Balanced Search Trees

Computer Science S-111
Harvard University
David G. Sullivan, Ph.D.

Review: Balanced Trees

• A tree is balanced if, for each node, the node’s subtrees have the same height or have heights that differ by 1.

• For a balanced tree with \(n \) nodes:
 • height = \(O(\log_2 n) \).

 • gives a worst-case time complexity that is logarithmic (\(O(\log_2 n) \))
 • the best worst-case time complexity for a binary search tree

• With a binary search tree, there's no way to ensure that the tree remains balanced.
 • can degenerate to \(O(n) \) time
2-3 Trees

• A 2-3 tree is a balanced tree in which:
 • *all* nodes have equal-height subtrees (perfect balance)
 • each node is either
 • a *2-node*, which contains one data item and 0 or 2 children
 • a *3-node*, which contains two data items and 0 or 3 children
 • the keys form a search tree

• Example:

```
  28 61
 /     \
10     40
 |     |   \
3 14 20 34 51
```

Search in 2-3 Trees

• Algorithm for searching for an item with a key k:

 if k == one of the root node’s keys, you’re done
 else if k < the root node’s first key
 search the left subtree
 else if the root is a 3-node and k < its second key
 search the middle subtree
 else
 search the right subtree

• Example: search for 87

```
  28 61
 /     \
10     40
 |     |   \
3 14 20 34 51
```
Insertion in 2-3 Trees

- Algorithm for inserting an item with a key k:
 - search for k, but don’t stop until you hit a leaf node
 - let L be the leaf node at the end of the search
 - if L is a 2-node
 - add k to L, making it a 3-node
 - else if L is a 3-node
 - split L into two 2-nodes containing the items with the smallest and largest of: k, L’s 1st key, L’s 2nd key
 - the middle item is “sent up” and inserted in L’s parent

example: add 52

Example 1: Insert 8

- Search for 8:

- Add 8 to the leaf node, making it a 3-node:
Example 2: Insert 17

- Search for 17:

![Diagram showing search and insertion process for 17]

- Split the leaf node, and send up the middle of 14, 17, 20 and insert it the leaf node’s parent:

![Diagram showing leaf node split and insertion]

Example 3: Insert 92

- Search for 92:

![Diagram showing search and insertion process for 92]

- Split the leaf node, and send up the middle of 92, 93, 97 and insert it the leaf node’s parent:

![Diagram showing leaf node split and insertion]

- In this case, the leaf node’s parent is also a 3-node, so we need to split is as well…
Splitting the Root Node

- If an item propagates up to the root node, and the root is a 3-node, we split the root node and create a new, 2-node root containing the middle of the three items.
- Continuing our example, we split the root's right child:

```
<table>
<thead>
<tr>
<th>28 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
<tr>
<td>34 51</td>
</tr>
<tr>
<td>68 80 87 92 97</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>28 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
<tr>
<td>34 51</td>
</tr>
<tr>
<td>68 80 87 92 97</td>
</tr>
<tr>
<td>77 93</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>
```

- Then we split the root, which increases the tree's height by 1, but the tree is still balanced.
- This is only case in which the tree's height increases.

Efficiency of 2-3 Trees

- A 2-3 tree containing n items has a height <= \(\log_2 n \).
- Thus, search and insertion are both \(O(\log n) \).
 - a search visits at most \(\log_2 n \) nodes
 - an insertion begins with a search; in the worst case, it goes all the way back up to the root performing splits, so it visits at most \(2\log_2 n \) nodes
- Deletion is tricky – you may need to coalesce nodes! However, it also has a time complexity of \(O(\log n) \).
- Thus, we can use 2-3 trees for a \(O(\log n) \)-time data dictionary.
External Storage

• The balanced trees that we've covered don't work well if you want to store the data dictionary externally – i.e., on disk.

• Key facts about disks:
 • data is transferred to and from disk in units called blocks, which are typically 4 or 8 KB in size
 • disk accesses are slow!
 • reading a block takes ~10 milliseconds (10^{-3} sec)
 • vs. reading from memory, which takes ~10 nanoseconds
 • in 10 ms, a modern CPU can perform millions of operations!

B-Trees

• A B-tree of order m is a tree in which each node has:
 • at most $2m$ entries (and, for internal nodes, $2m + 1$ children)
 • at least m entries (and, for internal nodes, $m + 1$ children)
 • exception: the root node may have as few as 1 entry
 • a 2-3 tree is essentially a B-tree of order 1

• To minimize the number of disk accesses, we make m as large as possible.
 • each disk read brings in more items
 • the tree will be shorter (each level has more nodes), and thus searching for an item requires fewer disk reads

• A large value of m doesn't make sense for a memory-only tree, because it leads to many key comparisons per node.

• These comparisons are less expensive than accessing the disk, so large values of m make sense for on-disk trees.
Example: a B-Tree of Order 2

- Order 2: at most 4 data items per node (and at most 5 children)
- The above tree holds the same keys as one of our earlier 2-3 trees, which is shown again below:

```
20 40  68  90
3 10 14 28 34 51 61 77 80 87 93 97
```

- We used the same order of insertion to create both trees:
 - 51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14
- For extra practice, see if you can reproduce the trees!

Search in B-Trees

- Similar to search in a 2-3 tree.
- Example: search for 87
Insertion in B-Trees

• Similar to insertion in a 2-3 tree:
 search for the key until you reach a leaf node
 if a leaf node has fewer than \(2m\) items, add the item to the leaf node
 else split the node, dividing up the \(2m + 1\) items:
 the smallest \(m\) items remain in the original node
 the largest \(m\) items go in a new node
 send the middle entry up and insert it (and a pointer to the new node) in the parent

• Example of an insertion without a split: insert 13

Splits in B-Trees

• Insert 5 into the result of the previous insertion:

 The middle item (the 10) was sent up to the root.
 It has no room, so it is split as well, and a new root is formed:

• Splitting the root increases the tree’s height by 1, but the tree is still balanced. This is only way that the tree’s height increases.
• When an internal node is split, its \(2m + 2\) pointers are split evenly between the original node and the new node.
Analysis of B-Trees

- All internal nodes have at least m children (actually, at least $m+1$).
- Thus, a B-tree with n items has a height $\leq \log_m n$, and search and insertion are both $O(\log_m n)$.
- As with 2-3 trees, deletion is tricky, but it’s still logarithmic.

Search Trees: Conclusions

- Binary search trees can be $O(\log n)$, but they can degenerate to $O(n)$ running time if they are out of balance.
- 2-3 trees and B-trees are balanced search trees that guarantee $O(\log n)$ performance.
- When data is stored on disk, the most important performance consideration is reducing the number of disk accesses.
- B-trees offer improved performance for on-disk data dictionaries.