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We use modeling and simulations guided by initial experiments to study thin foils
which are oscillated at the leading edge and are free to move unidirectionally under
the resulting fluid forces. We find resonant-like peaks in the swimming speed as a
function of foil length and rigidity. We find good agreement between the inviscid
model and the experiment in the foil motions (particularly the wavelengths of their
shapes), the dependences of their swimming speeds on foil length and rigidity, and
the corresponding flows. The model predicts that the foil speed is proportional to
foil length to the −1/3 power and foil rigidity to the 2/15 power. These scalings
give a good collapse of the experimental data. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4709477]

I. INTRODUCTION

The study of fish locomotion has been very active for the last several decades, and includes
work by groups in biology,1–5 applied mathematics,6–9 and engineering.10, 11 Many of these studies
consider models of swimming fish—flexible foils or sheets—which oscillate in a steady oncoming
flow of a prescribed speed. These studies have greatly improved our understanding of how thrust
forces depend on the body shape and motion, particularly in terms of the pattern of vortices generated
in the wake.12, 13 Lauder and co-workers have quantified the kinematics of freely swimming fish,14, 15

including particle image velocimetry studies of flow structures around the bodies and fins.
Recent work has considered freely moving models of swimmers16, 17 and fliers.18–20 A simple

passive or oscillating body which is mechanically coupled to the surrounding flow can exhibit a
rich variety of dynamical behaviors.21–25 In Ref. 26 the swimming speed is not set a priori, but is
instead optimized by varying the swimming motion. Borazjani and Sotiropoulos used simulations to
determine Strouhal and Reynolds numbers at which carangiform or anguilliform motions yield higher
efficiency in self-propelled swimmers.27, 28 Kern and Koumoutsakos also considered optimal burst
velocity in self-propelled anguilliform simulations,29 and Shirgoankar et al. studied gymnotiform
locomotion experimentally and computationally.30

In this work we study a basic physical model for a swimming body, introduced in Refs. 12, 13,
and 16. We perform experiments on thin flexible foils, driven by periodic heaving at the leading
edge. The foils are allowed to move freely through the fluid in the swimming direction, and attain
a state of steady swimming with a nearly constant speed. We measure foil swimming speed versus
foil length and bending rigidity, and we find a resonant-like response, with multiple peaks and
troughs in swimming speed. In order to understand this apparent resonant phenomenon discovered
in our experimental work, we perform inviscid simulations, which also find multiple peaks and
troughs in swimming speed, moving from a peak to a trough when the number of wavelengths on
the foil increases by approximately one quarter. We consider approximate solutions in the form of
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sinusoidal traveling waves, in the limit of wavy foils (large length and/or small bending rigidity).
The approximate solutions allow us to find asymptotic power-law scalings for the dependences
of swimming speed on length and bending rigidity. The scalings give a good collapse of the
experimental data, even for relatively rigid foils. We also compare the foil shapes and flows with
those from the experiment, and find good qualitative and quantitative agreement, considering the
simplifying assumptions in the model.

II. FREE FOIL EXPERIMENTS

Experiments on the swimming of flexible self-propelling foils were performed using the
computer-controlled robotic flapping foil apparatus described in Refs. 12, 13, and 16 and shown
schematically in Figure 1. Briefly, this apparatus uses a carriage containing heave and pitch motors
mounted on low-friction airbearing rods above a recirculating flow tank. A linear encoder mounted
on the carriage is used to monitor upstream-downstream (x) position, while rotary encoders on the
motors provide data on the motion generated. Flexible plastic foils are attached via a stainless steel
sting to the motors above, and can be moved in pitch and heave at the leading edge. The experimental
results described here were done with a heave motion of Acos (2π ft) at the leading edge of each foil,
with amplitude A = 1.0 cm and frequency f = 2.0 Hz. A LabVIEW control program is used to match
the flow tank speed to the swimming speed of the foils, so that true self-propulsion is achieved,
with thrust forces balancing drag forces when averaged over a flapping cycle. Self-propulsion was
verified in control experiments using an ATI Nano17 six-axis force/torque transducer mounted on
the foil shaft to measure foil forces during propulsion. Thrust force coefficients integrated to a value
not significantly different from zero over a flapping cycle.13 Two slightly different versions of the
flapping foil robotic device were used to gather data on the self-propelled speed of flexible foils.
The first version was used to generate the data shown in Figure 5 of swimming speed versus foil
length. A second iteration of this device was used to gather data on the effects of span shown in
Table II. Due to modifications to the flapping device, foil swimming speeds are not directly compa-
rable between Table II and Figure 5.
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FIG. 1. Foil apparatus shown in side view (a) and bottom view (b). The foil is the orange rectangular plate which is clamped
at its leading edge. In (b), the carriage and airbearing rods are visible above the foil. A schematic diagram in side view is
shown in (c).
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TABLE I. Foil characteristics. In this paper, the foils’ spans are 6.8 cm,
except where noted (i.e., Table II, Sec. IV).

Foil Thickness (cm) EI (dyn cm2)

A 0.075 3.85 × 106

B 0.052 9.88 × 105

C 0.033 3.22 × 105

D 0.011 3.28 × 104

E 0.004 1.12 × 103

Plastic shim stock materials of varying thickness were used to make flexible foils of different
flexural stiffnesses (Table I). In order of decreasing thickness (and decreasing bending modulus),
the foil materials are labeled A–E, for convenience. Most experiments were done with rectangular
foils having a 6.8 cm span to allow comparison with our previous work,12, 13 but some experiments
involved foils of 19 cm span (see Table II, Sec. IV) to estimate the consequences of reducing
three-dimensional effects from the foil edges in comparing experimental data to results from the
model. We varied foil length to study the effect of changing chord on self-propelled speed and
the waveforms achieved during propulsion. Flexural stiffnesses of the foil materials, shown in
Table I, were calculated using the Young’s moduli of each material measured using an Instron
materials testing machine and the dimensions of the foils. The plastics were found to be linearly
elastic over a strain range of 0.002–0.16. McHenry et al. measured fish flexural stiffness using three-
point bending, and reported values for flexural stiffness along the body of pumpkinseed sunfish
Lepomis gibbosus that range from approximately 106 dyn cm2 near the head to 103 dyn cm2 near
the tail.31 These values fall within the range of foil flexural stiffness of the foils used here. High-
speed video of foil swimming was obtained with a Photron camera imaging at 500 Hz. A custom
MATLAB program was used to obtain midline images of the foils to produce “snapshot” pictures of
the waveforms at various times through the flapping cycle (e.g., Figure 2).

High-speed video was also used to collect time-resolved particle image velocimetry data on
foils during self-propulsion using the same approach as in our previous research.16, 32, 33 Briefly, a
continuous beam Coherent 10 W laser was used to generate a light sheet approximately 20 cm wide
that intersected the swimming foils at the midspan position. Flow was seeded with small nearly-
neutrally-buoyant particles, and image sequences of the flow were obtained using high-speed video
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FIG. 2. Comparison of foil shape snapshots in the experiment with spans 6.8 cm (a) and 19 cm (c) with the model (infinite
span) at instants (b) corresponding to (a) and (d) corresponding to (c). Data are shown for foil D (see Table I) with chord of
8 cm.



051901-4 Alben et al. Phys. Fluids 24, 051901 (2012)

at 500 Hz. Standard cross-correlation analysis using DaVis 7.2 software (Lavision, Inc.) generated
a time series of velocity vectors representing flow patterns throughout the flapping cycle. Standard
flow characteristics were calculated including vorticity and streamlines to illustrate hydrodynamic
flows near the foil and in the near wake (e.g., Figure 8). Due to the shadows cast by the foils, flow
structures were only visible on one side of the swimming foil.

III. BODY-VORTEX-SHEET MODEL

We model the freely swimming foil as a one-dimensional body moving in a two-dimensional
fluid. The body sheds a vortex sheet into the fluid at its trailing edge. Because the Reynolds number
is in the range 103–105, we may assume the vortex sheet does not diffuse much under fluid viscosity,
and remains a one-dimensional curvilinear sheet in the fluid. The model is similar to that in Ref. 34.
For small-amplitude body deflections, a linearized version of the model was analyzed in Ref. 35. In
these works, the horizontal motion of the body was prescribed and steady, whereas in the present
work, the horizontal motion of the body is coupled to the fluid according to Newton’s second law.
Due to this coupling, the present problem has an additional source of nonlinearity. Viscous boundary
layer drag is included in the present model, and is an important component of the force balance in
the horizontal direction. Viscous boundary layer drag may be comparable to or even greater than
pressure drag for objects which are nearly aligned with the oncoming flow,36 which is often the case
for our foils. We also note that Refs. 34 and 35 mainly considered pitching at the leading edge,
while the present work considers only heaving; this difference was considered in Ref. 35 and does
not change the qualitative results.

We briefly summarize the parts of the model which are the same as in Refs. 34 and 35 and
emphasize the aspects which are new. The foil moves as an inextensible elastica according to the
equation

R1∂t tζ (s, t) = ∂s(T (s, t)eiθ(s,t)) − R2∂s(∂sκ(s, t)ieiθ(s,t)) − [p](s, t)ieiθ(s,t). (1)

Here R1 = 2ρs/ρ fL is the dimensionless body mass and R2 = 32EI/ρ ff 2L5 is the dimensionless
bending rigidity. The foil mass per unit length is ρs, the fluid mass per unit area is ρ f, L is the foil
length, EI is the foil bending rigidity, and f is the frequency of heaving. The position of the foil in
the complex plane is ζ (s, t), a function of arc length s and time t. The tension in the foil is T(s, t)
and the pressure jump across the foil is [p](s, t). The foil’s tangent angle is θ (s, t), κ(s, t) = ∂sθ (s,
t) is the curvature, and eiθ(s, t) is the unit tangent to the foil. Equation (1) is made dimensionless by
nondimensionalizing time by 1/f, distance by L/2, and mass by ρ fL2/4.

Equation (1) is solved together with the boundary condition that the foil is heaved harmonically
in time at the leading edge with (dimensionless) amplitude A and zero tangent angle. In accordance
with the experiment, we assume that the foil is held at the leading edge by a clamp which is free
to move horizontally. At the trailing edge, the foil experiences zero force and torque. Thus, the
boundary conditions are

ζ (−1, t) = x(t) + i A cos(2π t); θ (−1, t) = 0, (2)

T (1, t) = κ(1, t) = ∂sκ(1, t) = 0. (3)

The horizontal position of the clamp x(t) is given by Newton’s second law in the horizontal direction

(Mdriver + ρs L)
d2x

dt2
(t) = Fx, f luid . (4)

The driver, i.e., the object which performs the heaving at the clamp, has mass Mdriver , and the
mass of the foil is ρsL. Fx, fluid is the horizontal force exerted by the fluid on the foil and clamp.
Nondimensionalizing (4) in the same way as Eq. (1), we obtain

(mdriver + 2R1)
d2x

dt2
(t) = Fx, f luid . (5)
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Here mdriver = 4Mdriver/ρ f L2 and the other quantities in Eq. (5) are dimensionless from now on.
In the experiment, Mdriver = 8 kg, and we replace ρ f by the product of ρ, the fluid mass per unit
volume, with the span of the foil (typically 6.8 cm). Then mdriver ranges from 5 to 200 as L ranges
over the chord lengths used in the experiment. Thus, the driver mass is dominant over the fluid
inertia in the experiment, and the model results shown for comparison in Sec. IV. When we remove
the driver mass from the model in Sec. V, the results for average speed and foil deflection change
relatively little, while the fluctuations in horizontal motion increase greatly.

In Eq. (5), Fx, fluid is the horizontal component of pressure force on the foil plus a term due to
viscous skin friction:

Fx, f luid =
∫ 1

−1
[p](s, t) sin(θ (s, t))ds + Fx,visc. (6)

Here we omit the force due to leading edge suction, because the leading edge vortices do not
remain attached to the foil in the experiment. Since the foil is nearly aligned with the oncoming
flow, the skin friction may be comparable to the pressure force. We assume that the skin friction is
approximately the same as that for a flat plate moving steadily at a speed equal to the instantaneous
average horizontal flow speed along the foil, U(t). The viscous stress at position s is then (see
Refs. 36 and 37):

τvisc(s, t) = 1

3
ρ f

√
νU (t)3

s + 1
. (7)

Nondimensionalizing,

τvisc(s, t) = 2

3

√
ν

f L2

Vx (t)3/2

√
s + 1

, (8)

Fx,visc = 2
∫ 1

−1
τvisc(s, t)ds = 8

√
2

3

√
ν

f L2
Vx (t)3/2. (9)

Here Vx = 2U/ f L and
√

ν/ f L2 is the inverse square root of a Reynolds number. This Reynolds
number is 103−105 in the experiment. The term Fx,visc opposes the foil’s forward motion, which is
in the −êx direction. In our simulations, when we remove skin friction, the speed of a nearly rigid
foil may increase by more than 100%, while the speed of a very flexible foil increases by about
10%. Skin friction is used in the simulation results shown subsequently in this paper. The viscous
stresses act tangentially to the foil, and tangential gradients in viscous stress are counteracted by
the tension which makes the foil inextensible. Thus the viscous stresses do not play an important
role in the bending of the foil, described by Eq. (1). We also note that the main effect of gravity is
to stretch the foil slightly (by about 0.01%) in the chordwise direction, so inextensibility remains
a good approximation in the presence of gravity. We combine Eqs. (5), (6), and (9) to obtain the
equation for the horizontal motion of the leading-edge clamp:

(mdriver + 2R1)
d2x

dt2
(t) =

∫ 1

−1
[p](s, t) sin(θ (s, t))ds + 8

√
2

3

√
ν

f L2

(
dx

dt
(t)

)3/2

. (10)

The pressure force in Eqs. (1) and (10) is obtained by solving for the inviscid flow around a flexible
body which continually sheds a vortex sheet from its trailing edge. The model here is the same as in
Ref. 34 and we repeat it briefly for completeness.

The complex conjugate of the flow velocity (ux, uy) at any point z in the flow can be calculated in
terms of the vortex sheet strength γ by integrating the vorticity in the bound and free sheets against
the Biot-Savart kernel:38

ux (z) − iuy (z) = 1

2π i

∫
Cb+C f

γ (s ′, t)

z − ζ (s ′, t)
ds ′. (11)

Here Cb is the contour representing the foil (−1 ≤ s′ ≤ 1) and Cf is the contour representing the free
vortex sheet (1 < s′ ≤ smax). We can express the average w of the flow velocities on the two sides of



051901-6 Alben et al. Phys. Fluids 24, 051901 (2012)

any point ζ (s, t) on Cb or Cf by taking the average of the limits of Eq. (11) as z approaches ζ (s, t)
from above and below the contours:

w̄ (s, t) = 1

2π i
P

∫ 1

−1

γ (s ′, t)

ζ (s, t) − ζ (s ′, t)
ds ′ + b(s, t), (12)

b(s, t) = 1

2π i

∫ smax

1

γ (s ′, t)

ζ (s, t) − ζ (s ′, t)
ds ′. (13)

In Eq. (12), w̄ is the complex conjugate of w, and the integral is of principal-value type.
We can rewrite b(s, t) in a more convenient Lagrangian form. The free vortex sheet consists of

a line of fluid particles which are continually advected away from the trailing end of the foil, for
t ≥ 0. There is a bound vortex sheet with strength γ (s, t) along the foil, and we also use γ for s > 1,
to describe the strength of the shed vortex sheet. The circulation is the integral of γ :

�(s, t) =
∫ s

smax

γ (s ′, t) ds ′, −1 < s < smax, (14)

and the total circulation in the free sheet is �+(t) = ∫ 1
smax

γ ds ′. According to the Helmholtz laws for
vorticity conservation in two-dimensional flows, specialized to a vortex sheet, �(s, t) is conserved
on particles which move with the fluid (Ref. 38, p. 30). Thus each fluid particle in Cf carries the
value of circulation �(s, t) = �(1, t*) it has at the time t* when it is emitted from the trailing edge of
the foil. We can label material points by �, and reparametrize b in Eq. (13) by circulation � using
γ ds = d�:

b(s, t) = − 1

2π i

∫ �+(t)

0

d�′

ζ (s, t) − ζ (�′, t)
. (15)

On the free vortex sheet Cf, it can be shown that material points ζ (�, t) move with velocity w

(Ref. 38, p. 31). This gives the Birkhoff-Rott equation for the evolution of the free vortex sheet,

∂ζ̄

∂t
(�, t) = 1

2π i
P
∫

Cb

γ (s ′, t)

ζ (�, t) − ζ (s ′, t)
ds ′ + 1

2π i

∫
C f

d�′

ζ (�, t) − ζ (�′, t)
, ζ (�, t) ∈ C f . (16)

Using � to label points on the free sheet eliminates the need for a separate evolution equation for
γ (s, t) on the free sheet. This is an important advantage of using the Lagrangian description of the
free sheet.

We apply Eq. (12) to ζ (s, t) on the foil, to express the kinematic condition that fluid does not
penetrate the foil on either side. In other words, the component of the foil velocity normal to the foil
equals the same component of w:

Im
(
e−iθ(s,t) ∂tζ (s, t)

) = Im
(
e−iθ(s,t) w(s, t)

)
, ζ (s, t) ∈ Cb, (17)

Im
(
e−iθ(s,t) ∂tζ (s, t)

) = Im

(
e−iθ(s,t)

(
1

2π i
P
∫ 1

−1

γ (s ′, t)ds ′

ζ (s) − ζ (s ′)
+ b(s, t)

))
, ζ (s, t) ∈ Cb. (18)

When the left hand side of Eq. (18) and b(s, t) are known, the general solution γ (s, t) has
inverse-square-root singularities at s = ±1 (Ref. 39). If we define v(s, t), the bounded part of
γ (s, t), by

γ (s, t) = v(s, t)√
1 − s2

, (19)

the kinematic condition becomes

Im
(
e−iθ(s,t) ∂tζ (s, t)

) = Im

(
e−iθ(s,t)

(
1

2π i
P

∫ 1

−1

v(s ′, t)ds ′
√

1 − s ′2(ζ (s) − ζ (s ′))

)
+ b(s, t)

)
,

ζ (s, t) ∈ Cb. (20)
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A complication arises in using Eq. (16) to solve for the dynamics of a free vortex sheet
numerically. The equation is ill-posed, which causes numerical errors to increase rapidly.40 Krasny
and others showed that the ill-posedness can be removed by modifying the singular kernel in
Eq. (16) using a smoothing parameter δ.41 The δ-smoothed versions of Eqs. (16) and (20) are

∂t ζ̄ (s, t) = 1

2π i
P

∫ 1

−1

γ (s ′, t)ds ′

ζ (s, t) − ζ (s ′, t)
+ bδ(s, t), ζ (s, t) ∈ C f , (21)

Im
(
e−iθ(s,t) ∂tζ (s, t)

) = Im

(
e−iθ(s,t)

(
1

2π i
P
∫ 1

−1

v(s ′, t)ds ′
√

1 − s ′2(ζ (s)−ζ (s ′))

)
+bδ(s, t)

)
, ζ (s, t) ∈ Cb,

(22)

respectively, where

bδ(s, t) = − 1

2π i
P

∫ �+(t)

0
d′ ζ (s, t) − ζ (′, t)

|ζ (s, t) − ζ (′, t)|2 + δ2
. (23)

In the Appendix we show that the foil speed does not change much as δ is decreased from 0.2
to 0.1. In this work we mainly use δ = 0.2. The instantaneous total circulation in the free sheet,
�+(t), is determined by the Kutta condition, which states that at each time t the fluid velocity at the
trailing edge s = 1 is finite. In particular, γ , which is also the tangential component of the jump in
fluid velocity across the foil, must be finite at the trailing edge. Using Eq. (19), the Kutta condition
becomes

v(1, t) = 0. (24)

At each time t, Eq. (24) is a constraint which we use, together with the conservation of circulation
in the flow, to determine �+(t) as described in Ref. 34.

One can relate the pressure jump across the foil [p] to the vortex sheet strength along the foil by
a version of the unsteady Bernoulli equation. One writes the Euler equations for fluid velocities at
points above and below the foil, and takes the limit that the points approach each other from opposite
sides of the foil (see Ref. 38, p. 31, and Ref. 42). The difference of these equations is an evolution
equation for the difference of the fluid velocities, which is γ ŝ (the normal component is zero by
the no-penetration condition on either side of the foil). The evolution equation for the vortex sheet
strength γ is42

γt + ∂s((μ − τ )γ ) = ∂s[p], (25)

where τ (s, t) is the tangential component of the fin velocity and μ(s, t) is the tangential component
of the average fluid velocity:

τ (s, t) = Re
(
∂tζ (s, t)e−iθ(s,t) ) ; μ(s, t) = Re

(
w(s, t) e−iθ(s,t)) . (26)

The pressure jump across the free sheet is zero, which yields the boundary condition for Eq. (25),

[p] |s=1 = 0. (27)

We integrate Eq. (25) along Cb to determine [p](s, t) on the foil, −1 ≤ s ≤ 1.

IV. NUMERICAL RESULTS AND COMPARISON

We begin by simulating foils over the range of parameters used in the experiment, and compare
the shapes and speeds of the foils. The numerical method and studies of convergence with respect
to spatial and temporal discretizations are given in Ref. 34. While the aspect ratio (span divided by
chord) ranges from 0.2 to 2 in the experiment, it is infinite in the model. In Figure 2, we compare
snapshots over one period of flapping for foil D, with a chord length of 8 cm. Panel (a) shows four
snapshots from the experiment with span 6.8 cm, while panel (b) shows four snapshots from the
simulation at the same instants as in panel (a). The deflections are noticeably larger in panel (a).
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FIG. 3. Comparison of foil shape snapshots in the experiment with spans 6.8 cm (a) and 19 cm (b) with the model (infinite
span) at corresponding phases 0, π /2, π , and 3π /2 (c). Data are shown for foil D (see Table I) with chord of 24 cm.

Panel (c) shows snapshots for a foil from the experiment which has the same chord as in panel a,
but with a span of 19 cm, nearly three times larger. Since the model corresponds to infinite span, we
expect better agreement with this case, and panel (d) shows the model foil at the four instants shown
in panel (c) (different from panels (a) and (b)). The deflection agrees better now, though the tangent
angles are smaller near the trailing edge in the simulation.

Figure 3 shows a similar comparison but for foils of chord length 24 cm. Snapshots from the
experiment with different spans are given in panels (a) and (b), and since the instants in panels (a)
and (b) are nearly the same now, we compare both with just a single sequence of snapshots from
the model, in panel (c). There are more wavelengths on the foil because it is longer (more on this
shortly), and all three plots agree well in the deflection magnitudes and the number of wavelengths
on the foil. Again, the deflection is smaller in the model than in the experiment.

Figure 4 shows a similar comparison for foil A, the stiffest. For both the chord lengths of 8 cm
(a)–(c) and 24 cm (d)–(f), we find a similar number of wavelengths among the model and experimental
foils. At 24 cm, the model shape has a shorter wavelength, with a smaller overall deflection.

In Figures 2–4, one reason for the smaller deflection in the model may be its increased span.
Intuitively, when the span is much less than the chord, fluid is more likely to flow spanwise along
and around the foil. The pressure difference across the foil may thus be reduced, but it is unclear
whether the foil deflection should be increased or decreased as a consequence. The fluid pressure
may increase or decrease foil deflection at different instants during the heaving cycle. In Figures 2(a)
and 2(c), the foil with smaller span undergoes larger deflection, while in Figures 4(d) and 4(e), the
foil with larger span undergoes larger deflection, so the relationship between span and foil deflection
is not monotonic, and probably not simple. However, the magnitude of the variations in experimental
results with span show that span effects can account for the discrepancy in shapes between the model
(with infinite span) and the experiment. The discrepancy in shapes is not large in any case.

We note that span effects have been studied in the context of a different problem, the flag flutter
instability. A model by Eloy et al.43 has found that flags with smaller ratio of span to chord remain
stable up to larger oncoming flow speeds.

Table II shows the effect of span on swimming speed for our experiment. We find that for both
the more flexible (D) and stiffer (A) foils, larger span leads to a large increase in swimming speed.
The increase is about 20% for foil D and much larger—from 80% to 90%—for foil A, which is
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FIG. 4. Comparison of foil shape snapshots in the experiment and model for foil A (see Table I). Panels (a)–(c) have chord
length 8 cm and correspond to the experiment with spans 6.8 cm (a) and 19 cm (b), and the model (infinite span) (c) at
phases 0.08*2π , 0.33*2π , 0.58*2π , and 0.83*2π , respectively. Panels (d)–(f) have chord length 24 cm and correspond to
the experiment with spans 6.8 cm (d) and 19 cm (e), and the model (infinite span) (f) at phases 0.24*2π , 0.49*2π , 0.74*2π ,
and 0.99*2π , respectively.

much stiffer. For a larger span, the flow is more closely two-dimensional over most of the foil. In
this case, the flow along the span is smaller, so more of the fluid momentum is in the downstream,
or chordwise direction. Hence, it is reasonable that the foil travels faster with a larger span. We also
note that the increase in speed is much larger for the stiffer foil A, which transmits the force from
the driving shaft to the fluid more directly.

In Figure 5 we compare the time-averaged horizontal speeds in the model and experiment,
for four different plastics and various lengths. In panels (a)–(c), we find two interior peaks in the
experimental data (solid line with error bars), and a series of peaks in the model data (dashed line
with dots). The spacing between the peaks is similar for the experiment and the model, though the
locations of the peaks are shifted. One source of discrepancy is again the difference in span (6.8 cm
for the experiment, infinite for the model). In the experimental data of Table II, the foils with larger
span had speeds which were larger by 20%–90%. Thus it makes sense that the peak speeds for the
model should be significantly higher than those for the experiment (which they are, by about 30%–
90%, depending on L and EI). The model does not have some of the sources of friction or damping
in the experiment, which is another reason for speeds to be higher in the model. Interestingly, the

TABLE II. Effect of span on swimming speed. The range of speed values are the 95% confidence intervals for the mean foil
speeds. Values from three to seven separate trials are used to calculate each of the intervals. The experimental apparatus used
to collect these data on the effects of span was not identical to that used for the experimental data shown in Figure 5, and
swimming speeds from the two data sets are not comparable.

Foil chord (cm) Span (cm) Speed (cm/s)

D 8 6.8 21.2 ± 0.8
D 8 19 25.1 ± 0.6
D 24 6.8 18.9 ± 0.6
D 24 19 23.0 ± 0.4

A 8 6.8 26.5 ± 0.6
A 8 19 50.3 ± 0.3
A 24 6.8 28.0 ± 0.1
A 24 19 51.4 ± 0.3



051901-10 Alben et al. Phys. Fluids 24, 051901 (2012)

0 10 20 30 40 50
0

20

40

60

80

|<
U

>
| (

cm
/s

)

 L (cm)

0 10 20 30 40 50
0

20

40

60
|<

U
>

| (
cm

/s
)

 L (cm)
0 10 20 30 40 50

0

20

40

|<
U

>
| (

cm
/s

)

 L (cm)

0 10 20 30 40 50
0

10

20

|<
U

>
| (

cm
/s

)

 L (cm)

0 10 20 30 40 50
0

20

40

60

80

|<
U

>
| (

cm
/s

)

 L (cm)

FIG. 5. Comparison of average swimming speeds in the experiment (solid line) with span 6.8 cm and in the model (dashed
line with dots), with infinite span, for the foils of different lengths and five different thicknesses (see Table I). The error bars
on the experimental data points show the bounds of the 95% confidence interval. Values from three to seven separate trials
are used to calculate each of the error bars. (a)–(e) correspond to foils A–E, respectively. Experimental data plotted here are
not comparable to those of Table II, which were obtained with a different experimental setup.

model also has troughs at which the speed is lower than that in the experiment, so the model speed
graphs show a much larger amplitude than the experiment from peak to trough.

For the experiment, the peak-to-trough amplitude decreases and the curves are flatter as the
bending rigidity decreases, moving from panel (a) to panel (e). A similar trend holds for the model
also, though this is in part because the peaks and troughs are not fully resolved in panels (d) and
(e), where they are more closely spaced. These variations in the amplitude and spacing between the
peaks as EI varies will be explained by our analysis in Sec. V C.

We now conduct another shape comparison, this one for the most flexible foils in our study,
labeled E in Table I, with velocity data given in Figure 5(e). These foils are much more flexible than
the other foils used in this study. In Figure 6 we compare shapes for foil E with chord lengths of 15
cm and 25 cm. We find a larger deflection in the experiment than in the model, consistent with the
results of Figures 2 and 3, and the idea that an oscillating foil of smaller span meets less resistance
in the fluid, and can thus attain a larger deflection. The experimental foil at 15 cm has a larger
deflection and a higher wavenumber than the model foil at 15 cm, with about 1.25 wavelengths on
the experimental foil and one wavelength on the model foil at each instant. At 25 cm, the model foil
has a larger trailing edge deflection, while the experimental foil has a larger deflection closer to the
leading edge. The experimental foil has about 2.4 wavelengths at each instant, while the model foil
has about 1.75 wavelengths.

In general, the greater discrepancy between model and experiment for the very flexible foils of
Figure 6 versus that for the stiffer foils of Figures 2 and 3 may be attributed to the fact that the very
flexible foil may be more sensitive to the differences in the flows, such as complex flow structures
along the body and at the trailing edge, and secondary separation of vorticity. By contrast, the motion
of stiffer foils may be more strongly controlled by the driving at the leading edge, which is the same
for the model and experiment.
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FIG. 6. Comparison of foil shape snapshots in the experiment with span 6.8 cm and chords 15 cm (a) and 25 cm (c) with the
model (infinite span) at chords (b) corresponding to (a) and (d) corresponding to (c). Data are shown for foil E (see Table I).

We compare a third instance of foil E, the longest (chord length = 35 cm), in Figure 7. The
experimental snapshots, in “a,” show peaks in amplitude near the leading edge and the mid-chord,
with smaller amplitude at the trailing edge. The model dynamics are much less steady than in
Figure 6, so we present three typical sequences of model snapshots in panels (b)–(d), over single
heaving periods which are successively 10 periods apart in time. During period 77, the snapshots
are asymmetric about the line of zero deflection. By contrast, the model foils in Figure 6 are almost
perfectly symmetric about this line. The asymmetry in the longer foil is greater still in Figures 7(c)
and 7(d), and apparently results from an instability that sets in for foils which exceed a certain length
between 25 and 35 cm. The experimental foil snapshots in panel (a) have about 4.2 wavelengths,
while the model snapshots in “b” have about 2.75 wavelengths, and an average deflection which is
about 60% larger.

To conclude this comparison section, we give some examples of the flows around foil B in
the experiment and model. In Figure 8 we give streamlines for the flow field around the foil in the
experiment (panels a, c, and e) and model (b, d, and f). In each panel the foil is shown in light gray
(yellow online), the streamlines are white, and for the model (b, d, and f), the vortex sheet is shown
in dark gray (blue online). The small particles used to measure the flow speed are barely visible
against the black background in panels (a), (c), and (e). The foil shades the flow region above the
foil in (a, c, e), in which the flow is not visualized. In (a, c, e) the oncoming flow is subtracted, so
in all cases the flow is viewed in a frame in which the foil is moving leftward into quiescent fluid.
Panels (a) and (b) show the flows for foils with chord lengths at the first peaks (at lowest L) in foil
speed given in Figure 5(b), which occur at L = 9 cm for the experiment (Figure 8(a)) and at L =
5.3 cm for the model (Figure 8(b)). Panels (c) and (d) show the flows at L corresponding to the first
troughs for the experiment and model, and panels (e) and (f) show the flows at the second peaks,
respectively.

In the first two experimental frames (a and c), strong vortices can be seen adjacent to the leading
edges. These vortices have just been shed from the leading edges as the foil moves upwards. In panel
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FIG. 8. Comparison of streamlines for the foil B in the experiment (a, c, e) and model (b, d, f). Streamlines are shown
at an instant when the foil clamp is midway between its extremes in heaving position, and moving upward, in each of the
frames. The foil chord length is 9 cm in (a) and 5.3 cm in (b), which correspond to the first peaks in velocity (at lowest L) in
Figure 5(b) for the experiment (a) and model (b), respectively. The chord lengths are 15 cm in (c) and 10.9 cm in (d),
corresponding to the first troughs in Figure 5(b), and 20 cm in (e) and 13.7 cm in (f), corresponding to the second peaks in
Figure 5(b).
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(e), the leading one-third of the foil extends out of the frame on the left side, so the leading edge
vortex, though present in the flow, is not shown. By contrast, in the model the leading edge vortex
is required to be attached to the leading edge at all times (with a singular flow velocity there). It is
not yet possible to model the shedding of the leading edge vortex within the model. Because the
leading edge vortex does not remain attached in general in the experiment, we have chosen to omit
the leading suction force in the model due to the attached leading edge vortex.

In general, the experimental streamlines show much more fine detail than those in the model,
which are much smoother. The reason for this is that all of the model vorticity is confined to the
foil and the curvilinear vortex sheet, and elsewhere the flow is a potential flow, which is relatively
smooth. In the experiment, the strongest vorticity is also concentrated near the foil and wake, though
small amounts of vorticity are present elsewhere in the flow. Also, we can see the boundary layer in
the experiment as a region adjacent to the foil where the streamlines are parallel to it. In the model,
the boundary layer has zero thickness, so the streamlines are not parallel to the foil at the foil surface.

At the trailing edges, for both the experiment and model, we can see a clear difference between
the flows at the peaks and the trough. In the experiment at the peaks (a and e), there are strong
vortices being shed at the trailing edges. In the experiment at the trough (c), the trailing edge vortex
is much weaker. In the model, the vorticity is also much stronger at the velocity peaks (b and f), and
much weaker at the trough (d). Upon first inspection, it may be surprising that the vorticity is weaker
in panel (d) than in panel (b) or (f), because the vortex sheet is much more rolled up, which is often a
signature of stronger vorticity. In panel (d), however, the vortex sheet is more rolled up because the
foil is moving much more slowly in (d) than in (b) and (f). Thus, the portion of vortex sheet shown
in panel (d) has existed for much longer (about 10 times longer) than in (b) and (f), and has thus had
more time to roll up. In panel (d), the streamlines in the foil wake indicate a weaker flow through
the wake, similarly to panel (c) in the experiment. In panel (d), the wake consists of weaker, more
closely spaced vortices of opposite sign, leading to a weaker net flow through the wake. By contrast,
the streamlines between the vortices in panels (b) and (f) indicate a much stronger flow in the wake.

In this section, we have shown that although the model flow is a 2D approximation of the
experimental flow, the model and experiment show essentially the same phenomena. As the foil
length increases or bending rigidity decreases, the number of wavelengths present on the foil
increases. There is also a series of peaks and troughs in swimming speeds, corresponding to the
resonances which occur at a discrete series of foil lengths, and a corresponding series of shapes with
increasing numbers of wavelengths.

V. ANALYSIS

A. Fixed length and amplitude, varying rigidity

We now present time-dependent foil simulations with fixed length and amplitude, and varying
dimensionless bending rigidity R2 in Eq. (1). While length is the natural control parameter in the
experiment, the bending rigidity is a simpler control parameter for the model. The reason is that
varying the length changes the dimensionless rigidity as well as the amplitude-to-chord ratio, so the
geometry changes as well as the control parameters. After using R2 as the control parameter, we will
redo the analyses with the length as the control parameter.

We fix the ratio of heaving amplitude to foil length at 1/36, sufficiently small to be representative
of the long-foil limit. In an important difference from the experiment, in this section we intentionally
set to zero the driver mass in Eq. (10), which is large in the experiment. We take the foil mass per
unit length to be that of foil D, giving R1 = 0.001. By removing the experimental driver mass in this
section we can study a case which is more typical of free swimming in water. Here the body inertia
is insignificant relative to the fluid inertia.

As R2 is decreased below 103, we find an alternating sequence of peaks and troughs in average
swimming speed, similar to the sequence of peaks and troughs as length is varied in Figure 5. In
Figure 9(a), we show foil and flow snapshots at three peaks alternating with three troughs. At the
peaks, the vortex sheet wake is quasi-periodic in time, and the corresponding plot of velocity versus
time shows a single dominant frequency, which is the heaving frequency. At the troughs, the foil
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FIG. 9. Results of time-dependent foil simulations with fixed geometry and varying rigidity. (a) Foil and wake snapshots at
t = 17.2 for different values of R2. (b) Horizontal velocity versus time corresponding to the snapshots in (a).

wakes are very irregular, and the foils move at much lower average speeds and with smaller trailing
edge amplitudes. The corresponding velocity plots show other frequencies superimposed on the
heaving frequency. Occasional sudden accelerations and decelerations are typical for R2 = 100.8

and 10−1.5. A dominant frequency which is smaller than the heaving frequency can be seen for
R2 = 10−0.6. These irregular dynamics are not seen when the driver mass is included, because its
large inertia has the effect of averaging the foil acceleration over fluctuations in horizontal thrust.

We plot the average swimming speeds and other key quantities in Figure 10. In panel (a), the
swimming speeds for the trajectories of Figure 9 are highlighted with boxes (peaks) and diamonds
(troughs). In panel (b), we plot the values of R2 at which the peaks occur versus their ordinal number
k, starting with the largest R2 at k = 1 (or log10k = 0). We find a good fit to the line R2 ∼ k−11/2,
with another line R2 ∼ k−5, for which the fit is less good, shown for comparison. Panel (c) shows
the average amplitude of the leading edge curvature for the shapes, which scales as the wavenumber
squared for shapes which are approximately sinusoidal. Panel (d) shows the average amplitude of
the circulation (or integrated vorticity) in the wake. All four panels show power law behaviors, and
we plot power law fitting lines which result from asymptotic arguments we give next.

B. Time-harmonic model

To understand the power-law behaviors in Figure 10, it is helpful to consider a simplified case
in which the dynamics occur with a single frequency, the heaving frequency. This occurs when we
replace the time-dependent horizontal velocity of the foil with its time-average. This approximately
holds in the experiment, because the driver mass is sufficiently large that fluctuations in horizontal
foil velocity are very small. We furthermore assume that the amplitude of vertical deflection is small,
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which linearizes the equations. Thus, we have

y(x, t) = Re
(
Y (x)ei2π t

)
; γ (x, t) = Re

(
G(x)ei2π t

)
,

[p](x, t) = Re
(
P(x)ei2π t

)
; �+(t) = Re

(
�0ei2π t

)
. (28)

When the horizontal speed of the foil is constant, Eqs. (1), (18), and (25) admit solutions with only
a single frequency. We showed in Ref. 35 that in the small deflection limit, Eqs. (1), (18), and (25)
become

0 = −R2∂
4
x Y − P, (29)

2π iY + Vx∂x Y = 1

2π

∫ 1

−1

G(x ′)dx ′

x − x ′ − �0

Vx

∫ ∞

1

e−2π i(x ′−1)/Vx

x − x ′ dx ′, (30)

2π iG + Vx∂x G = ∂x P, (31)

where Vx is the average horizontal flow velocity relative to the foil, or the negative of the horizontal
velocity of the foil moving through a fluid at rest at infinity. Hence, Vx ≥ 0. We consider the limit
in which R2 is small, so that the foil bends with a high wavenumber k. In this case we may use the
estimate given in Ref. 44 to simplify the first integral in Eq. (30) to a Hilbert transform. Using the
definition of the exponential integral with an imaginary argument Ei(ix) and its asymptotic behavior
for large x,∫ 1

−1

eikx ′
dx ′

x − x ′ = eikx
[
iπ sign(k) + Ei(−ik(1 + x)) − Ei(ik(1 − x))

]
, −1 < x < 1, (32)

∼ eikx
[−iπ sign(k)

] + O

(
1

k

)
= H

(
eikx

) + O

(
1

k

)
, k 	 1, 1 ± x 	 1

k
. (33)
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Equation (33) shows that the integral on [−1, 1] behaves the same as does the Hilbert transform
(denoted H in Eq. (33)) on [−∞, ∞] for large k, away from small end regions. Outside of the end
regions, we may approximate the solution in the simple form

Y (x) = Y0eikx ; G(x) = G0eikx ; P(x) = P0eikx , (34)

where Y0 is the dimensionless heaving amplitude (Y0 = A/L). We also showed in Ref. 35 that as
k → ∞, the last integral in Eq. (30), representing the integral of vorticity over the wake, is subdom-
inant to the other terms. Hence we drop the wake integral. We are thus approximating the foil as an
infinite periodic sheet. Even though the approximation is asymptotically valid only for many wave-
lengths on the foil (k large), we shall see that it gives results which are also a good approximation to
those of the fully nonlinear, unsteady model for small numbers of wavelengths (even a fraction of a
wavelength) on the foil, which is also more representative of swimming fish bodies and fins.

With these approximations, we can combine Eqs. (29)–(31) into a single equation for Y:

0 = −R2∂
5
x Y + 2(2π i + Vx∂x )H(2π iY + Vx∂x Y ). (35)

We now insert the sinusoidal approximation to Y using Eq. (34), and evaluate the Hilbert transform
using (33). We obtain

R2k5 ∼ 2(2π + Vx k)2π sign(k). (36)

This equation relates Vx , k, and R2. The second equation which relates Vx , k, and R2 is the time-
average of Eq. (10), which is

0 = 1

2

∫ 1

−1
Re

(
P̄∂x Y

)
dx + 8

√
2

3

√
ν

f L2
V 3/2

x . (37)

Substituting for P from Eq. (29), we can rewrite the integrand in the first term on the right of
Eq. (37) as a derivative of the curvature squared. We obtain

1

2

∫ 1

−1
Re

(
P̄∂x Y

)
dx = −1

4
R2|∂xx Y |2|−1. (38)

We have used the condition that the curvature vanishes at the free end, x = 1.
The solution Y(x) is well approximated by Eq. (34) away from small (length ∼1/k) regions near

the endpoints, where the approximation (33) breaks down. Also, the clamp-free boundary conditions
are not obeyed by Eq. (34). Near the endpoints, the slope of the outer sinusoidal solution is ∂xY
= O(k). At the endpoint, the slope of the inner solution is zero. Thus the slope changes by O(k) over
a distance ∼1/k. Hence, the curvature of the inner solution near the clamped end is O(k2), which is
the same order as the outer solution curvature. Thus,

− 1

4
R2 |∂xx Y |2 |−1 ∼ R2Y 2

0 k4 ∼ V 3/2
x , (39)

using Eq. (37). We eliminate Vx from Eq. (36),

Vx ∼ R2/3
2 k8/3 → R2k5 ∼ 2(2π + R2/3

2 k11/3)2π. (40)

When the quadratic term in Eq. (40) is expanded, there are four terms in the asymptotic relationship.
We consider the possible scaling between R2 and k when k is large by taking the four terms pairwise
(yielding six pairs), and checking to see whether the resulting relationship between R2 and k indeed
makes the neglected terms subdominant for large k. Below we list each candidate dominant balance,
followed by the scalings of the remaining terms (and whether they are consistent with the terms
being subdominant),

R2k5 ∼ 1 → R2/3
2 k11/3 ∼ k1/3 (not consistent), (41)

R2/3
2 k11/3 ∼ 1 → R2k5 ∼ k−1/2, (R2/3

2 k11/3)2 ∼ 1 (consistent), (42)
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R2k5 ∼ R2/3
2 k11/3 → (R2/3

2 k11/3)2 ∼ k2 	 R2/3
2 k11/3 (not consistent), (43)

R2k5 ∼ (R2/3
2 k11/3)2 → R2k5 ∼ k7 � 1 (not consistent), (44)

(R2/3
2 k11/3)2 ∼ 1 same as (42), (45)

(R2/3
2 k11/3)2 ∼ R2/3

2 k11/3 same as (42). (46)

Equation (42) is the only consistent dominant balance, and it gives R2 ∼ k−11/2. In Figure 10(b)
we have given the values of R2 at which the first nine peaks occur in Figure 10(a). Each peak
corresponds to a shape approximated by Eq. (34) with k = π /4, 3π /4, 5π /4, . . . , 17π /4. The values
of R2 in Figure 10(b) are well approximated as R2 ∼ k−11/2, better than the nearby but inconsistent fit
R2 ∼ k−5 of Eq. (41).

We use Eq. (40) to solve for Vx :

R2 ∼ k−11/2 → Vx ∼ R2/11
2 (47)

which agrees well with the scaling of the peak velocities in Figure 10(a), even for the peaks at largest
R2, corresponding to less than one wavelength on the foil, shown in Figure 9.

We also check that the leading edge curvature is consistent

κ|−1 ∼ ∂xx Y |−1 ∼ k2 ∼ R−4/11
2 , (48)

and find good agreement with Figure 10(c). In Refs. 35 and 44 we derived an expression for the
amplitude of the total circulation in the free sheet:

�0 =
−2

∫ 1
−1 (2π iY (x) + Vx∂x Y (x))

√
1+x
1−x dx

1 + 2π i
Vx

(1 + log(2)) + 2 i
Vx

∫ 1
−1

[
E0(x) + log(1 − x)

] √
1+x
1−x dx

, (49)

E0(x) = −
∫ ∞

1

e−2π i(x ′−1)/Vx

x − x ′ dx ′. (50)

We have found previously that Vx ∼ k−1 for large k. In the numerator, Y = Y0eikx and Vx∂x Y then
also has an O(1) magnitude. In Ref. 44 we showed that for 2π iY + Vx∂x Y ∼ eikx , the numerator of
Eq. (49) scales as k−1/2. In the denominator of Eq. (49), the integral is O(1) as Vx ∼ k−1 → 0, so
the denominator scales as 1/Vx ∼ k. Thus,

|�0| ∼ k−1/2

k
= k−3/2 ∼ R3/11

2 . (51)

We find good agreement with this behavior in Figure 10(d). The complexity of the expression (49)
for �0 may require solutions at smaller R2 than we can simulate to verify the scaling for �0 more
clearly.

In order to validate the existence of the time-harmonic solution (28) and quantify its behavior
directly, we now solve the time-harmonic equations (29)–(31) and (37) numerically, thus discarding
the spatially sinusoidal approximation in Eq. (34). The equations are nonlinear (as Vx appears
nonlinearly in Eqs. (30) and (37)), dependent on x and independent of time, with a free vortex sheet
wake that is advected horizontally downstream with a sinusoidal distribution of vorticity. Since we
do not need to simulate the dynamics of the vortex wake, these simulations (similar to those of
Ref. 35) are much less expensive than the fully unsteady simulations we have already shown. Rather
than an initial condition, we now use an initial guess for each solution, consisting of zero for all
unknowns, except Vx . We vary the initial guess for Vx over 20 logarithmically spaced values from
10−5 to 102 and record all iterations which converge (satisfy the discretized equations with error
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FIG. 11. Results of time-harmonic foil solutions with fixed geometry and A = 10−1.25 = 0.056. (a) Average swimming speed
versus R2. (b) Comparison of average swimming speed in time harmonic model with that of unsteady model (squares), from
Figure 10(a). (c) Amplitude of leading-edge curvature versus R2. (d) Amplitude of circulation versus R2.

≤10−12 in 2-norm). The values of Vx , |κ|−1, and |�0| for the converged solutions are plotted in
Figure 11. We again find a series of peaks and troughs, similar to the unsteady results of Figure 10.
Over most of the range of rigidity, we find only a single solution. However, at smaller values of
R2, additional solutions with larger Vx are found, and are seen in all the panels of Figure 11 for R2

< 10−2.5. We have not investigated the stability of these additional solutions, though it seems likely
that they are unstable, since simulations of the unsteady problem at a given R2 with different initial
conditions have found only one average horizontal speed. In Figure 11(b), we plot the unsteady data
from Figure 10(a) in squares on top of the time-harmonic data from Figure 11(a). For most of the
range of R2 where the comparison is given, the unsteady data are close to the time-harmonic curves,
with slight deviations in the locations of the peaks. We note that perfect agreement is not expected,
because many of the unsteady solutions have multiple significant frequencies, not represented by the
time-harmonic solutions. However, in Figures 11(a)–11(d) we find very good agreement between
the power-law fit lines (with scalings already explained), and the time-harmonic data.

The results of Figure 11 are for a single heaving amplitude of 10−1.25, or amplitude-to-length
ratio 10−1.25/2 ≈ 1/36. In Figure 12 we plot the same results for eight amplitudes ranging over a
factor of about five in magnitude. The curves shift upwards as amplitude increases, but the overall
scalings are essentially the same. For these amplitudes, the amplitude-to-length ratio is bounded
above by 1/9, so the results may be considered typical for the limit of small amplitude-to-length
ratio.

C. Varying length

We have so far considered foils of fixed geometry (length and amplitude), and used the dimen-
sionless rigidity R2 as the main control parameter. We now return to the experiment, for which length
is the main control parameter. We fix the bending rigidity to be that of foil C (see Table I), and allow
the length to vary. We perform simulations without the driver mass, with only the foil mass, so the
horizontal speed of the foil can fluctuate greatly over one cycle.
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FIG. 12. Results of time-harmonic foil simulations with fixed geometry and eight values of A/L ranging from 0.045 to
0.22: log10A/L = −1.35, −1.25, −1.15, −1.05, −0.95, −0.85, −0.75, −0.65. (a) Average swimming speed versus R2.
(b) Amplitude of leading-edge curvature versus R2. (c) Amplitude of circulation versus R2.

In Figure 13(a), we give the average horizontal speed versus foil length. We find a series of
peaks and troughs, results which are very similar to those of Figure 5 (in which panel c corresponds
to foil C). The only difference in the present simulations is the absence of the driver mass. Also, a
logarithmic scale is used on the plots. In Figure 13(b), we give the leading edge curvature, which
shows a similar series of peaks and troughs. In Figure 13(c), we plot the L-values of the eight peaks
in “a” at lowest L versus the ordinal number of the peak, which is proportional to the wavenumber
k of the approximate sinusoidal solution. The approximate power-law fitting lines are explained by
the subsequent analysis. First, we show snapshots of the foil and wake corresponding to the peaks
and troughs of velocity.

In Figure 14, we give snapshots of the foils and wakes at a particular instant (t = 17.2, chosen
arbitrarily), for fourteen lengths with data shown in Figure 13. The lengths are the locations of
the first eight peaks (squares) and six troughs (diamonds) of the leading edge curvature shown in
Figure 13(b). We have sorted the snapshots so that those for the eight peaks are shown at the top,
and those for the six troughs are shown at the bottom. Among the peaks and among the troughs, the
values of L increase from top to bottom. For the eight peaks, we find that the maxima and minima of
deflection are nearly aligned, as shown by the vertical dashed lines. Thus at peaks in velocity, longer
foils execute approximately the same motions as shorter foils. The motion is nearly sinusoidal, well
approximated by Y in Eq. (34). The vortex wake near the foil’s trailing edge is approximately an
extension of the sinusoidal foil shape.

The six snapshots at the velocity troughs show much smaller deflections, and a less orderly
wake, as expected. However, the wakes are more orderly than those at the velocity troughs when
R2 is varied, shown in Figure 9. The velocities at the troughs in R2 were generally smaller, while
here there is a more consistent forward motion. The wakes are more compressed and rolled-up than
at the eight snapshots for the peaks in horizontal velocity, because the foil has not advanced much,
so regions of positive and negative vorticity are closer, and the portion of wakes near the foil have
existed for longer and have thus had more time to roll up than those in the top eight snapshots.
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FIG. 13. Results of time-dependent foil simulations with fixed rigidity and varying length. (a) Average swimming speed
versus L. Squares and diamonds correspond to simulations shown in Figure 14. (b) Amplitude of leading-edge curvature
versus L. (c) L of peaks from (a) versus ordinal number.

To understand how the horizontal speed and other quantities should scale with L, we repeat the
asymptotic analysis of Sec. V B, but now with L as the control parameter instead of R2. We define
two quantities with dimensions of length which are fixed as L varies

L1 = (8E I )1/5

f 2/5ρ
1/5
f

= R1/5
2 L , (52)

L2 =
√

ν

f
, (53)

and we substitute for Y0 in Eqs. (28) and (39) its expression as a dimensionless amplitude

Y0 = 2A

L
. (54)

In Sec. V B, A and L were fixed and R2 varied. Now A and R2 are fixed and L varies, but the
dimensionless equations are the same. Equations (36) and (39) can be written (including the L-
dependent coefficient of V 3/2

x from Eq. (37)) as

L5
1

L5
k5 ∼ 2(2π + Vx k)2π sign(k), (55)

L5
1

L5

(
A

L

)2

k4 ∼ L2

L
V 3/2

x . (56)
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FIG. 14. Results of time-dependent foil simulations with fixed rigidity and varying length. Shown are foil (solid lines) and
wake (dashed-dotted lines) snapshots at t = 17.2 for different values of L, given at left, corresponding to the peaks (squares)
and troughs (diamonds) in Figures 13(a) and 13(b).

We eliminate Vx using Eq. (56),

Vx ∼ L−4k8/3 → L−5k5 ∼ 2(2π + L−4k11/3)2π. (57)

As previously when R2 was the control parameter, we check six possible dominant balances

L−5k5 ∼ 1 → L−4k11/3 ∼ k−1/3 (consistent), (58)

L−4k11/3 ∼ 1 → L−5k5 ∼ k5/12 (not consistent), (59)

L−5k5 ∼ L−4k11/3 → (L−5k5) ∼ k−5/3 � 1 (not consistent), (60)

L−5k5 ∼ (L−4k11/3)2 → L ∼ k7/9

L−4k11/3 ∼ k5/9 � k10/9 ∼ L−5k5 (consistent), (61)

(L−4k11/3)2 ∼ 1 same as (59), (62)
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(L−4k11/3)2 ∼ L−4k11/3 same as (59). (63)

Now there are two consistent dominant balances, (58) and (61). Equation (58) implies that

L ∼ k; Vx ∼ L−4/3; U = L f Vx/2 ∼ L−1/3; κ|−1 ∼ L−1k2 ∼ L; κ|−L/2 = 2

L
κ|−1 ∼ 1. (64)

Here U is the dimensional horizontal speed, and κ|−L/2 is the dimensional leading edge curvature.
Equation (61) implies that

L ∼ k7/9; Vx ∼ L−4/7; U = L f Vx ∼ L3/7; κ|−1 ∼ L−1k2 ∼ L11/7; κ|−L/2 = 2

L
κ|−1 ∼ L4/7.

(65)
The scaling (64) states that U decreases with L, while Eq. (65) states that U increases with L.
Figure 14(a) shows that U decreases with L, and the fit line corresponding to Eq. (64) gives good
agreement there for large L. Similarly, Figure 14(b) shows that the leading edge curvature is nearly
flat at large L, and panel (c) shows that the first eight peaks of 〈U〉 are well-fit by L ∼ k. Overall, the
scalings of Eq. (64) are a much better fit to the numerical data.

The scaling (64) states that U ∼ L−1/3, which agrees well with the slow decay of velocity in
Figures 5 and 13. The experiment also considers the dependence of results on bending rigidity. In
Figure 5, the spacing between the peaks decreases with decreasing bending rigidity. Because EI and
L are independent parameters, we can include the prefactor involving EI in the dominant balance
(64):

L5
1

L5
k5 ∼ 1 → k ∼ L(E I )−1/5. (66)

The spacing between the peaks in Figure 5 is proportional to the change in L per change in
wavenumber, or

�L

�k
∼ (E I )1/5. (67)

The scaling agrees with the observation of decreasing spacing with decreasing EI. Since EI for
the five foils are approximately in the ratio 3600:900:300:30:1, the spacings between the peaks in
Figures 5(a)–5(e) should be in the ratio

36001/5 : 9001/5 : 3001/5 : 301/5 : 11/5 = 5.1 : 3.9 : 3.1 : 2.0 : 1 ≈ 5 : 4 : 3 : 2 : 1. (68)

This is a good estimate of the relative spacings between the peaks among the five panels of
Figure 5. We can determine the dependence of horizontal velocity on EI from Eq. (56), insert-
ing k in terms of EI from Eq. (66):

U = L f Vx/2 ∼ (E I )2/3L−3k8/3 ∼ (E I )2/15L−1/3. (69)

The magnitudes of the velocities in the four panels of Figure 5 should thus be in the ratio:

36002/15 : 9002/15 : 3002/15 : 302/15 : 12/15 = 3.0 : 2.5 : 2.1 : 1.6 : 1. (70)

This provides a good estimate of the relative magnitudes of U in Figure 5. To be more precise, we
replot the experimental data from Figure 5 with U rescaled by the powers of EI and L in Eq. (69).
Figure 15(a) shows the experimental data from each panel of Figure 5 in colors corresponding to the
plastic used. Figures 15(b) and 15(c) show the same data with U rescaled by Eq. (69) and L rescaled
by Eq. (66). This rescaling of L is appropriate because it aligns the dimensionless foil solutions
at a given wavenumber k, and thus also aligns the peaks and troughs in foil velocity, which are
determined by k. Figure 15(b) shows the data for four of five foils, and the peaks and troughs of three
of these (A, B, C) are closely aligned, considering the approximations which went into deriving the
scaling relationships, and the fact that the foils have only zero to two wavelengths for the data shown
here. Foil D has the least number of data points, which may not be enough to resolve its peaks and
troughs as fully as for the other three foils in panel (b). However, the foil D data lie close to the
data for the other foils. Panel (c) shows the same data as in panel (b) plus the data for foil E, with
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FIG. 15. Rescaling of experimental speed data by factors of length and bending rigidity which correspond to the asymptotic
scalings given in Eq. (69). The plot symbols correspond to the foil used (see Table I). Foil A: open triangles (blue), Foil B:
open circles (yellow), Foil C: plus signs (black), Foil D: crosses (tan), and Foil E: open squares (orange).

the horizontal axis expanded. The theory predicts that the rescaled velocities should level off as the
foils become wavier, and the data for foil E indicates a leveling off at larger L(EI)−1/5. Because foil
E is much more flexible than the others, the data might have been expected to deviate more from the
theory, as occurred in the shape comparisons of Figures 6 and 7.

VI. DISCUSSION AND CONCLUSIONS

We have presented a theoretical and experimental study of the performance of freely swimming
flexible foils. Although the model uses a 2D flow while 3D effects are likely to be significant in the
experiment, many aspects of the foils—the number of wavelengths in their shapes, their swimming
speeds, and the surrounding flows—are captured closely by the model. The model allows for a
simple analysis based on sinusoidal solutions that predicts power law scalings for the foil velocities,
leading edge curvatures and shed circulation, as well as the distributions of peaks and troughs in these
quantities as length and rigidity are varied. The analysis agrees well with the numerical simulations
and the experiment in these relationships.

In the Introduction we noted that the peak and troughs seem to indicate a resonant-like response
similar to that analyzed in Ref. 35. The main difference between that work and this one is that
there the foil was oscillated in a fluid stream with fixed velocity, while here the foil is free to move
horizontally. In the earlier work the foil rigidity and speed of the foil relative to the flow were two
independent control parameters, while here the speed is a function of the other control parameter
(rigidity or length). In the earlier work, resonances occurred at certain values of the rigidity, because
the sum of the bending force and fluid inertia vanish at certain values of rigidity, and cannot balance
the force due to the leading edge driving unless their amplitude diverges (in the linearized problem).
The terms involving the foil speed parameter served to damp the resonances; in the limit that the foil
speed tended to zero, the resonances were undamped.

The present work can be considered as a modification of this framework. The foil speed is
now a nonlinear function of the foil curvature. We can construct the speed versus R2 plot from
Figure 10(a) by taking data points from the plots of Ref. 35 at various fixed velocities. The locations
of the resonances in R2 are the same. At the peaks of the resonances, there is a finite amount of
damping set by solving a nonlinear equation for the foil’s horizontal speed. Since the foil speed is a
superlinear function of the foil curvature, at the troughs in Figure 10(a), where the foil curvature is
small, the speed is very small, so the effect of the damping is negligible, and very steep troughs are
seen in Figure 10(a). We conclude that the foil behavior is described by damped resonances, where
the amount of damping grows nonlinearly with the response.

Future work may examine further the relationships between the flows in the theory and ex-
periment, and the effects of other parameters held fixed here such as the heaving amplitude and
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FIG. 16. Comparison of average swimming speeds in the model for two different values of the numerical smoothing
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the rectangular foil shape. A study which elaborates on the effects of varying the foil span is
also important. We may further consider more complex body actuations such as that described in
Ref. 45.
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APPENDIX: COMPARISON OF VELOCITIES AT TWO VALUES OF SMOOTHING
PARAMETER

In Figure 16 we compare the foil swimming speeds for two different values of δ, 0.1 (circles),
and 0.2 (crosses). In general the agreement is very good. The leftmost peak in speed for δ = 0.1 is
4.2% lower than that for δ = 0.2. The other peaks are within 2.5%.
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