Search Trees

Binary Search Trees

- Search-tree property: for each node k:
 - all nodes in k’s left subtree are $< k$
 - all nodes in k’s right subtree are $\geq k$

- Our earlier binary-tree example is a search tree:

- With a search tree, an inorder traversal visits the nodes in order!
 - in order of increasing key values
Searching for an Item in a Binary Search Tree

- Algorithm for searching for an item with a key k:
 - if $k ==$ the root node’s key, you’re done
 - else if $k <$ the root node’s key, search the left subtree
 - else search the right subtree

- Example: search for 7

```
public class LinkedTree {
    private Node root;
    public LLList search(int key) {    // "wrapper method"
        Node n = searchTree(root, key);  // get Node for key
        if (n == null) {
            return null;     // no such key
        } else {
            return n.data;   // return list of values for key
        }
    }

    private static Node searchTree(Node root, int key) {
        if ( ) {
        } else if ( ) {
        } else if (               ) {
        } else {
        }
    }
}
```

Implementing Binary-Tree Search

```java
public class LinkedTree {
    // Nodes have keys that are ints
    private Node root;
    public LLList search(int key) {    // "wrapper method"
        Node n = searchTree(root, key);  // get Node for key
        if (n == null) {
            return null;     // no such key
        } else {
            return n.data;   // return list of values for key
        }
    }

    private static Node searchTree(Node root, int key) {
        if ( ) {
        } else if ( ) {
        } else if (               ) {
        } else {
        }
    }
}
```
Inserting an Item in a Binary Search Tree

• We need a method with this header

 public void insert(int key, Object data)

 that we can use to add a new (key, data) pair to the tree.

• Example 1: a search tree containing student records
 • key = the student's ID number (an integer)
 • data = a string with the rest of the student record
 • we want to be able to write client code that looks like this:

    ```java
    LinkedTree students = new LinkedTree();
    students.insert(23, "Jill Jones,sophomore,comp sci");
    students.insert(45, "Al Zhang,junior,english");
    ```

• Example 2: a search tree containing scrabble words
 • key = a scrabble score (an integer)
 • data = a word with that scrabble score

    ```java
    LinkedTree tree = new LinkedTree();
    tree.insert(4, "lost");
    ```

Inserting an Item in a Binary Search Tree

• We want to insert an item whose key is k.
• We traverse the tree as if we were searching for k.
• If we find a node with key k, we add the data item to the list of items for that node.
 • example: `tree.insert(4, "sail")`
• If we don't find it, the last node we encounter will be the parent P of the new node (see example at right).
 • if $k < P$'s key, make the new node P's left child
 • else make the node P's right child
• Special case: if the tree is empty, make the new node the root of the tree.
• Important: The resulting tree is still a search tree!
Implementing Binary-Tree Insertion

- We'll implement part of the `insert()` method together.
- We'll use iteration rather than recursion.
- Our method will use two references/pointers:
 - `trav`: performs the traversal down to the point of insertion
 - `parent`: stays one behind `trav`
 - like the `trail` reference that we sometimes use when traversing a linked list

```java
public void insert(int key, Object data) {
    Node parent = null;
    Node trav = root;
    while (trav != null) {
        if (trav.key == key) {
            trav.data.addItem(data, 0);
            return;
        }
        // what should go here?
    }
    Node newNode = new Node(key, data);
    if (root == null) {   // the tree was empty
        root = newNode;
    } else if (key < parent.key) {
        parent.left = newNode;
    } else {
        parent.right = newNode;
    }
}
```
Deleting Items from a Binary Search Tree

- Three cases for deleting a node x
 - **Case 1:** x has no children.
 Remove x from the tree by setting its parent’s reference to null.

 ex: delete 4

 ![Diagram of deleting 4]

- **Case 2:** x has one child.
 Take the parent’s reference to x and make it refer to x’s child.

 ex: delete 12

 ![Diagram of deleting 12]

Deleting Items from a Binary Search Tree (cont.)

- **Case 3:** x has two children
 - we can’t give both children to the parent. why?

 • instead, we leave x’s node where it is, and we replace its contents with those from another node
 • the replacement must maintain the search-tree inequalities

 ex:
 delete 12

 ![Diagram of deleting 12]

 two options: which ones?
Deleting Items from a Binary Search Tree (cont.)

- **Case 3:** \(x \) has two children (continued):
 - replace \(x \)'s contents with those from the smallest node in \(x \)'s right subtree—call it \(y \)
 - we then delete \(y \)
 - it will either be a leaf node or will have one right child. why?
 - thus, we can delete it using case 1 or 2

ex: delete 12

```
     12
    / \\
   4   18
  /    / \\/
7     12 18
     / \\/
    7 20
```

```
     18
    / \\
   4   18
  /    / \\/
7     18 20
     / \\
    7
```

Which Nodes Could We Use To Replace 9?

```
     9
    / \\
   4   17
  /    \\/
3     10
   / \\
 8    25
 /    \\/
1     20
   / \\
5     36
    / \\
7
```
public LLList delete(int key) {
 // Find the node and its parent.
 Node parent = null;
 Node trav = root;
 while (trav != null && trav.key != key) {
 parent = trav;
 if (key < trav.key) {
 trav = trav.left;
 } else {
 trav = trav.right;
 }
 }
 // Delete the node (if any) and return the removed items.
 if (trav == null) { // no such key
 return null;
 } else {
 LLList removedData = trav.data;
 deleteNode(trav, parent); // call helper method
 return removedData;
 }
}

private void deleteNode(Node toDelete, Node parent) {
 if (toDelete.left != null && toDelete.right != null) {
 // Find a replacement - and
 // the replacement's parent.
 Node replaceParent = toDelete;
 // Get the smallest item
 // in the right subtree.
 Node replace = toDelete.right;
 // what should go here?
 toDelete.key = replace.key;
 toDelete.data = replace.data;
 // Recursively delete the replacement
 // item's old node. It has at most one
 // child, so we don't have to
 // worry about infinite recursion.
 deleteNode(replace, replaceParent);
 } else {
 ...
 }
}
Implementing Cases 1 and 2

```java
private void deleteNode(Node toDelete, Node parent) {
    if (toDelete.left != null && toDelete.right != null) {
        ...
    } else {
        Node toDeleteChild;
        if (toDelete.left != null) 
            toDeleteChild = toDelete.left;
        else
            toDeleteChild = toDelete.right;
        // Note: in case 1, toDeleteChild
        // will have a value of null.
        if (toDelete == root)
            root = toDeleteChild;
        else if (toDelete.key < parent.key)
            parent.left = toDeleteChild;
        else
            parent.right = toDeleteChild;
    }
}
```

Recall: Path, Depth, Level, and Height

- There is exactly one path (one sequence of edges) connecting each node to the root.
- depth of a node = # of edges on the path from it to the root
- Nodes with the same depth form a level of the tree.
- The height of a tree is the maximum depth of its nodes.
 - example: the tree above has a height of 2
Efficiency of a Binary Search Tree (cont.)

- Time complexity of searching for a key:
 - best case: $O(1)$, when you find the key in the root
 - note: the best case is not when the tree has one node!
 - worst case: $O(h)$, where h is the height of the tree
 - you have to go all the way down to level h
 - before finding the key or realizing it isn't there
 - along the path to level h, you process $h + 1$ nodes
 - average case: $O(h)$
 - sometimes you find the key in the root
 - sometimes you go down 1 level, sometimes 2 levels, etc.
 - on average, you go down $h/2$ levels, but that's still $O(h)$!

- What is the height of a tree containing n items?

Balanced Trees

- A tree is balanced if, for each of its nodes, the node’s subtrees have the same height or have heights that differ by 1.
 - example:
 - 26: both subtrees have a height of 1
 - 12: left subtree has height 0
 - right subtree is empty (height = -1)
 - 32: both subtrees have a height of 0
 - all leaf nodes: both subtrees are empty

- For a balanced tree with n nodes, height = $O(\log n)$
 - each time that you follow an edge down the longest path, you cut the problem size roughly in half!

- Therefore, for a balanced binary search tree, the worst case for search / insert / delete is $O(h) = O(\log n)$
 - the "best" worst-case time complexity
What If the Tree Isn't Balanced?

- Extreme case: the tree is equivalent to a linked list
 - height = $n - 1$
- Therefore, for a unbalanced binary search tree, the worst case for search / insert / delete is $O(h) = O(n)$
 - the "worst" worst-case time complexity
- We'll look next at search-tree variants that take special measures to ensure balance.

2-3 Trees

- A 2-3 tree is a balanced tree in which:
 - all nodes have equal-height subtrees (perfect balance)
 - each node is either
 - a 2-node, which contains one data item and 0 or 2 children
 - a 3-node, which contains two data items and 0 or 3 children
 - the keys form a search tree
- Example:
Search in 2-3 Trees

• Algorithm for searching for an item with a key k:
 - if k == one of the root node’s keys, you’re done
 - else if $k <$ the root node’s first key
 search the left subtree
 - else if the root is a 3-node and $k <$ its second key
 search the middle subtree
 - else
 search the right subtree

• Example: search for 87

```
28 61
  10 40
    3 14 20 34 51 68 80 87 93 97
```

Insertion in 2-3 Trees

• Algorithm for inserting an item with a key k:
 - search for k, but don’t stop until you hit a leaf node
 - let L be the leaf node at the end of the search
 - if L is a 2-node
 add k to L, making it a 3-node
 - else if L is a 3-node
 split L into two 2-nodes containing the items with the
 smallest and largest of: k, L’s 1st key, L’s 2nd key
 the middle item is “sent up” and inserted in L’s parent

example: add 52

```
... 50 54 70 50 52 64 70 50 54 ...
```

```
10
  3 20
```

```
10
  3 14 20
```

```
50
  52 70
```

```
50 54
  52 70
```
Example 1: Insert 8

- Search for 8:
 ![Tree Diagram with 8 inserted]

- Add 8 to the leaf node, making it a 3-node:
 ![Tree Diagram with 3-node]

Example 2: Insert 17

- Search for 17:
 ![Tree Diagram with 17 inserted]

- Split the leaf node, and send up the middle of 14, 17, 20 and insert it the leaf node’s parent:
 ![Tree Diagram with leaf node split]
Example 3: Insert 92

- In which node will we initially try to insert it?
Example 3: Insert 92

- Search for 92:

- Split the leaf node, and send up the middle of 92, 93, 97 and insert it the leaf node’s parent:

- In this case, the leaf node’s parent is also a 3-node, so we need to split is as well…

Example 3 (cont.)

- We split the [77 90] node and we send up the middle of 77, 90, 93:

- We try to insert it in the root node, but the root is also full!

- Then we split the root, which increases the tree’s height by 1, but the tree is still balanced.

- This is only case in which the tree’s height increases.
Efficiency of 2-3 Trees

- A 2-3 tree containing n items has a height <= log₂n.
- Thus, search and insertion are both $O(\log n)$.
 - a search visits at most $\log_2 n$ nodes
 - an insertion begins with a search; in the worst case, it goes all the way back up to the root performing splits, so it visits at most $2\log_2 n$ nodes
- Deletion is tricky – you may need to coalesce nodes! However, it also has a time complexity of $O(\log n)$.
- Thus, we can use 2-3 trees for a $O(\log n)$-time data dictionary.

External Storage

- The balanced trees that we've covered don't work well if you want to store the data dictionary externally – i.e., on disk.
- Key facts about disks:
 - data is transferred to and from disk in units called blocks, which are typically 4 or 8 KB in size
 - disk accesses are slow!
 - reading a block takes ~10 milliseconds (10^{-3} sec)
 - vs. reading from memory, which takes ~10 nanoseconds
 - in 10 ms, a modern CPU can perform millions of operations!
B-Trees

- A B-tree of order m is a tree in which each node has:
 - at most $2m$ entries (and, for internal nodes, $2m + 1$ children)
 - at least m entries (and, for internal nodes, $m + 1$ children)
 - exception: the root node may have as few as 1 entry
 - a 2-3 tree is essentially a B-tree of order 1

- To minimize the number of disk accesses, we make m as large as possible.
 - each disk read brings in more items
 - the tree will be shorter (each level has more nodes), and thus searching for an item requires fewer disk reads

- A large value of m doesn’t make sense for a memory-only tree, because it leads to many key comparisons per node.

- These comparisons are less expensive than accessing the disk, so large values of m make sense for on-disk trees.

Example: a B-Tree of Order 2

- $m = 2$: at most $2m = 4$ items per node (and at most 5 children)
 - at least $m = 2$ items per node (and at least 3 children)
 - (except the root, which could have 1 item)

- The above tree holds the same keys this 2-3 tree:

- We used the same order of insertion to create both trees:
 51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14
Search in B-Trees

• Similar to search in a 2-3 tree.
• Example: search for 87

```
20 40 68 90
3 10 14 28 34 51 61 77 80 87 93 97
```

Insertion in B-Trees

• Similar to insertion in a 2-3 tree:
 search for the key until you reach a leaf node
 if a leaf node has fewer than $2m$ items, add the item to the leaf node
 else split the node, dividing up the $2m + 1$ items:
 the smallest m items remain in the original node
 the largest m items go in a new node
 send the middle entry up and insert it (and a pointer to the new node) in the parent

• Example of an insertion without a split: insert 13

```
20 40 68 90
3 10 14 28 34 51 61
```

```
20 40 68 90
3 10 14 28 34 51 61
```

```
20 40 68 90
3 10 13 14 28 34 51 61
```

```
20 40 68 90
3 10 14 28 34 51 61
```

Splits in B-Trees

- Insert 5 into the result of the previous insertion:

![Diagram showing the insertion of 5 into a B-tree with m = 2]

- The middle item (the 10) was sent up to the root. It has no room, so it is split as well, and a new root is formed:

![Diagram showing the splitting of the root]

- Splitting the root increases the tree's height by 1, but the tree is still balanced. This is only way that the tree’s height increases.

- When an internal node is split, its $2m + 2$ pointers are split evenly between the original node and the new node.

Analysis of B-Trees

- All internal nodes have at least m children (actually, at least $m+1$).

- Thus, a B-tree with n items has a height $\leq \log_m n$, and search and insertion are both $O(\log_m n)$.

- As with 2-3 trees, deletion is tricky, but it’s still logarithmic.
Search Trees: Conclusions

- Binary search trees can be $O(\log n)$, but they can degenerate to $O(n)$ running time if they are out of balance.

- 2-3 trees and B-trees are balanced search trees that guarantee $O(\log n)$ performance.

- When data is stored on disk, the most important performance consideration is reducing the number of disk accesses.

- B-trees offer improved performance for on-disk data dictionaries.