Data Dictionary Revisited

- We’ve considered several data structures that allow us to store and search for data items using their keys fields:

<table>
<thead>
<tr>
<th>data structure</th>
<th>searching for an item</th>
<th>inserting an item</th>
</tr>
</thead>
<tbody>
<tr>
<td>a list implemented using an array</td>
<td>O(log n) using binary search</td>
<td>O(n)</td>
</tr>
<tr>
<td>a list implemented using a linked list</td>
<td>O(n) using linear search</td>
<td>O(n)</td>
</tr>
<tr>
<td>binary search tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>balanced search trees (2-3 tree, B-tree, others)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Today, we’ll look at hash tables, which allow us to do better than O(log n).
Ideal Case: Searching = Indexing

- The optimal search and insertion performance is achieved when we can treat the key as an index into an array.
- Example: storing data about members of a sports team
 - key = jersey number (some value from 0-99).
 - class for an individual player’s record:
    ```java
    public class Player {
        private int jerseyNum;
        private String firstName;
    }
    ```
 - store the player records in an array:
    ```java
    Player[] teamRecords = new Player[100];
    ```
 - In such cases, we can perform both search and insertion in $O(1)$ time. For example:
    ```java
    public Player search(int jerseyNum) {
        return teamRecords[jerseyNum];
    }
    ```

Hashing: Turning Keys into Array Indices

- In most real-world problems, indexing is not as simple as it is in the sports-team example. Why?
 -
 -
 -
 -
- To handle these problems, we perform hashing:
 - use a hash function to convert the keys into array indices
 - "Sullivan" \rightarrow 18
 - use techniques to handle cases in which multiple keys are assigned the same hash value
- The resulting data structure is known as a hash table.
Hash Functions

- A hash function defines a mapping from the set of possible keys to the set of integers.
- We then use the modulus operator to get a valid array index.

\[
\text{key value} \rightarrow \text{hash function} \rightarrow \text{integer} \mod n \rightarrow \text{integer in } [0, n - 1]
\]

(n = array length)

- Here's a very simple hash function for keys of lower-case letters:
 \[h(\text{key}) = \text{Unicode value of first char} - \text{Unicode value of 'a'}\]
 examples:
 \[h(\text{"ant"}) = \text{Unicode for 'a'} - \text{Unicode for 'a'} = 0\]
 \[h(\text{"cat"}) = \text{Unicode for 'c'} - \text{Unicode for 'a'} = 2\]

- \(h(\text{key})\) is known as the key's hash code.
- A collision occurs when items with different keys are assigned the same hash code.

Dealing with Collisions I: Separate Chaining

- If multiple items are assigned the same hash code, we "chain" them together.
- Each position in the hash table serves as a bucket that is able to store multiple data items.
- Two implementations:
 1. each bucket is itself an array
 - disadvantages:
 - large buckets can waste memory
 - a bucket may become full; overflow occurs when we try to add an item to a full bucket
 2. each bucket is a linked list
 - disadvantage:
 - the references in the nodes use additional memory

\[
\begin{array}{c}
0 & \rightarrow & \text{"ant"} & \rightarrow & \text{"ape"} \\
1 & \rightarrow & \text{null} & \rightarrow & \text{null} \\
2 & \rightarrow & \text{"cat"} & \rightarrow & \text{null} \\
\ldots & & \ldots & & \ldots
\end{array}
\]
Dealing with Collisions II: Open Addressing

- When the position assigned by the hash function is occupied, find another open position.

- Example: “wasp” has a hash code of 22, but it ends up in position 23, because position 22 is occupied.

- We will consider three ways of finding an open position – a process known as **probing**.

- The hash table also performs probing to search for an item.
 - Example: when searching for “wasp”, we look in position 22 and then look in position 23
 - we can only stop a search when we reach an empty position

<table>
<thead>
<tr>
<th>Position</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>"ant"</td>
</tr>
<tr>
<td>1</td>
<td>"ape"</td>
</tr>
<tr>
<td>2</td>
<td>"cat"</td>
</tr>
<tr>
<td>3</td>
<td>"bear"</td>
</tr>
<tr>
<td>4</td>
<td>"emu"</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>"wolf"</td>
</tr>
<tr>
<td>23</td>
<td>"wasp"</td>
</tr>
<tr>
<td>24</td>
<td>"yak"</td>
</tr>
<tr>
<td>25</td>
<td>"zebra"</td>
</tr>
</tbody>
</table>

Linear Probing

- Probe sequence: \(h(key), h(key) + 1, h(key) + 2, \ldots \), wrapping around as necessary.

- Examples:
 - “ape” (\(h = 0 \)) would be placed in position 1, because position 0 is already full.
 - “bear” (\(h = 1 \)): try 1, 1 + 1, 1 + 2 – open!
 - where would “zebu” end up?

- Advantage: if there is an open position, linear probing will eventually find it.

- Disadvantage: “clusters” of occupied positions develop, which tends to increase the lengths of subsequent probes.
 - probe length = the number of positions considered during a probe
Quadratic Probing

- Probe sequence: \(h(key), h(key) + 1, h(key) + 4, h(key) + 9, \ldots \)
 - wrapping around as necessary.
 - the offsets are perfect squares: \(h + 1^2, h + 2^2, h + 3^2, \ldots \)

Examples:
- “ape” \((h = 0)\): try 0, 0 + 1 – open!
- “bear” \((h = 1)\): try 1, 1 + 1, 1 + 4 – open!
- “zebu”?

Advantage: reduces clustering

Disadvantage: it may fail to find an existing open position.

Example:

<table>
<thead>
<tr>
<th>Table Size = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>(h(key) = 0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Trying to insert a key with \(h(key) = 0 \):

<table>
<thead>
<tr>
<th>Sequence in Italic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (\times)</td>
</tr>
<tr>
<td>1 (\times)</td>
</tr>
<tr>
<td>2 (\times)</td>
</tr>
<tr>
<td>3 (\times)</td>
</tr>
<tr>
<td>4 (\times)</td>
</tr>
<tr>
<td>5 (\times)</td>
</tr>
<tr>
<td>6 (\times)</td>
</tr>
<tr>
<td>7 (\times)</td>
</tr>
</tbody>
</table>

Double Hashing

- Use two hash functions:
 - \(h_1 \) computes the hash code
 - \(h_2 \) computes the increment for probing
 - probe sequence: \(h_1, h_1 + h_2, h_1 + 2h_2, \ldots \)

Examples:
- \(h_1 = \) our previous \(h \)
- \(h_2 = \) number of characters in the string
- “ape” \((h_1 = 0, h_2 = 3)\): try 0, 0 + 3 – open!
- “bear” \((h_1 = 1, h_2 = 4)\): try 1 – open!
- “zebu”?

Combines the good features of linear and quadratic probing:
- reduces clustering
- will find an open position if there is one, provided the table size is a prime number
Removing Items Under Open Addressing

- Consider the following scenario:
 - using linear probing
 - insert "ape" (h = 0): try 0, 0 + 1 – open!
 - insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
 - remove "ape"
 - search for "ape": try 0, 0 + 1 – no item
 - search for "bear": try 1 – no item, but "bear" is further down in the table

- When we remove an item from a position, we need to leave a special value in that position to indicate that an item was removed.

- Three types of positions: occupied, empty, “removed”.
- We stop probing when we encounter an empty position, but not when we encounter a removed position.
- We can insert items in either empty or removed positions.

Implementation

```java
public class HashTable {
    private class Entry {
        private String key;
        private LLList valueList;
        private boolean hasBeenRemoved;
    }
    private Entry[] table;
    private int probeType;
    ...
}
```

- We use a private inner class for the entries in the hash table.
- To handle duplicates, we maintain a list of values for each key.
- When we remove a key and its values, we set the Entry’s hasBeenRemoved field to true; this indicates that the position is a removed position.
Probing Using Double Hashing

```java
private int probe(String key) {
    int i = h1(key);    // first hash function
    int h2 = h2(key);   // second hash function

    // keep probing until we get an empty position or match
    // (write this together)

    while (table[i] != null && !key.equals(table[i].key)) {
        i = (i + h2) % table.length;
    }
    return i;
}
```

• We'll assume that removed positions have a key of null.
 • thus, for non-empty positions, it's always okay to compare
 the probe key with the key in the Entry

Avoiding an Infinite Loop

• The while loop in our probe method could lead to an infinite loop.
  ```java
  while (table[i] != null && !key.equals(table[i].key)) {
      i = (i + h2) % table.length;
  }
  ```
 • When would this happen?

 • We can stop probing after checking n positions (n = table size),
 because the probe sequence will just repeat after that point.
 • for quadratic probing:
 \[(h1 + n^2) \mod n = h1 \mod n\]
 \[(h1 + (n+1)^2) \mod n = (h1 + n^2 + 2n + 1) \mod n = (h1 + 1) \mod n\]
 • for double hashing:
 \[(h1 + nh2) \mod n = h1 \mod n\]
 \[(h1 + (n+1)h2) \mod n = (h1 + nh2 + h2) \mod n = (h1 + h2) \mod n\]
Avoiding an Infinite Loop (cont.)

```java
private int probe(String key) {
    int i = h1(key);    // first hash function
    int h2 = h2(key);   // second hash function
    int positionsChecked = 1;

    // keep probing until we get an
    // empty position or a match
    while (table[i] != null && !key.equals(table[i].key)) {
        if (positionsChecked == table.length) {
            return -1;
        }
        i = (i + h2) % table.length;
        positionsChecked++;
    }

    return i;
}
```

Search and Removal

- Both of these methods begin by probing for the key.

```java
public LLList search(String key) {
    int i = probe(key);
    if (i == -1 || table[i] == null) {
        return null;
    } else {
        return table[i].valueList;
    }
}

public void remove(String key) {
    int i = probe(key);
    if (i == -1 || table[i] == null) {
        return;
    }
    table[i].key = null;
    table[i].valueList = null;
    table[i].hasBeenRemoved = true;
}
```
Insertion

- We begin by probing for the key.
- Several cases:
 1. the key is already in the table (we're inserting a duplicate)
 \[\rightarrow\] add the value to the valueList in the key's Entry
 2. the key is not in the table: three subcases:
 a. encountered 1 or more removed positions while probing
 \[\rightarrow\] put the (key, value) pair in the first removed position that we encountered while searching for the key.
 why does this make sense?
 b. no removed position; reached an empty position
 \[\rightarrow\] put the (key, value) pair in the empty position
 c. no removed position or empty position encountered
 \[\rightarrow\] overflow; throw an exception

Tracing Through Some Examples

- Start with the hashtable at right with:
 • double hashing
 • our earlier hash functions h1 and h2
- Perform the following operations:
 • insert "bear"
 • insert "bison"
 • insert "cow"
 • delete "emu"
 • search "eel"
 • insert "bee"
Dealing with Overflow

• Overflow = can't find a position for an item

• When does it occur?
 • linear probing:
 • quadratic probing:
 •
 •

• double hashing:
 • if the table size is a prime number: same as linear
 • if the table size is not a prime number: same as quadratic

• To avoid overflow (and reduce search times), grow the hash table when the percentage of occupied positions gets too big.
 • problem: if we're not careful, we can end up needing to rehash all of the existing items
 • approaches exist that limit the number of rehashed items

Implementing the Hash Function

• Characteristics of a good hash function:
 1) efficient to compute
 2) uses the entire key
 • changing any char/digit/etc. should change the hash code
 3) distributes the keys more or less uniformly across the table
 4) must be a function!
 • a key must always get the same hash code

• In Java, every object has a `hashCode()` method.
 • the version inherited from `Object` returns a value based on an object's memory location
 • classes can override this version with their own
Hash Functions for Strings: version 1

- h_a = the sum of the characters’ Unicode values
- Example: $h_a(“eat”) = 101 + 97 + 116 = 314$
- All permutations of a given set of characters get the same code.
 - example: $h_a(“tea”) = h_a(“eat”)$
 - could be useful in a Scrabble game
 - allow you to look up all words that can be formed from a given set of characters
- The range of possible hash codes is very limited.
 - example: hashing keys composed of 1-5 lower-case char’s (padded with spaces)
 - $26^5 * 27^27 * 27 = over 13 million possible keys$
 - smallest code = $h_a(“a”) = 97 + 4*32 = 225$
 - largest code = $h_a(“zzzzz”) = 5*122 = 610$
 - $610 - 225 = 385$ codes

Hash Functions for Strings: version 2

- Compute a weighted sum of the Unicode values:
 $$h_b = a_0b^{n-1} + a_1b^{n-2} + \ldots + a_{n-2}b + a_{n-1}$$
 - where $a_i =$ Unicode value of the ith character
 - $b =$ a constant
 - $n =$ the number of characters
- Multiplying by powers of b allows the positions of the characters to affect the hash code.
 - different permutations get different codes
- We may get arithmetic overflow, and thus the code may be negative. We adjust it when this happens.
- Java uses this hash function with $b = 31$ in the $hashCode()$ method of the $String$ class.
Hash Table Efficiency

• In the best case, search and insertion are $O(1)$.

• In the worst case, search and insertion are linear.
 • open addressing: $O(m)$, where m = the size of the hash table
 • separate chaining: $O(n)$, where n = the number of keys

• With good choices of hash function and table size, complexity is generally better than $O(\log n)$ and approaches $O(1)$.

• load factor = # keys in table / size of the table.
 To prevent performance degradation:
 • open addressing: try to keep the load factor < 1/2
 • separate chaining: try to keep the load factor < 1

• Time-space tradeoff: bigger tables have better performance, but they use up more memory.

Hash Table Limitations

• It can be hard to come up with a good hash function for a particular data set.

• The items are not ordered by key. As a result, we can’t easily:
 • print the contents in sorted order
 • perform a range search
 • perform a rank search – get the kth largest item

We can do all of these things with a search tree.
Application of Hashing: Indexing a Document

- Read a text document from a file and create an index of the line numbers on which each word appears.
- Use a hash table to store the index:
 - key = word
 - values = line numbers in which the word appears

- See `WordIndex.java`