Sorting and Algorithm Analysis

Computer Science S-111
Harvard University
David G. Sullivan, Ph.D.

Unit 7

Sorting an Array of Integers

- Ground rules:
 - sort the values in increasing order
 - sort “in place,” using only a small amount of additional storage

- Terminology:
 - position: one of the memory locations in the array
 - element: one of the data items stored in the array
 - element i: the element at position i

- Goal: minimize the number of *comparisons* \(C \) and the number of *moves* \(M \) needed to sort the array.
 - move = copying an element from one position to another
Defining a Class for our Sort Methods

```java
public class Sort {
    public static void bubbleSort(int[] arr) {
        // ...
    }
    public static void insertionSort(int[] arr) {
        // ...
    }
}
```

- Our `Sort` class is simply a collection of methods like Java's built-in `Math` class.
- Because we never create `Sort` objects, all of the methods in the class must be `static`.
 - outside the class, we invoke them using the class name:
 e.g., `Sort.bubbleSort(arr)`

Defining a Swap Method

- It would be helpful to have a method that swaps two elements of the array.
- Why won't the following work?
  ```java
  public static void swap(int a, int b) {
      int temp = a;
      a = b;
      b = temp;
  }
  ```
An Incorrect Swap Method

```
public static void swap(int a, int b) {
    int temp = a;
    a = b;
    b = temp;
}
```

- Trace through the following lines to see the problem:

```
int[] arr = {15, 7, ...};
swap(arr[0], arr[1]);
```

A Correct Swap Method

```
public static void swap(int[] arr, int a, int b) {
    int temp = arr[a];
    arr[a] = arr[b];
    arr[b] = temp;
}
```

- This method works:

```
int[] arr = {15, 7, ...};
swap(arr[0], arr[1]);
```

- Trace through the following with a memory diagram to convince yourself that it works:

```
int[] arr = {15, 7, ...};
swap(arr, 0, 1);
```
Selection Sort

- Basic idea:
 - consider the positions in the array from left to right
 - for each position, find the element that belongs there and put it in place by swapping it with the element that’s currently there

- Example:

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>15</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>
```

Why don’t we need to consider position 4?

Selecting an Element

- When we consider position i, the elements in positions 0 through $i - 1$ are already in their final positions.

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>21</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>21</td>
<td>25</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>10</td>
<td>21</td>
<td>25</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
```

- To select an element for position i:
 - consider elements $i, i+1, i+2, ..., arr.length - 1$, and keep track of $indexMin$, the index of the smallest element seen thus far
 - when we finish this pass, $indexMin$ is the index of the element that belongs in position i.
 - swap $arr[i]$ and $arr[indexMin]$:

Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:

```java
private static int indexSmallest(int[] arr, int lower, int upper) {
    int indexMin = lower;
    for (int i = lower+1; i <= upper; i++)
        if (arr[i] < arr[indexMin])
            indexMin = i;
    return indexMin;
}
```

• The actual sort method is very simple:

```java
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length-1; i++) {
        int j = indexSmallest(arr, i, arr.length-1);
        swap(arr, i, j);
    }
}
```

Time Analysis

• Some algorithms are much more efficient than others.

• The time efficiency or time complexity of an algorithm is some measure of the number of “operations” that it performs.
 • for sorting algorithms, we’ll focus on two types of operations: comparisons and moves

• The number of operations that an algorithm performs typically depends on the size, n, of its input.
 • for sorting algorithms, n is the # of elements in the array
 • C(n) = number of comparisons
 • M(n) = number of moves

• To express the time complexity of an algorithm, we’ll express the number of operations performed as a function of n.
 • examples: C(n) = n^2 + 3n
 M(n) = 2n^2 - 1
Counting Comparisons by Selection Sort

private static int indexSmallest(int[] arr, int lower, int upper)
{
 int indexMin = lower;
 for (int i = lower + 1; i <= upper; i++)
 if (arr[i] < arr[indexMin])
 indexMin = i;
 return indexMin;
}

public static void selectionSort(int[] arr)
{
 for (int i = 0; i < arr.length - 1; i++)
 int j = indexSmallest(arr, i, arr.length - 1);
 swap(arr, i, j);
}

• To sort \(n \) elements, selection sort performs \(n - 1 \) passes:
 on 1\(^{st} \) pass, it performs \(n - 1 \) comparisons to find \(\text{indexSmallest} \)
 on 2\(^{nd} \) pass, it performs \(n - 2 \) comparisons ...
 on the \((n - 1)\)st pass, it performs 1 comparison

• Adding up the comparisons for each pass, we get:
 \[C(n) = 1 + 2 + \ldots + (n - 2) + (n - 1) \]

Counting Comparisons by Selection Sort (cont.)

• The resulting formula for \(C(n) \) is the sum of an arithmetic sequence:
 \[C(n) = 1 + 2 + \ldots + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i \]

• Formula for the sum of this type of arithmetic sequence:
 \[\sum_{i=1}^{m} i = \frac{m(m + 1)}{2} \]

• Thus, we can simplify our expression for \(C(n) \) as follows:
 \[C(n) = \sum_{i=1}^{n-1} i = \frac{(n - 1)(n - 1 + 1)}{2} \]
 \[= \frac{(n - 1)n}{2} \]

\[C(n) = n^2/2 \cdot n/2 \]
Focusing on the Largest Term

- When n is large, mathematical expressions of n are dominated by their "largest" term — i.e., the term that grows fastest as a function of n.

 - Example:

 \[
 \begin{array}{|c|c|c|c|}
 \hline
 n & n^2/2 & n/2 & n^2/2 - n/2 \\
 \hline
 10 & 50 & 5 & 45 \\
 100 & 5000 & 50 & 4950 \\
 10000 & 50,000,000 & 5000 & 49,995,000 \\
 \hline
 \end{array}
 \]

- In characterizing the time complexity of an algorithm, we'll focus on the largest term in its operation-count expression.
 - for selection sort, $C(n) = n^2/2 - n/2 \approx n^2/2$

- In addition, we'll typically ignore the coefficient of the largest term (e.g., $n^2/2 \rightarrow n^2$).

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that $C(n) = n^2/2 - n/2 \approx O(n^2)$

- Common classes of algorithms:

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>$3\log_{10}n, \log_2 n + 5$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>linear time</td>
<td>$5n, 10n - 2\log_2 n$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>nlogn time</td>
<td>$4n\log_2 n, n\log_2 n + n$</td>
<td>$O(n\log n)$</td>
</tr>
<tr>
<td>quadratic time</td>
<td>$2n^2 + 3n, n^2 - 1$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>exponential time</td>
<td>$2^n, 5e^n + 2n^3$</td>
<td>$O(c^n)$</td>
</tr>
</tbody>
</table>

- For large inputs, efficiency matters more than CPU speed.
 - e.g., an $O(\log n)$ algorithm on a slow machine will outperform an $O(n)$ algorithm on a fast machine.
Ordering of Functions

- We can see below that:
 - n^2 grows faster than $n \log_2 n$
 - $n \log_2 n$ grows faster than n
 - n grows faster than $\log_2 n$

Ordering of Functions (cont.)

- Zooming in, we see that:
 - $n^2 \geq n$ for all $n \geq 1$
 - $n \log_2 n \geq n$ for all $n \geq 2$
 - $n > \log_2 n$ for all $n \geq 1$
Mathematical Definition of Big-O Notation

- $f(n) = O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$

- Example: $f(n) = n^2/2 - n/2$ is $O(n^2)$, because $n^2/2 - n/2 \leq n^2$ for all $n \geq 0$.

- $c = 1$, $n_0 = 0$

Big-O notation specifies an upper bound on a function $f(n)$ as n grows large.

Big-O Notation and Tight Bounds

- Big-O notation provides an upper bound, not a tight bound (upper and lower).

- Example:
 - $3n - 3$ is $O(n^2)$ because $3n - 3 \leq n^2$ for all $n \geq 1$
 - $3n - 3$ is also $O(2^n)$ because $3n - 3 \leq 2^n$ for all $n \geq 1$

- However, we generally try to use big-O notation to characterize a function as closely as possible – i.e., as if we were using it to specify a tight bound.
 - for our example, we would say that $3n - 3$ is $O(n)$
Big-Theta Notation

- In theoretical computer science, big-theta notation (Θ) is used to specify a tight bound.

- \(f(n) = \Theta(g(n)) \) if there exist constants \(c_1, c_2, \) and \(n_0 \) such that
 \[c_1 g(n) \leq f(n) \leq c_2 g(n) \]
 for all \(n > n_0 \)

- Example: \(f(n) = \frac{n^2}{2} - \frac{n}{2} \) is \(\Theta(n^2) \), because
 \[\frac{1}{4} \cdot n^2 \leq \frac{n^2}{2} - \frac{n}{2} \leq n^2 \]
 for all \(n \geq 2 \)

\[c_1 = \frac{1}{4} \quad c_2 = 1 \quad n_0 = 2 \]

Big-O Time Analysis of Selection Sort

- **Comparisons:** we showed that \(C(n) = \frac{n^2}{2} - \frac{n}{2} \)
 - selection sort performs \(O(n^2) \) comparisons

- **Moves:** after each of the \(n-1 \) passes to find the smallest remaining element, the algorithm performs a swap to put the element in place.
 - \(n-1 \) swaps, 3 moves per swap
 - \(M(n) = 3(n-1) = 3n - 3 \)
 - selection sort performs \(O(n) \) moves.

- **Running time (i.e., total operations):** ?
Sorting by Insertion I: Insertion Sort

- Basic idea:
 - going from left to right, “insert” each element into its proper place with respect to the elements to its left, “sliding over” other elements to make room.

- Example:

```
0 1 2 3 4
15 4 2 12 6
  
4 15 2 12 6
  
2 4 15 12 6
  
2 4 12 15 6
  
2 4 6 12 15
```

Comparing Selection and Insertion Strategies

- In selection sort, we start with the positions in the array and select the correct elements to fill them.
- In insertion sort, we start with the elements and determine where to insert them in the array.
- Here’s an example that illustrates the difference:

```
0 1 2 3 4 5 6
18 12 15 9 25 2 17
```

- Sorting by selection:
 - consider position 0: find the element (2) that belongs there
 - consider position 1: find the element (9) that belongs there
 - ...

- Sorting by insertion:
 - consider the 12: determine where to insert it
 - consider the 15: determine where to insert it
 - ...
Inserting an Element

- When we consider element i, elements 0 through $i - 1$ are already sorted with respect to each other.

 example for $i = 3$:
 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 & 4 \\
 6 & 14 & 19 & 9 & \ldots \\
 \end{array}
 \]

- To insert element i:
 - make a copy of element i, storing it in the variable `toInsert`:
 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 9 & 6 & 14 & 19 \\
 \end{array}
 \]
 - consider elements $i-1, i-2, \ldots$
 - if an element $> toInsert$, slide it over to the right
 - stop at the first element $\leq toInsert$
 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 9 & 6 & 14 & 19 \\
 \end{array}
 \]
 - copy `toInsert` into the resulting “hole”:
 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 6 & 9 & 14 & 19 \\
 \end{array}
 \]

Insertion Sort Example (done together)

description of steps:

\[
\begin{array}{cccc}
12 & 5 & 2 & 13 & 18 & 4 \\
\end{array}
\]
Implementation of Insertion Sort

```java
public class Sort {
    ... 
    public static void insertionSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] < arr[i-1]) {
                int toInsert = arr[i];
                int j = i;
                do {
                    arr[j] = arr[j-1];
                    j = j - 1;
                } while (j > 0 && toInsert < arr[j-1]);
                arr[j] = toInsert;
            }
        }
    }
}
```

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- **best case:**
 \[C(n) = n - 1 = O(n), \quad M(n) = 0, \quad \text{running time} = O(n) \]

- **worst case:**
 \[C(n) = 1 + 2 + \ldots + (n-1) = O(n^2) \]
 as seen in selection sort
 similarly, \[M(n) = O(n^2), \quad \text{running time} = O(n^2) \]

- **average case:**
Sorting by Insertion II: Shell Sort

- Developed by Donald Shell in 1959
- Improves on insertion sort
- Takes advantage of the fact that insertion sort is fast when an array is almost sorted.
- Seeks to eliminate a disadvantage of insertion sort: if an element is far from its final location, many “small” moves are required to put it where it belongs.
- Example: if the largest element starts out at the beginning of the array, it moves one place to the right on every insertion!

```
0 1 2 3 4 5 ... 1000
9 9 4 2 5 6 3 0 1 8 2 3 ...
```
- Shell sort uses “larger” moves that allow elements to quickly get close to where they belong.

Sorting Subarrays

- Basic idea:
 - use insertion sort on subarrays that contain elements separated by some increment
 - increments allow the data items to make larger “jumps”
 - repeat using a decreasing sequence of increments
- Example for an initial increment of 3:

```
0 1 2 3 4 5 6 7
3 6 18 10 27 3 20 9 8
```
- three subarrays:
 1) elements 0, 3, 6
 2) elements 1, 4, 7
 3) elements 2 and 5
- Sort the subarrays using insertion sort to get the following:

```
0 1 2 3 4 5 6 7
9 3 10 27 8 20 36 18
```
- Next, we complete the process using an increment of 1.
Shell Sort: A Single Pass

- We don't consider the subarrays one at a time.
- We consider elements \(\text{arr}[\text{incr}] \) through \(\text{arr}[\text{arr.length}-1] \), inserting each element into its proper place with respect to the elements from its subarray that are to the left of the element.

The same example (\(\text{incr} = 3 \)):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>18</td>
<td>10</td>
<td>27</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>10</td>
<td>36</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>18</td>
<td>20</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>8</td>
<td>20</td>
<td>36</td>
<td>18</td>
</tr>
</tbody>
</table>

Inserting an Element in a Subarray

- When we consider element \(i \), the other elements in its subarray are already sorted with respect to each other.

 example for \(i = 6 \) (\(\text{incr} = 3 \)):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>3</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

 The other element's in 9's subarray (the 27 and 36) are already sorted with respect to each other.

- To insert element \(i \):
 - make a copy of element \(i \), storing it in the variable \(\text{toInsert} \):
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
|---|---|---|---|---|---|---|---|---|
 | 9 | 27 | 3 | 10 | 36 | 18 | 20 | 9 | 8 |
 - consider elements \(i \cdot \text{incr} \), \(i-(2 \cdot \text{incr}) \), \(i-(3 \cdot \text{incr}) \), ...
 - if an element > \(\text{toInsert} \), slide it right within the subarray
 - stop at the first element \(\leq \text{toInsert} \)
 - copy \(\text{toInsert} \) into the “hole”:
0	1	2	3	4	5	6	7
9	3	10	27	18	20	36	8
The Sequence of Increments

• Different sequences of decreasing increments can be used.

• Our version uses values that are one less than a power of two.
 • \(2^k - 1\) for some \(k\)
 • ... 63, 31, 15, 7, 3, 1
• can get to the next lower increment using integer division:
 \[\text{incr} = \frac{\text{incr}}{2};\]

• Should avoid numbers that are multiples of each other.
 • otherwise, elements that are sorted with respect to each other in one pass are grouped together again in subsequent passes
 • repeat comparisons unnecessarily
 • get fewer of the large jumps that speed up later passes
• example of a bad sequence: 64, 32, 16, 8, 4, 2, 1
 • what happens if the largest values are all in odd positions?

Implementation of Shell Sort

```java
public static void shellSort(int[] arr) {
    int incr = 1;
    while (2 * incr <= arr.length)
        incr = 2 * incr;
    incr = incr - 1;
    while (incr >= 1) {
        for (int i = incr; i < arr.length; i++) {
            if (arr[i] < arr[i - incr]) {
                int toInsert = arr[i];
                int j = i;
                do {
                    arr[j] = arr[j - incr];
                    j = j - incr;
                } while (j > incr - 1 &&
                    toInsert < arr[j - incr]);
                arr[j] = toInsert;
            }
        }
        incr = incr/2;
    }
}
```

(If you replace `incr` with 1 in the for-loop, you get the code for insertion sort.)
Time Analysis of Shell Sort

- Difficult to analyze precisely
 - typically use experiments to measure its efficiency
- With a bad interval sequence, it’s $O(n^2)$ in the worst case.
- With a good interval sequence, it’s better than $O(n^2)$.
 - at least $O(n^{1.5})$ in the average and worst case
 - some experiments have shown average-case running times of $O(n^{1.25})$ or even $O(n^{7/6})$
- Significantly better than insertion or selection for large n:

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>$n^{1.5}$</th>
<th>$n^{1.25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>31.6</td>
<td>17.8</td>
</tr>
<tr>
<td>100</td>
<td>10,000</td>
<td>1000</td>
<td>316</td>
</tr>
<tr>
<td>10,000</td>
<td>100,000,000</td>
<td>1,000,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10^6</td>
<td>10^{12}</td>
<td>10^9</td>
<td>3.16×10^7</td>
</tr>
</tbody>
</table>

- We’ve wrapped insertion sort in another loop and increased its efficiency! The key is in the larger jumps that Shell sort allows.

Sorting by Exchange I: Bubble Sort

- Perform a sequence of passes through the array.
- On each pass: proceed from left to right, swapping adjacent elements if they are out of order.
- Larger elements “bubble up” to the end of the array.
- At the end of the kth pass, the k rightmost elements are in their final positions, so we don’t need to consider them in subsequent passes.
- Example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>24</td>
<td>27</td>
<td>18</td>
</tr>
</tbody>
</table>

 after the first pass:

 | 24 | 27 | 18 | 28 |

 after the second:

 | 24 | 18 | 27 | 28 |

 after the third:

 | 18 | 24 | 27 | 28 |
Implementation of Bubble Sort

```java
public class Sort {
    ...
    public static void bubbleSort(int[] arr) {
        for (int i = arr.length - 1; i > 0; i--) {
            for (int j = 0; j < i; j++) {
                if (arr[j] > arr[j+1])
                    swap(arr, j, j+1);
            }
        }
    }
}
```

- One for-loop nested in another:
 - the inner loop performs a single pass
 - the outer loop governs the number of passes, and the ending point of each pass

Time Analysis of Bubble Sort

- **Comparisons**: the kth pass performs _____ comparisons,
 so we get \(C(n) = \)

- **Moves**: depends on the contents of the array
 - in the worst case:
 - in the best case:

- **Running time:**
Sorting by Exchange II: Quicksort

- Like bubble sort, quicksort uses an approach based on exchanging out-of-order elements, but it’s more efficient.
- A recursive, divide-and-conquer algorithm:
 - *divide*: rearrange the elements so that we end up with two subarrays that meet the following criterion:

 each element in the left array <= each element in the right array

 example:

 \[
 \begin{array}{ccccccc}
 12 & 8 & 14 & 4 & 6 & 13 \\
 \end{array}
 \quad \rightarrow \quad
 \begin{array}{ccccccc}
 6 & 8 & 4 & 14 & 12 & 13 \\
 \end{array}
 \]

 - *conquer*: apply quicksort recursively to the subarrays, stopping when a subarray has a single element
 - *combine*: nothing needs to be done, because of the criterion used in forming the subarrays

Partitioning an Array Using a Pivot

- The process that quicksort uses to rearrange the elements is known as *partitioning* the array.
- Partitioning is done using a value known as the *pivot*.
- We rearrange the elements to produce two subarrays:
 - left subarray: all values <= pivot
 - right subarray: all values >= pivot

 \[
 \begin{array}{cccccccc}
 7 & 15 & 4 & 9 & 6 & 18 & 9 & 12 \\
 \end{array}
 \quad \quad \rightarrow \quad \quad
 \begin{array}{cccccccc}
 7 & 9 & 4 & 6 & 18 & 9 & 15 & 12 \\
 \end{array}
 \]

 - Our approach to partitioning is one of several variants.
 - Partitioning is useful in its own right.
 ex: find all students with a GPA > 3.0.
Possible Pivot Values

- First element or last element
 - risky, can lead to terrible worst-case behavior
 - especially poor if the array is almost sorted

- Middle element (what we will use)
- Randomly chosen element
- Median of three elements
 - left, center, and right elements
 - three randomly selected elements
 - taking the median of three decreases the probability of getting a poor pivot

Partitioning an Array: An Example

- Maintain indices \(i \) and \(j \), starting them “outside” the array:

 \[
i = \text{first} - 1 \quad j = \text{last} + 1
 \]

- \text{Find} “out of place” elements:
 - increment \(i \) until \(arr[i] >= pivot \)
 - decrement \(j \) until \(arr[j] <= pivot \)

- \text{Swap} \(arr[i] \) and \(arr[j] \):

 \[
 \begin{array}{cccccccc}
 7 & 15 & 4 & 9 & 6 & 18 & 9 & 12 \\
 \end{array}
 \quad \rightarrow \quad
 \begin{array}{cccccccc}
 7 & 9 & 4 & 9 & 6 & 18 & 15 & 12 \\
 \end{array}
 \]
Partitioning Example (cont.)

From prev. page:

<table>
<thead>
<tr>
<th>7</th>
<th>9</th>
<th>4</th>
<th>9</th>
<th>6</th>
<th>18</th>
<th>15</th>
<th>12</th>
</tr>
</thead>
</table>

- **Find:**

 | 7 | 9 | 4 | 9 | 6 | 18 | 15 | 12 |

- **Swap:**

 | 7 | 9 | 4 | 6 | 9 | 18 | 15 | 12 |

- **Find:**

 | 7 | 9 | 4 | 6 | 9 | 18 | 15 | 12 |

And now the indices have crossed, so we return \(j \).

- **Subarrays:** left = \(arr[first:j] \), right = \(arr[j+1:last] \)

first \(i \) \(j \) \(i \) \(last \)					
7	9	4	6	9	18	15	12

Partitioning Example 2

- **Start** (pivot = 13):

 | 24 | 5 | 2 | 13 | 18 | 4 | 20 | 19 |

- **Find:**

 | 24 | 5 | 2 | 13 | 18 | 4 | 20 | 19 |

- **Swap:**

 | 4 | 5 | 2 | 13 | 18 | 24 | 20 | 19 |

- **Find:**

 | 4 | 5 | 2 | 13 | 18 | 24 | 20 | 19 |

And now the indices are equal, so we return \(j \).

- **Subarrays:**

 | 4 | 5 | 2 | 13 | 18 | 24 | 20 | 19 |
Partitioning Example 3 (done together)

- Start (pivot = 5):
 \[
 \begin{array}{cccccccc}
 4 & 14 & 7 & 5 & 2 & 19 & 26 & 6 \\
 \end{array}
 \]

- Find:
 \[
 \begin{array}{cccccccc}
 4 & 14 & 7 & 5 & 2 & 19 & 26 & 6 \\
 \end{array}
 \]

partition() Helper Method

```java
private static int partition(int[] arr, int first, int last)
{
    int pivot = arr[(first + last)/2];
    int i = first - 1;  // index going left to right
    int j = last + 1;   // index going right to left
    while (true) {
        do {
            i++;
        } while (arr[i] < pivot);
        do {
            j--;
        } while (arr[j] > pivot);
        if (i < j)
            swap(arr, i, j);
        else
            return j;  // arr[j] = end of left array
    }
}
```
Implementation of Quicksort

```java
public static void quickSort(int[] arr) {
    qSort(arr, 0, arr.length - 1);
}

private static void qSort(int[] arr, int first, int last) {
    int split = partition(arr, first, last);
    if (first < split)
        qSort(arr, first, split); // left subarray
    if (last > split + 1)
        qSort(arr, split + 1, last); // right subarray
}
```

Counting Students: Divide and Conquer

- Everyone stand up.

- You will each carry out the following algorithm:

  ```java
count = 1;
while (you are not the only person standing) {
    find another person who is standing
    if (your first name < other person's first name)
        sit down (break ties using last names)
    else
        count = count + the other person's count
}
if (you are the last person standing)
    report your final count
```
Counting Students: Divide and Conquer (cont.)

• At each stage of the "joint algorithm", the problem size is divided in half.

• How many stages are there as a function of the number of students, n?

• This approach benefits from the fact that you perform the

A Quick Review of Logarithms

• \(\log_b n \) = the exponent to which b must be raised to get n

 • \(\log_b n = p \) if \(b^p = n \)

 • examples: \(\log_2 8 = 3 \) because \(2^3 = 8 \)
 \(\log_{10} 10000 = 4 \) because \(10^4 = 10000 \)

 • Another way of looking at logs:

 • let's say that you repeatedly divide n by b (using integer division)

 • \(\log_b n \) is an upper bound on the number of divisions needed to reach 1

 • example: \(\log_2 18 \) is approx. 4.17

 \[\frac{18}{2} = 9 \quad \frac{9}{2} = 4 \quad \frac{4}{2} = 2 \quad \frac{2}{2} = 1 \]
A Quick Review of Logs (cont.)

• If the number of operations performed by an algorithm is proportional to $\log_b n$ for any base b, we say it is a $O(\log n)$ algorithm – dropping the base.

• $\log_b n$ grows much more slowly than n

<table>
<thead>
<tr>
<th>n</th>
<th>$\log_2 n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1024 (1K)</td>
<td>10</td>
</tr>
<tr>
<td>1024*1024 (1M)</td>
<td>20</td>
</tr>
</tbody>
</table>

• Thus, for large values of n:
 • a $O(\log n)$ algorithm is much faster than a $O(n)$ algorithm
 • a $O(n \log n)$ algorithm is much faster than a $O(n^2)$ algorithm
 • We can also show that an $O(n \log n)$ algorithm is faster than a $O(n^{1.5})$ algorithm like Shell sort.

Time Analysis of Quicksort

• Partitioning an array requires n comparisons, because each element is compared with the pivot.

 • best case: partitioning always divides the array in half
 • repeated recursive calls give:

 \[
 \begin{align*}
 \text{comparisons} & \quad n \\
 n/2 & \quad 2 \times (n/2) = n \\
 n/4 & \quad 4 \times (n/4) = n \\
 \vdots & \quad \vdots \\
 1 & \quad 0 \\
 \end{align*}
 \]

 • at each "row" except the bottom, we perform n comparisons
 • there are _______ rows that include comparisons
 • $C(n) = ?$
 • Similarly, $M(n)$ and running time are both _______
Time Analysis of Quicksort (cont.)

- **worst case:** pivot is always the smallest or largest element
 - one subarray has 1 element, the other has \(n - 1 \)
 - repeated recursive calls give:

\[
\begin{align*}
\text{comparisons} \\
&= \frac{n}{n} \frac{n-1}{n-1} \frac{n-2}{n-2} \cdots \frac{2}{2} \\
&= \sum_{i=2}^{n} i = O(n^2).
\]

- \(C(n) \) and run time are also \(O(n^2) \).

- **average case** is harder to analyze
 - \(C(n) > n \log_2 n \), but it's still \(O(n \log n) \)

Mergesort

- All of the comparison-based sorting algorithms that we've seen thus far have sorted the array in place.
 - used only a small amount of additional memory

- Mergesort is a sorting algorithm that requires an additional temporary array of the same size as the original one.
 - it needs \(O(n) \) additional space, where \(n \) is the array size

- It is based on the process of *merging* two sorted arrays into a single sorted array.
 - example:
Merging Sorted Arrays

To merge sorted arrays A and B into an array C, we maintain three indices, which start out on the first elements of the arrays:

- We repeatedly do the following:
 - compare A[i] and B[j]
 - copy the smaller of the two to C[k]
 - increment the index of the array whose element was copied
 - increment k

Starting point:

- After the first copy:
- After the second copy:
Merging Sorted Arrays (cont.)

• After the third copy:

\[
\begin{array}{cccc}
A & 2 & 8 & 14 & 24 \\
& i \ & j \\
B & 5 & 7 & 9 & 11 \\
\end{array}
\]

\[
\begin{array}{cccc}
C & 2 & 5 & 7 \\
& k \\
\end{array}
\]

• After the fourth copy:

\[
\begin{array}{cccc}
A & 2 & 8 & 14 & 24 \\
& i \ & j \\
B & 5 & 7 & 9 & 11 \\
\end{array}
\]

\[
\begin{array}{cccc}
C & 2 & 5 & 7 & 8 \\
& k \\
\end{array}
\]

• After the fifth copy:

\[
\begin{array}{cccc}
A & 2 & 8 & 14 & 24 \\
& i \ & j \\
B & 5 & 7 & 9 & 11 \\
\end{array}
\]

\[
\begin{array}{cccc}
C & 2 & 5 & 7 & 8 & 9 \\
& k \\
\end{array}
\]

• After the sixth copy:

\[
\begin{array}{cccc}
A & 2 & 8 & 14 & 24 \\
& i \ & j \\
B & 5 & 7 & 9 & 11 \\
\end{array}
\]

\[
\begin{array}{cccc}
C & 2 & 5 & 7 & 8 & 9 & 11 \\
& k \\
\end{array}
\]

• There's nothing left in B, so we simply copy the remaining elements from A:

\[
\begin{array}{cccc}
A & 2 & 8 & 14 & 24 \\
& i \ & j \\
B & 5 & 7 & 9 & 11 \\
\end{array}
\]

\[
\begin{array}{cccc}
C & 2 & 5 & 7 & 8 & 9 & 11 & 14 & 24 \\
& k \\
\end{array}
\]
Divide and Conquer

- Like quicksort, mergesort is a divide-and-conquer algorithm.
 - **divide**: split the array in half, forming two subarrays
 - **conquer**: apply mergesort recursively to the subarrays, stopping when a subarray has a single element
 - **combine**: merge the sorted subarrays

<table>
<thead>
<tr>
<th>split</th>
<th>split</th>
<th>split</th>
<th>merge</th>
<th>merge</th>
<th>merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 8 14 4</td>
<td>12 8 14 4</td>
<td>12 8 14 4</td>
<td>8 12 4 14</td>
<td>4 8 12 14</td>
<td>2 4 6 8 12 14 27 33</td>
</tr>
</tbody>
</table>

12 8 14 4 6 33 2 27

Tracing the Calls to Mergesort

the initial call is made to sort the entire array:

12 8 14 4 6 33 2 27

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

12 8 14 4 6 33 2 27

12 8 14 4

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

12 8 14 4 6 33 2 27

12 8 14 4

12 8
Tracing the Calls to Mergesort

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

base case, so return to the call for the subarray {12, 8}:

make a recursive call to sort its right subarray:

base case, so return to the call for the subarray {12, 8}:
merge the sorted halves of \{12, 8\}:

```
12  8  14  4  6  33  2  27
12  8  14  4
12  8  ←  8  12
```

end of the method, so return to the call for the 4-element subarray, which now has a sorted left subarray:

```
12  8  14  4  6  33  2  27
8  12  14  4
```

make a recursive call to sort the right subarray of the 4-element subarray

```
12  8  14  4  6  33  2  27
8  12  14  4
14  4
```

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

```
12  8  14  4  6  33  2  27
8  12  14  4
14  4
14
```

base case…
Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

```
12  8  14  4  6  33  2  27
```

```
  8  12  14  4
```

```
    14  4
```

make a recursive call to sort its right subarray:

```
12  8  14  4  6  33  2  27
```

```
  8  12  14  4
```

```
    14  4
```

```
      4
```

base case...

merge the sorted halves of {14, 4}:

```
12  8  14  4  6  33  2  27
```

```
  8  12  14  4
```

```
    14  4
```

```
      4  14
```
Tracing the Calls to Mergesort

end of the method, so return to the call for the 4-element subarray, which now has two sorted 2-element subarrays:

$$\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
8 & 12 & 4 & 14 \\
\end{array}$$

merge the 2-element subarrays:

$$\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
8 & 12 & 4 & 14 \\
\end{array} \rightarrow \begin{array}{cccccccc}
4 & 8 & 12 & 14 \\
\end{array}$$

Tracing the Calls to Mergesort

end of the method, so return to the call for the original array, which now has a sorted left subarray:

$$\begin{array}{cccccccc}
4 & 8 & 12 & 14 & 6 & 33 & 2 & 27 \\
\end{array}$$

perform a similar set of recursive calls to sort the right subarray. here's the result:

$$\begin{array}{cccccccc}
4 & 8 & 12 & 14 & 2 & 6 & 27 & 33 \\
\end{array}$$

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

$$\begin{array}{cccccccc}
4 & 8 & 12 & 14 & 2 & 6 & 27 & 33 \\
2 & 4 & 6 & 8 & 12 & 14 & 27 & 33 \\
\end{array}$$
Implementing Mergesort

- One approach is to create new arrays for each new set of subarrays, and to merge them back into the array that was split.

- Instead, we'll create a temp. array of the same size as the original.
 - pass it to each call of the recursive mergesort method
 - use it when merging subarrays of the original array:

```
arr [8 12 4 14 6 33 2 27]

| 4 8 12 14 |
```

- after each merge, copy the result back into the original array:

```
arr [4 8 12 14 6 33 2 27]

| 4 8 12 14 |
```

A Method for Merging Subarrays

```java
private static void merge(int[] arr, int[] temp, int leftStart, int leftEnd, int rightStart, int rightEnd) {
    int i = leftStart;    // index into left subarray
    int j = rightStart;   // index into right subarray
    int k = leftStart;    // index into temp
    while (i <= leftEnd && j <= rightEnd) {
        if (arr[i] < arr[j])
            temp[k++] = arr[i++];
        else
            temp[k++] = arr[j++];
    }
    while (i <= leftEnd)
        temp[k++] = arr[i++];
    while (j <= rightEnd)
        temp[k++] = arr[j++];
    for (i = leftStart; i <= rightEnd; i++)
        arr[i] = temp[i];
}
```
Methods for Mergesort

• We use a wrapper method to create the temp. array, and to make the initial call to a separate recursive method:

```java
public static void mergeSort(int[] arr) {
    int[] temp = new int[arr.length];
    mSort(arr, temp, 0, arr.length - 1);
}
```

• Let's implement the recursive method together:

```java
private static void mSort(int[] arr, int[] temp, int start, int end) {
    if (start >= end)   // base case
        return;
    int middle = (start + end)/2;
    mergeSort(arr, temp, start, middle);
    mergeSort(arr, temp, middle + 1, end);
    merge(arr, temp, start, middle, middle + 1, end);
}
```

Time Analysis of Mergesort

• Merging two halves of an array of size n requires $2n$ moves. Why?

• Mergesort repeatedly divides the array in half, so we have the following call tree (showing the sizes of the arrays):

```
        n
      /  \  
    n/2  n/2
   / \    / \  
 n/4 n/4 n/4 n/4
```

```
    moves
    2n
  2*2*(n/2) = 2n
 4*2*(n/4) = 2n

... ...
```

• at all but the last level of the call tree, there are $2n$ moves
• how many levels are there?
• $M(n) = ?$
• $C(n) = ?$
Summary: Comparison-Based Sorting Algorithms

<table>
<thead>
<tr>
<th>algorithm</th>
<th>best case</th>
<th>avg case</th>
<th>worst case</th>
<th>extra memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertion sort</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Shell sort</td>
<td>$O(n \log n)$</td>
<td>$O(n^{1.5})$</td>
<td>$O(n^{1.5})$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>bubble sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>quicksort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>mergesort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

- Insertion sort is best for nearly sorted arrays.
- Mergesort has the best worst-case complexity, but requires extra memory – and moves to and from the temp array.
- Quicksort is comparable to mergesort in the average case. With a reasonable pivot choice, its worst case is seldom seen.
- Use `SortCount.java` to experiment.

Comparison-Based vs. Distributive Sorting

- Until now, all of the sorting algorithms we have considered have been *comparison-based*:
 - treat the keys as wholes (comparing them)
 - don’t “take them apart” in any way
 - all that matters is the relative order of the keys, not their actual values.

- No comparison-based sorting algorithm can do better than $O(n \log_2 n)$ on an array of length n.
 - $O(n \log_2 n)$ is a *lower bound* for such algorithms.

- *Distributive* sorting algorithms do more than compare keys; they perform calculations on the actual values of individual keys.

- Moving beyond comparisons allows us to overcome the lower bound.
 - tradeoff: use more memory.
Distributive Sorting Example: Radix Sort

• Relies on the representation of the data as a sequence of m quantities with k possible values.

• Examples:
 - integer in range 0 ... 999 3 10
 - string of 15 upper-case letters 15 26
 - 32-bit integer 32 2 (in binary) 4 256 (as bytes)

• Strategy: Distribute according to the last element in the sequence, then concatenate the results:

 33 41 12 24 31 14 13 42 34

 get: 41 31 | 12 42 | 33 13 | 24 14 34

• Repeat, moving back one digit each time:

 get: |

Analysis of Radix Sort

• Recall that we treat the values as a sequence of m quantities with k possible values.

• Number of operations is $O(n \cdot m)$ for an array with n elements
 • better than $O(n \log n)$ when $m < \log n$

• Memory usage increases as k increases.
 • k tends to increase as m decreases
 • tradeoff: increased speed requires increased memory usage
Big-O Notation Revisited

- We’ve seen that we can group functions into classes by focusing on the fastest-growing term in the expression for the number of operations that they perform.
- e.g., an algorithm that performs \(n^3/2 - n/2 \) operations is a \(O(n^2) \)-time or quadratic-time algorithm

- Common classes of algorithms:

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>(O(1))</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>(3 \log_{10}n, \log_2n + 5)</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>linear time</td>
<td>5n, 10n - 2\log_2n</td>
<td>(O(n))</td>
</tr>
<tr>
<td>nlogn time</td>
<td>(4 \log_2n, n \log_2n + n)</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>quadratic time</td>
<td>(2n^2 + 3n, n^2 - 1)</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>cubic time</td>
<td>(n^3 + 3n^3, 5n^3 - 5)</td>
<td>(O(n^3))</td>
</tr>
<tr>
<td>exponential time</td>
<td>(2^n, 5e^n + 2n^2)</td>
<td>(O(c^n))</td>
</tr>
<tr>
<td>factorial time</td>
<td>(3n!, 5n + n!)</td>
<td>(O(n!))</td>
</tr>
</tbody>
</table>

How Does the Number of Operations Scale?

- Let's say that we have a problem size of 1000, and we measure the number of operations performed by a given algorithm.

- If we double the problem size to 2000, how would the number of operations performed by an algorithm increase if it is:
 - \(O(n) \)-time
 - \(O(n^2) \)-time
 - \(O(n^3) \)-time
 - \(O(\log_2n) \)-time
 - \(O(2^n) \)-time
How Does the Actual Running Time Scale?

- How much time is required to solve a problem of size n?
 - Assume that each operation requires 1 μsec (1×10^{-6} sec)

<table>
<thead>
<tr>
<th>time function</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>.00001 s</td>
<td>.00002 s</td>
<td>.00003 s</td>
<td>.00004 s</td>
<td>.00005 s</td>
<td>.00006 s</td>
</tr>
<tr>
<td>n^2</td>
<td>.001 s</td>
<td>.004 s</td>
<td>.009 s</td>
<td>.016 s</td>
<td>.025 s</td>
<td>.036 s</td>
</tr>
<tr>
<td>n^5</td>
<td>.1 s</td>
<td>3.2 s</td>
<td>24.3 s</td>
<td>1.7 min</td>
<td>5.2 min</td>
<td>13.0 min</td>
</tr>
<tr>
<td>2^n</td>
<td>.001 s</td>
<td>1.0 s</td>
<td>17.9 min</td>
<td>12.7 days</td>
<td>35.7 yrs</td>
<td>36,600 yrs</td>
</tr>
</tbody>
</table>

- Sample computations:
 - When $n = 10$, an n^2 algorithm performs 10^2 operations.
 $10^2 \times (1 \times 10^{-6} \text{ sec}) = .0001 \text{ sec}$
 - When $n = 30$, a 2^n algorithm performs 2^{30} operations.
 $2^{30} \times (1 \times 10^{-6} \text{ sec}) = 1073 \text{ sec} = 17.9 \text{ min}$

What's the Largest Problem That Can Be Solved?

- What's the largest problem size n that can be solved in a given time T? (Again assume 1 μsec per operation)

<table>
<thead>
<tr>
<th>time function</th>
<th>1 min</th>
<th>1 hour</th>
<th>1 week</th>
<th>1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>60,000,000</td>
<td>3.6 x 10^9</td>
<td>6.0 x 10^{11}</td>
<td>3.1 x 10^{13}</td>
</tr>
<tr>
<td>n^2</td>
<td>7745</td>
<td>60,000</td>
<td>777,688</td>
<td>5,615,692</td>
</tr>
<tr>
<td>n^5</td>
<td>35</td>
<td>81</td>
<td>227</td>
<td>500</td>
</tr>
<tr>
<td>2^n</td>
<td>25</td>
<td>31</td>
<td>39</td>
<td>44</td>
</tr>
</tbody>
</table>

- Sample computations:
 - 1 hour = 3600 sec
 That's enough time for $3600 / (1 \times 10^{-6}) = 3.6 \times 10^6$ operations
 - n^2 algorithm:
 $n^2 = 3.6 \times 10^6 \Rightarrow n = (3.6 \times 10^6)^{1/2} = 60,000$
 - 2^n algorithm:
 $2^n = 3.6 \times 10^6 \Rightarrow n = \log_2(3.6 \times 10^6) \approx 31$