Graphs

Computer Science S-111
Harvard University
David G. Sullivan, Ph.D.

What is a Graph?

- A graph consists of:
 - a set of vertices (also known as nodes)
 - a set of edges (also known as arcs), each of which connects a pair of vertices
• Vertices represent cities.
• Edges represent highways.
• This is a weighted graph, because it has a cost associated with each edge.
 • for this example, the costs denote mileage
• We’ll use graph algorithms to answer questions like “What is the shortest route from Portland to Providence?”

Example: A Highway Graph

![Highway Graph Diagram]

Relationships Among Vertices

• Two vertices are adjacent if they are connected by a single edge.
 • ex: c and g are adjacent, but c and i are not
• The collection of vertices that are adjacent to a vertex v are referred to as v’s neighbors.
 • ex: c’s neighbors are a, b, d, f, and g
A path is a sequence of edges that connects two vertices.
 - *ex:* the path highlighted above connects c and e

A graph is **connected** if there is a path between any two vertices.
 - *ex:* the six vertices at right are part of a graph that is *not* connected

A graph is **complete** if there is an edge between every pair of vertices.
 - *ex:* the graph at right is complete

Paths in a Graph

- A directed graph has a direction associated with each edge, which is depicted using an arrow:

 - Edges in a directed graph are often represented as ordered pairs of the form (start vertex, end vertex).
 - *ex:* (a, b) is an edge in the graph above, but (b, a) is not.

 - A path in a directed graph is a sequence of edges in which the end vertex of edge i must be the same as the start vertex of edge i + 1.
 - *ex:* \{ (a, b), (b, e), (e, f) \} is a valid path.
 \{ (a, b), (c, b), (c, a) \} is not.

Directed Graphs
Trees vs. Graphs

- A tree is a special type of graph.
 - it is connected and undirected
 - it is *acyclic*: there is no path containing distinct edges that starts and ends at the same vertex
 - we usually single out one of the vertices to be the root of the tree, although graph theory does not require this

![Graphs](image)

- A spanning tree is a subset of a connected graph that contains:
 - all of the vertices
 - a subset of the edges that form a tree

- The trees on the previous page were examples of spanning trees for the graph on that page. Here are two others:

![Spanning Trees](image)

Spanning Trees

- A spanning tree is a subset of a connected graph that contains:
 - all of the vertices
 - a subset of the edges that form a tree

- The trees on the previous page were examples of spanning trees for the graph on that page. Here are two others:
Representing a Graph Using an Adjacency Matrix

- Adjacency matrix = a two-dimensional array that is used to represent the edges and any associated costs
 - edge[r][c] = the cost of going from vertex r to vertex c

- **Example:**

```
   0  1  2  3
0  .  54 44 .
1  .  . 39 .
2  54 . 83 .
3  . 44 . 83
```

- Use a special value to indicate that you can’t go from r to c.
 - either there’s no edge between r and c, or it’s a directed edge that goes from c to r
 - this value is shown as a shaded cell in the matrix above
 - we can’t use 0, because we may have actual costs of 0

- This representation is good if a graph is dense – if it has many edges per vertex – but wastes memory if the graph is sparse – if it has few edges per vertex.

Representing a Graph Using an Adjacency List

- Adjacency list = a list (either an array or linked list) of linked lists that is used to represent the edges and any associated costs

- **Example:**

```
0: [3: 44, null]
1: [2: 39, null]
2: [1: 39, 0: 54, null]
3: [2: 83, 0: 83, null]
```

- No memory is allocated for non-existent edges, but the references in the linked lists use extra memory.

- This representation is good if a graph is sparse, but wastes memory if the graph is dense.
Our Graph Representation

- Use a linked list of linked lists for the adjacency list.
- Example:

  ```
  vertices is a reference to a linked list of Vertex objects.
  Each Vertex holds a reference to a linked list of Edge objects.
  Each Edge holds a reference to the Vertex that is the end vertex.
  ```

Graph Class

```java
public class Graph {
    private class Vertex {
        private String id;
        private Edge edges;  // adjacency list
        private Vertex next;
        private boolean encountered;
        private boolean done;
        private Vertex parent;
        private double cost;...
    }

    private class Edge {
        private Vertex start;
        private Vertex end;
        private double cost;
        private Edge next;...
    }

    private Vertex vertices;...
}
```
Traversing a Graph

- Traversing a graph involves starting at some vertex and visiting all of the vertices that can be reached from that vertex.
 - visiting a vertex = processing its data in some way
 - example: print the data
 - if the graph is connected, all of the vertices will be visited

- We will consider two types of traversals:
 - depth-first: proceed as far as possible along a given path before backing up
 - breadth-first: visit a vertex
 - visit all of its neighbors
 - visit all unvisited vertices 2 edges away
 - visit all unvisited vertices 3 edges away, etc.

- Applications:
 - determining the vertices that can be reached from some vertex
 - web crawler (vertices = pages, edges = links)

Depth-First Traversal

- Visit a vertex, then make recursive calls on all of its yet-to-be-visited neighbors:

 $$\text{dfTrav}(v, \text{parent})$$

 - visit v and mark it as visited
 - v.parent = parent
 - for each vertex w in v's neighbors
 - if (w has not been visited)
 - $\text{dfTrav}(w, v)$

- Java method:

  ```java
  private static void dfTrav(Vertex v, Vertex parent) {
      System.out.println(v.id); // visit v
      v.done = true;
      v.parent = parent;
      Edge e = v.edges;
      while (e != null) {
          Vertex w = e.end;
          if (!w.done)
              dfTrav(w, v);
          e = e.next;
      }
  }
  ```
For the examples, we'll assume that the edges in each vertex's adjacency list are sorted by increasing edge cost.

The edges obtained by following the parent references form a spanning tree with the origin of the traversal as its root.

From any city, we can get to the origin by following the roads in the spanning tree.
Another Example: Depth-First Traversal from Worcester

- In what order will the cities be visited?
- Which edges will be in the resulting spanning tree?

![Graph Image]

Checking for Cycles in an Undirected Graph

- To discover a cycle in an undirected graph, we can:
 - perform a depth-first traversal, marking the vertices as visited
 - when considering neighbors of a visited vertex, if we discover one already marked as visited, there must be a cycle
- If no cycles found during the traversal, the graph is acyclic.
- This doesn't work for directed graphs:
 - c is a neighbor of both a and b
 - there is no cycle

![Graph Image]
Breadth-First Traversal

- Use a queue, as we do for level-order tree traversal:

```java
private static void bfTrav(Vertex origin) {
    origin.encountered = true;
    origin.parent = null;
    Queue<Vertex> q = new LLQueue<Vertex>();
    q.insert(origin);
    while (!q.isEmpty()) {
        Vertex v = q.remove();
        System.out.println(v.id);         // Visit v.
        // Add v's unencountered neighbors to the queue.
        Edge e = v.edges;
        while (e != null) {
            Vertex w = e.end;
            if (!w.encountered) {
                w.encountered = true;
                w.parent = v;
                q.insert(w);
            }
            e = e.next;
        }
    }
}
```

Example: Breadth-First Traversal from Portland

Evolution of the queue:

<table>
<thead>
<tr>
<th>remove</th>
<th>insert</th>
<th>queue contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland</td>
<td>Portland, Concord</td>
<td>Portland</td>
</tr>
<tr>
<td>Portland</td>
<td>Portsmouth, Concord</td>
<td>Portsmouth, Concord</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>Boston, Worcester</td>
<td>Concord, Boston, Worcester</td>
</tr>
<tr>
<td>Concord</td>
<td>none</td>
<td>Boston, Worcester</td>
</tr>
<tr>
<td>Boston</td>
<td>Providence</td>
<td>Worcester, Providence</td>
</tr>
<tr>
<td>Worcester</td>
<td>Albany</td>
<td>Providence, Albany</td>
</tr>
<tr>
<td>Providence</td>
<td>New York</td>
<td>Albany, New York</td>
</tr>
<tr>
<td>Albany</td>
<td>none</td>
<td>New York</td>
</tr>
<tr>
<td>New York</td>
<td>none</td>
<td>empty</td>
</tr>
</tbody>
</table>
Breadth-First Spanning Tree

breadth-first spanning tree:

depth-first spanning tree:

Another Example:
Breadth-First Traversal from Worcester

Evolution of the queue:
- remove
- insert
- queue contents
Time Complexity of Graph Traversals

- Let $V =$ number of vertices in the graph
 $E =$ number of edges

- If we use an adjacency matrix, a traversal requires $O(V^2)$ steps.
 - Why?

- If we use an adjacency list, a traversal requires $O(V + E)$ steps.
 - Visit each vertex once
 - Traverse each vertex's adjacency list at most once
 - The total length of the adjacency lists is at most $2E = O(E)$
 - $O(V + E) \ll O(V^2)$ for a sparse graph
 - For a dense graph, $E = O(V^2)$, so both representations are $O(V^2)$

- In our implementations of the remaining algorithms, we’ll assume an adjacency-list implementation.

Minimum Spanning Tree

- A minimum spanning tree (MST) has the smallest total cost among all possible spanning trees.
 - Example:

 - One possible spanning tree:
 Portland - 39 - Portsmouth
 Worcester - 83 - Boston
 (Total cost = 39 + 83 + 54 = 176)

 - Minimal-cost spanning tree:
 Portland - 39 - Portsmouth
 Worcester - 44 - Boston
 (Total cost = 39 + 54 + 44 = 137)

- If no two edges have the same cost, there is a unique MST.
 If two or more edges have the same cost, there may be more than one MST.

- Finding an MST could be used to:
 - Determine the shortest highway system for a set of cities
 - Calculate the smallest length of cable needed to connect a network of computers
Building a Minimum Spanning Tree

• Key insight: if you divide the vertices into two disjoint subsets A and B, then the lowest-cost edge joining a vertex in A to a vertex in B – call it \((v_a, v_b)\) – must be part of the MST.

 - example:

Proof by contradiction:
 - assume we can create an MST (call it T) that doesn’t include edge \((v_a, v_b)\)
 - T must include a path from \(v_a\) to \(v_b\), so it must include one of the other edges \((v'_a, v'_b)\) that spans subsets A and B, such that \((v'_a, v'_b)\) is part of the path from \(v_a\) to \(v_b\)
 - adding \((v_a, v_b)\) to T introduces a cycle
 - removing \((v'_a, v'_b)\) gives a spanning tree with lower cost, which contradicts the original assumption.

Prim’s MST Algorithm

• Begin with the following subsets:
 - A = any one of the vertices
 - B = all of the other vertices

• Repeatedly do the following:
 - select the lowest-cost edge \((v_a, v_b)\) connecting a vertex in A to a vertex in B
 - add \((v_a, v_b)\) to the spanning tree
 - move vertex \(v_b\) from set A to set B

• Continue until set A contains all of the vertices.
Example: Prim’s Starting from Concord

• Tracing the algorithm:

<table>
<thead>
<tr>
<th>edge added</th>
<th>set A</th>
<th>set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Con, Wor)</td>
<td>{Con}</td>
<td>{Alb, Bos, NY, Ptl, Pts, Pro, Wor}</td>
</tr>
<tr>
<td>(Wor, Pro)</td>
<td>{Con, Wor}</td>
<td>{Alb, Bos, NY, Ptl, Pts}</td>
</tr>
<tr>
<td>(Wor, Bos)</td>
<td>{Con, Wor, Pro}</td>
<td>{Alb, Bos, NY, Ptl, Pts}</td>
</tr>
<tr>
<td>(Bos, Pts)</td>
<td>{Con, Wor, Pro, Bos}</td>
<td>{Alb, Bos, NY, Ptl}</td>
</tr>
<tr>
<td>(Pts, Ptl)</td>
<td>{Con, Wor, Pro, Bos, Pts}</td>
<td>{Alb, Bos, NY, Ptl}</td>
</tr>
<tr>
<td>(Wor, Alb)</td>
<td>{Con, Wor, Pro, Bos, Pts, Ptl}</td>
<td>{NY}</td>
</tr>
<tr>
<td>(Pro, NY)</td>
<td>{Con, Wor, Pro, Bos, Pts, Ptl, Alb}</td>
<td>{NY}</td>
</tr>
</tbody>
</table>

MST May Not Give Shortest Paths

• The MST is the spanning tree with the minimal total edge cost.

• It does not necessarily include the minimal cost path between a pair of vertices.

• Example: shortest path from Boston to Providence is along the single edge connecting them
 • that edge is not in the MST
The Shortest-Path Problem

- It's often useful to know the shortest path from one vertex to another – i.e., the one with the minimal total cost
 - example application: routing traffic in the Internet

- For an unweighted graph, we can simply do the following:
 - start a breadth-first traversal from the origin, v
 - stop the traversal when you reach the other vertex, w
 - the path from v to w in the resulting (possibly partial) spanning tree is a shortest path

- A breadth-first traversal works for an unweighted graph because:
 - the shortest path is simply one with the fewest edges
 - a breadth-first traversal visits cities in order according to the number of edges they are from the origin.

- Why might this approach fail to work for a weighted graph?
Dijkstra's Algorithm

• One algorithm for solving the shortest-path problem for weighted graphs was developed by E.W. Dijkstra.

• It allows us to find the shortest path from a vertex v (the origin) to all other vertices that can be reached from v.

• Basic idea:
 • maintain estimates of the shortest paths from the origin to every vertex (along with their costs)
 • gradually refine these estimates as we traverse the graph

• Initial estimates:

<table>
<thead>
<tr>
<th>path</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>the origin itself: stay put!</td>
<td>0</td>
</tr>
<tr>
<td>all other vertices: unknown</td>
<td>infinity</td>
</tr>
</tbody>
</table>

Dijkstra's Algorithm (cont.)

• We say that a vertex w is finalized if we have found the shortest path from v to w.

• We repeatedly do the following:
 • find the unfinalized vertex w with the lowest cost estimate
 • mark w as finalized (shown as a filled circle below)
 • examine each unfinalized neighbor x of w to see if there is a shorter path to x that passes through w
 • if there is, update the shortest-path estimate for x

• Example:
Another Example: Shortest Paths from Providence

- Initial estimates:
 - Boston: infinity
 - Worcester: infinity
 - Portsmouth: infinity
 - Providence: 0

- Providence has the smallest unfinalized estimate, so we finalize it.

- We update our estimates for its neighbors:
 - Boston: 49 (< infinity)
 - Worcester: 42 (< infinity)
 - Portsmouth: infinity
 - Providence: 0

- Worcester has the smallest unfinalized estimate, so we finalize it.
 - any other route from Prov. to Worc. would need to go via Boston, and since (Prov \(\rightarrow\) Worc) < (Prov \(\rightarrow\) Bos), we can't do better.

- We update our estimates for Worcester's unfinalized neighbors:
 - Boston: 49 (no change)
 - Worcester: 42
 - Portsmouth: 125 (42 + 83 < infinity)
 - Providence: 0
• Boston has the smallest unfinalized estimate, so we finalize it.
 • we'll see later why we can safely do this!

• We update our estimates for Boston's unfinalized neighbors:
 Boston 49
 Worcester 42
 Portsmouth 103 (49 + 54 < 125)
 Providence 0

• Only Portsmouth is left, so we finalize it.
Finalizing a Vertex

- Let w be the unfinalized vertex with the smallest cost estimate. Why can we finalize w, before seeing the rest of the graph?
- We know that w’s current estimate is for the shortest path to w that passes through only finalized vertices.
- Any shorter path to w would have to pass through one of the other encountered-but-unfinalized vertices, but we know that they’re all further away from the origin than w is.
 - their cost estimates may decrease in subsequent stages of the algorithm, but they can’t drop below w’s current estimate!

Pseudocode for Dijkstra’s Algorithm

```java
dijkstra(origin)
donate {origin.cost = 0
do for each other vertex v
  v.cost = infinity;
while there are still unfinalized vertices with cost < infinity
  find the unfinalized vertex w with the minimal cost
  mark w as finalized
  for each unfinalized vertex x adjacent to w
    cost_via_w = w.cost + edge_cost(w, x)
    if (cost_via_w < x.cost)
      x.cost = cost_via_w
      x.parent = w

At the conclusion of the algorithm, for each vertex v:
- v.cost is the cost of the shortest path from the origin to v;
  if v.cost is infinity, there is no path from the origin to v
- starting at v and following the parent references yields the shortest path
The Java version is in Graph.java
```
Example: Shortest Paths from Concord

![Diagram showing shortest paths from Concord]

Evolution of the cost estimates (costs in bold have been finalized):

<table>
<thead>
<tr>
<th></th>
<th>Albany</th>
<th>Boston</th>
<th>Concord</th>
<th>New York</th>
<th>Portland</th>
<th>Portsmouth</th>
<th>Providence</th>
<th>Worcester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany</td>
<td>inf</td>
<td>inf</td>
<td>197</td>
<td>197</td>
<td>197</td>
<td>197</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>inf</td>
<td>74</td>
<td>0</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concord</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
<td>290</td>
<td>290</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Portland</td>
<td>inf</td>
<td>inf</td>
<td>146</td>
<td>128</td>
<td>123</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td>inf</td>
<td>inf</td>
<td>105</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providence</td>
<td>inf</td>
<td>inf</td>
<td>105</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester</td>
<td>inf</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the Portsmouth estimate was improved three times!

Another Example: Shortest Paths from Worcester

![Diagram showing shortest paths from Worcester]

Evolution of the cost estimates (costs in bold have been finalized):

<table>
<thead>
<tr>
<th></th>
<th>Albany</th>
<th>Boston</th>
<th>Concord</th>
<th>New York</th>
<th>Portland</th>
<th>Portsmouth</th>
<th>Providence</th>
<th>Worcester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concord</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portsmouth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementing Dijkstra's Algorithm

• Similar to the implementation of Prim’s algorithm.

• Use a heap-based priority queue to store the unfinalized vertices.
 • priority = ?

• Need to update a vertex's priority whenever we update its shortest-path estimate.

• Time complexity = $O(E\log V)$

Topological Sort

• Used to order the vertices in a directed acyclic graph (a DAG).

• Topological order: an ordering of the vertices such that, if there is directed edge from a to b, a comes before b.

• Example application: ordering courses according to prerequisites

 • a directed edge from a to b indicates that a is a prereq of b

 • There may be more than one topological ordering.
Topological Sort Algorithm

- A *successor* of a vertex v in a directed graph = a vertex w such that \((v, w)\) is an edge in the graph \((v\rightarrow w)\)

- Basic idea: find vertices that have no successors and work backward from them.
 - there must be at least one such vertex. why?

- Pseudocode for one possible approach:
  ```
  topolSort
  S = a stack to hold the vertices as they are visited
  while there are still unvisited vertices
    find a vertex v with no unvisited successors
    mark v as visited
    S.push(v)
  return S
  ```

- Popping the vertices off the resulting stack gives one possible topological ordering.

Topological Sort Example

Evolution of the stack:

```
push                  stack contents (top to bottom)
E-124                E-124
E-162                E-162, E-124
E-215                E-215, E-162, E-124
E-104                E-104, E-215, E-162, E-124
E-119                E-119, E-104, E-215, E-162, E-124
E-10                 E-10, E-160, E-119, E-104, E-215, E-162, E-124
E-50a                **E-50a, E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124**
```

one possible topological ordering
Another Topological Sort Example

Evolution of the stack:
push stack contents (top to bottom)

Traveling Salesperson Problem (TSP)

- A salesperson needs to travel to a number of cities to visit clients, and wants to do so as efficiently as possible.
- As in our earlier problems, we use a weighted graph.
- A tour is a path that begins at some starting vertex, passes through every other vertex once and only once, and returns to the starting vertex. (The actual starting vertex doesn’t matter.)
- TSP: find the tour with the lowest total cost
- TSP algorithms assume the graph is complete, but we can assign infinite costs if there isn’t a direct route between two cities.
TSP for Santa Claus

A "world TSP" with 1,904,711 cities.
The figure at right shows a tour with a total cost of 7,516,353,779 meters – which is at most 0.068% longer than the optimal tour.

Other applications:
- coin collection from phone booths
- routes for school buses or garbage trucks
- minimizing the movements of machines in automated manufacturing processes
- many others

Solving a TSP: Brute-Force Approach

- Perform an exhaustive search of all possible tours.
- We can represent the set of all possible tours as a tree.
- The leaf nodes correspond to possible solutions.
 - for n cities, there are (n – 1)! leaf nodes in the tree.
 - half are redundant (e.g., L-Cm-Ct-O-Y-L = L-Y-O-Ct-Cm-L)
- Problem: exhaustive search is intractable for all but small n.
 - example: when n = 14, ((n – 1)!) / 2 = over 3 billion
Solving a TSP: Informed Search

- Focus on the most promising paths through the tree of possible tours.
 - use a domain-specific function that estimates how good a given path is
- Much better than brute force, but it still uses exponential space and time.

Algorithm Analysis Revisited

- Recall that we can group algorithms into classes (n = problem size):

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>O(1)</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>$3 \log_{10} n$, $\log_2 n + 5$</td>
<td>O($\log n$)</td>
</tr>
<tr>
<td>linear time</td>
<td>$5n$, $10n - 2\log_2 n$</td>
<td>O(n)</td>
</tr>
<tr>
<td>n log n time</td>
<td>$4n \log_2 n$, $n \log_2 n + n$</td>
<td>O($n \log n$)</td>
</tr>
<tr>
<td>quadratic time</td>
<td>$2n^2 + 3n$, $n^2 - 1$</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>n^c ($c > 2$)</td>
<td>$n^3 - 5n$, $2n^5 + 5n^2$</td>
<td>O(n^5)</td>
</tr>
<tr>
<td>exponential time</td>
<td>2^n, $5e^n + 2n^2$</td>
<td>O(c^n)</td>
</tr>
<tr>
<td>factorial time</td>
<td>$(n - 1)!/2$, $3n!$</td>
<td>O($n!$)</td>
</tr>
</tbody>
</table>

- Algorithms that fall into one of the classes above the dotted line are referred to as polynomial-time algorithms.
- The term exponential-time algorithm is sometimes used to include all algorithms that fall below the dotted line.
 - algorithms whose running time grows as fast or faster than c^n
Classifying Problems

- Problems that can be solved using a polynomial-time algorithm are considered “easy” problems.
 - we can solve large problem instances in a reasonable amount of time

- Problems that don’t have a polynomial-time solution algorithm are considered “hard” or "intractable" problems.
 - they can only be solved exactly for small values of n

- Increasing the CPU speed doesn't help much for intractable problems:

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>CPU 1 (1000x faster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(n) alg:</td>
<td>N 1000N</td>
</tr>
<tr>
<td>O(n²) alg:</td>
<td>N 31.6 N</td>
</tr>
<tr>
<td>O(2^n) alg:</td>
<td>N N + 9.97</td>
</tr>
</tbody>
</table>

Dealing With Intractable Problems

- When faced with an intractable problem, we resort to techniques that quickly find solutions that are "good enough".

- Such techniques are often referred to as heuristic techniques.
 - heuristic = rule of thumb
 - there’s no guarantee these techniques will produce the optimal solution, but they typically work well
Take-Home Lessons

• Computer science is the science of solving problems using computers.

• Java is one programming language that we can use when solving problems computationally.

• The key concepts transcend Java:
 • flow of control
 • variables, data types, and expressions
 • conditional execution
 • procedural decomposition
 • definite and indefinite loops
 • recursion
 • console and file I/O
 • memory management (stack, heap, references)

Take-Home Lessons (cont.)

• Object-oriented programming allows us to capture the abstractions in the programs that we write.
 • creates reusable building blocks
 • key concepts: encapsulation, inheritance, polymorphism

• Abstract data types allow us to organize and manipulate collections of data.
 • a given ADT can be implemented in different ways
 • fundamental building blocks: arrays, linked nodes

• Efficiency matters when dealing with large collections of data.
 • some solutions can be much faster or more space efficient than others!
 • what’s the best data structure/algorithm for the specific instances of the problem that you expect to see?
 • example: sorting an almost sorted collection