for the two models: equation
(3.14), a uniform-shear-modulus material (blue circles) showing a linear growth of force with shift, and equation (3.15), collagen
springs (red crosses) showing a cubic growth of force with shift. Forces f have been normalized to the value 1 at f0Z10K2.2, and
only the slopes of the lines are to be compared.
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cubically with f0 for small f0. For both models, all
material properties are uniform; for simplicity we do not
consider the effect of tapering in this comparison. We
adjust the (uniform) values of G and k2 here, and
compare only the slopes of the curves. We see that the
experimental data show a dependence that grows more
rapidly than a linear growth and slightly less rapidly
than a cubic growth. However, cubic behaviour seems to
be a reasonable approximation to the nonlinear
behaviour of the actual intraray material, with its
more complex material properties.
J. R. Soc. Interface (2007)
5.2. Cantilever

In figure 7, we examine a complementary situation
that highlights the ‘stiffening’ function of the fin-ray
mechanism. Here, the two bases of the ray are either
clamped, with both clips held fixed at the same
longitudinal position, or else free to slide axially,
with only one of the fin-ray bases held by a clip. In our
model, the two corresponding boundary conditions are
(i) f0Z0 or (ii) the free-base boundary condition in
equation (3.16).
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Figure 7. (a) The ability of the ray-shifting mechanism to resist a point force is quantified in the experiment by measuring the
deflection of the ray versus an applied point force, for two different conditions at the base of the ray. The ray is clamped
horizontally at the base, and a vertical point force is applied at two-thirds of the distance from the ray base to the tip, as in
figure 6a. When only one of the bases is clamped, the ray deflects much more than when both bases are clamped. In the latter
case, the force–displacement curve may be fit with a slope of 1.98 N mK1, about 12 times the value when one hemitrich is free.
Dashed lines show linear fits to the data. (b) In the corresponding model, only slopes of the corresponding curves in the linear
(small-deflection) regime are shown, versus the non-dimensional shear modulus G (introduced in equation (3.11)). Four
boundary conditions are tested—two at the base (both bases clamped versus one free) and two at the tip (hemitrichs fused or free
at the tip). WhenG/1,G drops out of the problem and the bending modulus B alone resists the force as a classical cantilever. In
this limit, if the tip is fused, the resistance is increased. By contrast, for G[1, the slope increases linearly with G in all cases, as
the shear modulus provides the primary resistance. As G increases through 1, the ratio of force–displacement with both bases
clamped versus one free transitions from 3 to 100; the experimental ratio of 12 occurs forGz102, which is close to the values ofG
found by ray-shape fitting in table 1.
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Meanwhile, a probe pushes down on the fin ray at
approximately two-thirds of the distance from the base
to the tip, and the force on the probe is measured as a
function of tip deflection of the ray. The experimental
data are shown in figure 7a. We see an approximately
linear relation between force and deflection for the case
of one hemitrich base free, and an approximately linear
relation with an offset—and much larger slope or
stiffness—for the case of both bases fixed.

In figure 7b, we present the corresponding data
for uniform rays in the model with two different
boundary conditions at each of the base and tip—
resulting in four curves in total. Here, a downward
point force F (non-dimensionalized by B0/L

2) is applied
at sZ2/3, resulting in an external bending moment
MextZFð2=3KsÞcos qðsZ2=3Þ for 0!s!2/3 in
equation (3.14). Unlike in the experiment, for these
idealized rays with flat equilibrium shapes, there is an
asymptotically linear relation between deflections y and
forces F for small forces. Thus, each data point
corresponds to the slope of a line like those in
figure 7a but perfectly linear. Therefore, we plot only
the slope (or stiffness) dF/dy in this linear regime and
study its dependence on the intraray shear modulus G.
There are twomain results to emphasize,which hold also
for rays with d tapered as in the experiment. First, when
GO3—when shear energy is comparable to bending
energy—the rays with clamped bases give stiffnesses
that exceed those of the rayswith free bases by a factor of
4 (for GZ3) to 100 (for GO105). In the experiment, the
factor is 12, which occurs when Gz100 in the model,
similar to the value ofG found by curve fitting the whole
J. R. Soc. Interface (2007)
ray in table 1. Second, for clamped bases andGO10, the
stiffness scales linearlywithG. This indicates that in this
regime, the shear energy provides the dominant
resistance to the point force when both bases are
clamped. Here, G is large enough to give a shear energy
comparable to bending energy for all deflections of
the ray by the point force. For free bases, by contrast,
dF/dy grows more slowly. In this case, the bending
rigidity of each hemitrich is of greater importance in
resisting the point load over a wider range of G.

We have noted that figure 7a shows a relation
between force and deflection which is linear with an
offset for both bases clamped. One possible explanation
for the offset is that the unstressed shape of the real ray
is not flat, so some amount of deflection at the tip is
possible without much change of position at the bases.
Another explanation follows directly from the model
with a shear force given by collagen fibres modelled as
linear springs (equation (3.15)). Here, the force grows
as deflection cubed instead of linearly, for small forces,
because the second term on the left-hand side of
equation (3.15) scales as f3

0 for small f0.
5.3. Uniform force distribution

So far, we have considered a point force applied to the
ray. In the case of a distributed normal force per unit
length p applied to the ray, such as a hydrodynamic
force, there are also solutions with inflection points, but
the sharp change in the derivative of curvature implied
by a point-force loading in equation (3.14) is now
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Figure 8. (a) Ventral view of a bluegill turning to the right.
The fin to the right is actively cupped into the flow, increasing
the drag force. (b) Shapes of a model fin ray under three
loading situations: 1, a concentrated normal point load (solid
line, equation (5.1) with f0Z0.01Z0.01, QZ220, dZ0.01,
GZ200, BZ1 and s0Z2/3); 2, a uniform force per unit length
(dashed line, equation (5.1) with f0Z0.01, pZ200, dZ0.01,
GZ200 and BZ1); 3, a ‘passive’ ray under the same uniform
loading (dashed-dotted line), with a free base (vsfZ0 at
sZ0). The difference between 2 and 3 shows the effect of
changing the base shift f0 from its passive value.
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spread out over the ray. For a uniform p, the external
moment in equation (3.14) is MextZpð1KsÞ2=2.

The solution to equation (3.14) for uniform loading is
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In figure 8b, we show the solution for f0Z0.01, pZ200,
dZ0.01, GZ200 and BZ1. Here, the relevant dimen-
sionless point-force parameter pd/Gf0Z1. As for the
case of the point-force load, the resistance to bending
is a combined effect of the shear modulus of the
intraray material and the fused-end boundary con-
dition at sZ1. For comparison, we show in figure 8b a
‘passive’ ray under the same loading, but with a free-
base boundary condition. This is the shape of the ray
when no force is applied at the base to resist loading.
For these parameters, we see that the base shift
creates an S-shaped ray and a reversal of the ray-tip
deflection.
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6. SYNTHESIS AND FUTURE DIRECTIONS

Using experiments and a mathematical model, we have
examined the mechanical properties of fin rays that
allow the control of fin shape and fin stiffness in response
to external forces. Our mechanical model approximates
the two-ray halves as thin beams, and the intraray
material as incompressible and with shear modulus that
is constant with respect to shear (i.e. the intraray
material is linearly elastic), or representative of col-
lagenous fibre springs. Under these assumptions, the
model involves just three parameters (each functions of
axial position along the ray): (i) the bending rigidity of
each ray half, (ii) the intraray spacing, and (iii) the
intraray shear modulus. In uniform rays, we have found
that curvature is localized near the base, so as to relieve
shear strain over the remainder of the ray. We have
found that tapering is a way of distributing curvature
more evenly over the ray. Furthermore, we have shown
that forcing at the fin-ray base can dramatically increase
the stiffness of the ray under loading.

Our model is sufficiently general to study a wide
range of mechanical properties of fin rays. It was
proposed by McCutchen (1970) that flexibility has a
hydrodynamical benefit through lift-based propulsion
of the tail, by creating a curved (or ‘cambered’) surface.
A classical result from airfoil theory is that the lift on a
slender wing increases linearly with the amount of
curvature (Batchelor 1967). However, there has been
relatively little work on the hydrodynamical role of
flexibility of fin rays. Nonetheless, the fin ray, with its
complex structure that confers flexibility, is widespread
among fish species, so we hypothesize that flexibility
confers advantages in applying forces to the fluid. We
note that the tapering of a ray, by allowing the
distribution of curvature away from the ray base,
allows a closer approximation to the nearly constant
curvature of a classical cambered airfoil. Future work
will consider more specifically the design and function
of the fin ray with respect to its dynamical interaction
with a fluid environment.

The fin ray uses a material with bending rigidity
confining an incompressible material to transduce
motion. Our one-dimensional model may be extended
to other confined incompressible materials, which arise
in other motion-transduction systems. By making the
shear modulus G large, and changing the walls to be
extensible with negligible bending rigidity, we may
model the tensile stresses in skin containing an
internally driven muscle that resists shearing. Jordan
gave a qualitative picture of a similar model for
swimming leeches (Jordan 1996), and such a model
could be a simple way to quantify Wainwright’s (2000)
models of fully coupled skin, muscle and backbone
mechanics. This model may be used to quantify the
forces and stresses acting on bodies of incompressible
muscle with an internal backbone and exterior tension-
bearing skin, of which fishes and the soft appendages
including tongues and tentacles are examples (Kier &
Smith 1985).

Despite the fact that ray-finned fishes are a highly
successful group that have been the subject of
numerous studies of locomotor anatomy and
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mechanics, very little attention has been paid to one of
their key characteristics, i.e. the fin rays that give the
group its name. The fin rays of ray-finned fishes possess
a novel bilaminar structure capable of active curvature
control, which is distinct from the rod-like fin ray
supports in other major fish groups, such as sharks and
lungfishes. This endows ray-finned fishes with the
potential of modulating fluid dynamic forces in a way
not possible in other major groups of fishes, or in other
animals with oscillating appendage-based propulsion,
such as insects. And it is probable that there is
considerable diversity of fin-ray design and function
within ray-finned fishes themselves, although this
diversity has yet to be investigated. In this paper, we
test the model of fin-ray mechanics with data from one
taxon, the bluegill sunfish, but this model could easily
be extended to other species, with the goal of under-
standing the diversity of fin function. One of the more
obvious areas to expect diversity across ray-finned
fishes is the location of maximal bending on fin rays.
Ray-finned fishes that use fins for propulsion on the
substrate may possess fin rays that generate the
greatest bending near the tips. Fishes such as mud-
skippers that use their pectoral fins for terrestrial
locomotion may possess stiffer rays for support, or may
use the bilaminar actuation mechanism to produce
thrust against the substrate. The extent of variation in
fin-ray structure and mechanical properties among
different fins, during growth, or across different species
with distinct habits such as burrowing or different
swimming styles is entirely unknown. The development
of a mathematical model of fin-ray properties provides a
starting framework for exploring the diversity of
propulsive surface mechanics across a broad range of
fish species, and lays the quantitative structure for
future comparative biological study.
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L. Mahadevan and Eric Lauga. This work was supported by
an NSF Mathematical Sciences Postdoctoral Fellowship to
S.A., an ONR-MURI grant no. N00014-03-1-0897 on fish
pectoral fin function, monitored by Dr Thomas McKenna and
initiated by Dr Promode Bandyopadhyay, and by an NSF
grant IBN0316675 to G.V.L.
APPENDIX A. FITTING EXPERIMENTAL
AND MODEL CURVATURES
AND TRAJECTORIES

Here, we describe the method for obtaining the best-fit
values of log2G, shown in table 1.
A.1. Extracting experimental geometry

We consider a single fin-ray specimen (fin ray 4 from a
bluegill sunfish), which has been cut out of a fin. The fin
ray is held in clips, which apply an axial shift (f0 in the
above model) at the base of the ray. The actual fin rays
have an unsegmented section starting from the base, and
segmenting begins some distance along the ray—usually
10–30% of the ray length. We define the base of the fin
ray (sZ0 in the model) as the position where complete
segmenting begins. Complete segmenting is essential to
our application of a beam model to the ray.
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Given a photo such as figure 2a, we define the ray as
the region where pixels are above a threshold in
lightness. We then use the boundary-tracking software
included in MATLAB v. 7.0 to extract the boundary
of this region. We identify the base (sZ0) as the
horizontal location where segmenting begins. We
identify the tip (sZ1) as the point in the region farthest
from the base. We then perform a Fourier filter on the
boundary (which is a closed loop), setting to zero
the amplitudes for wavenumbers higher than kZ20.
The Fourier filter removes jagged edges from the region
due to pieces of interray fin membrane. To find the
centre-line trajectory of the ray, we take the average
of the two halves of the boundary connecting the base
to the tip.

We can also estimate the other geometrical para-
meters d/L and f0/L directly from the photographs.
The length of the centre-line trajectory above is L. In a
photo of the unforced ray, we note the relative axial
position of the fin ray halves (approximately aligned) at
the base. We then directly measure the change in axial
position at the base in photos with non-zero deflection.
This change is the shift f0, corresponding to shifts in
the ray heads applied by the clips. The spacing between
the ray halves (d) is measured in CT scans. From axial
CT scans, we estimate that the bony segments take up
about 30% of this thickness. The remaining thickness,
composed of the collagenous intraray material, has an
approximately cylindrical geometry. To obtain the
average thickness, we therefore multiply this thickness
by the factor p/4, which is the average height of a
semicircle of radius 1.
A.2. Extracting experimental curvature

Differences in trajectories are amplified when the
trajectories are differentiated twice to find curvatures.
Therefore, a potentially more accurate way of finding
the best theoretical-curve fit to a curve extracted from
noisy data is to compare distributions of curvature
instead of trajectories.

Another reason why comparing curvatures is
advantageous in our case is that the range of theoretical
rays has a simple classification in terms of curvature.
As the shear modulus G is increased, the centroid
of curvature in an unforced ray moves towards the
base, monotonely.

We extract the curvatures of the experimental rays
by fitting the trajectory data to quintic smoothing
splines. A widely used method for choosing the
smoothing parameter was given by Craven & Wahba
(1979). Quintic splines find the piecewise quintic
polynomial p(s), which best fits a set of data points
f(si) in the sense that it minimizes the function

r
Xn
iZ1

jpðsiÞKf ðsiÞj2 C
ð
jD3pðsÞj2ds; ðA 1)

where r is a smoothing parameter. Hence, the best-fit
quintic spline strikes a balance between fitting the data
and preserving smoothness (here measured by mini-
mization of the third derivative), a balance set by the
smoothing parameter r. When r is large, the spline
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matches the data exactly—and is as noisy as the data.
When r is small, the spline has zero third derivative,
and is thus the best constant-curvature fit to the data.
To find the ‘best’ value of r, we use the fact that for r
too large, and for r too small, the absolute value of the
curvature is spread out almost uniformly over the ray.
However, our model predicts (and inspection of
photographs confirm) that the curvature is largest
near the base of the ray. Hence, we choose that value of
r which minimizes the distance of the centroid of the
absolute value of the curvature from the base of the ray.
As we have noted, the location of the centroid of
curvature also parametrizes the theoretical curves—as
the shear modulus G is increased, the centroid of
curvature moves towards the base, monotonely.
A.3. Fitting to experimental trajectory

In the third column of table 1, we list the value ofG that
gives a theoretical ray corresponding to the least-square
distance from the centre-line trajectory extracted above.
A.4. Fitting to experimental curvature

Increasing the parameter G concentrates the curvature
near the base of the ray. Decreasing it spreads the
curvature out along the ray. In the fourth column of
table 1, we list the value of G that gives the best match
between the theoretical and experimental curves in the
location of the centroid of the curvature.
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