Heaps and Priority Queues

Computer Science E-22
Harvard Extension School
David G. Sullivan, Ph.D.

Priority Queue

- A priority queue is a collection in which each item in the collection has an associated number known as a priority.
 - ("Henry Leitner", 10), ("Drew Faust", 15), ("Dave Sullivan", 5)
 - use a higher priority for items that are "more important"

- Example: scheduling a shared resource like the CPU
 - give some processes/applications a higher priority, so that they will be scheduled first and/or more often

- Key operations:
 - insert: add an item to the priority queue, positioning it according to its priority
 - remove: remove the item with the highest priority

- How can we efficiently implement a priority queue?
 - use a type of binary tree known as a heap
Complete Binary Trees

- A binary tree of height h is complete if:
 - levels 0 through $h - 1$ are fully occupied
 - there are no "gaps" to the left of a node in level h

- Complete:

- Not complete (\bigcirc = missing node):

Representing a Complete Binary Tree

- A complete binary tree has a simple array representation.

- The nodes of the tree are stored in the array in the order in which they would be visited by a level-order traversal (i.e., top to bottom, left to right).

- Examples:
Navigating a Complete Binary Tree in Array Form

- The root node is in a[0]
- Given the node in a[i]:
 - its left child is in a[2*i + 1]
 - its right child is in a[2*i + 2]
 - its parent is in a[(i – 1)/2]
 (using integer division)

Examples:
- the left child of the node in a[1] is in a[2*1 + 1] = a[3]
- the right child of the node in a[3] is in a[2*3 + 2] = a[8]
- the parent of the node in a[4] is in a[(4 – 1)/2] = a[1]
- the parent of the node in a[7] is in a[(7 – 1)/2] = a[3]

Heaps

- Heap: a complete binary tree in which each interior node is greater than or equal to its children
- Examples:

- The largest value is always at the root of the tree.
- The smallest value can be in any leaf node – there’s no guarantee about which one it will be.
- Strictly speaking, the heaps that we will use are max-at-top heaps. You can also define a min-at-top heap, in which every interior node is less than or equal to its children.
How to Compare Objects

• We need to be able to compare items in the heap.

• If those items are objects, we can't just do something like this:

  ```java
  if (item1 < item2)
  Why not?
  ```

• Instead, we need to use a method to compare them.

An Interface for Objects That Can Be Compared

• The `Comparable` interface is a built-in generic Java interface:

  ```java
  public interface Comparable<T> {
    public int compareTo(T other);
  }
  ```

• It is used when defining a class of objects that can be ordered.

• Examples from the built-in Java classes:

  ```java
  public class String implements Comparable<String> {
    ...
    public int compareTo(String other) {
      ...
    }
  }

  public class Integer implements Comparable<Integer> {
    ...
    public int compareTo(Integer other) {
      ...
    }
  }
  ```
An Interface for Objects That Can Be Compared (cont.)

```java
public interface Comparable<T> {
    public int compareTo(T other);
}
```

- `item1.compareTo(item2)` should return:
 - a negative integer if `item1` "comes before" `item2`
 - a positive integer if `item1" comes after" item2`
 - 0 if `item1` and `item2` are equivalent in the ordering

- These conventions make it easy to construct appropriate method calls:

<table>
<thead>
<tr>
<th>numeric comparison</th>
<th>comparison using compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>item1 < item2</td>
<td>item1.compareTo(item2) < 0</td>
</tr>
<tr>
<td>item1 > item2</td>
<td>item1.compareTo(item2) > 0</td>
</tr>
<tr>
<td>item1 == item2</td>
<td>item1.compareTo(item2) == 0</td>
</tr>
</tbody>
</table>

A Class for Items in a Priority Queue

```java
public class PQItem implements Comparable<PQItem> {
    // group an arbitrary object with a priority
    private Object data;
    private int priority;
    ...

    public int compareTo(PQItem other) {
        // error-checking goes here...
        return (priority - other.priority);
    }
}
```

- Its `compareTo()` compares PQItems based on their priorities.

- `item1.compareTo(item2)` returns:
 - a negative integer if `item1` has a lower priority than `item2`
 - a positive integer if `item1" has a higher priority than `item2`
 - 0 if they have the same priority
Heap Implementation

public class Heap<T extends Comparable<T>> {
 private T[] contents;
 private int numItems;
 public Heap(int maxSize) {
 contents = (T[])new Comparable[maxSize];
 numItems = 0;
 }
}

• Heap is another example of a generic collection class.
 • as usual, T is the type of the elements
 • extends Comparable<T> specifies T must implement Comparable<T>
 • must use Comparable (not Object) when creating the array

Heap Implementation (cont.)

public class Heap<T extends Comparable<T>> {
 private T[] contents;
 private int numItems;

 ...}

• The picture above is a heap of integers:
 Heap<Integer> myHeap = new Heap<Integer>(20);
 • works because Integer implements Comparable<Integer>
 • could also use String or Double

• For a priority queue, we can use objects of our PQItem class:
 Heap<PQItem> pqueue = new Heap<PQItem>(50);
Removing the Largest Item from a Heap

- Remove and return the item in the root node.
- In addition, we need to move the largest remaining item to the root, while maintaining a complete tree with each node \(\geq \) children.

Algorithm:
1. make a copy of the largest item
2. move the last item in the heap to the root
3. "sift down" the new root item until it is \(\geq \) its children (or it’s a leaf)
4. return the largest item

Sifting Down an Item

- To sift down item \(x \) (i.e., the item whose key is \(x \)):
 1. compare \(x \) with the larger of the item’s children, \(y \)
 2. if \(x < y \), swap \(x \) and \(y \) and repeat

Other examples:
- sift down the 10:
- sift down the 7:
siftDown() Method

private void siftDown(int i) {
 T toSift = contents[i];
 int parent = i;
 int child = 2 * parent + 1;
 while (child < numItems) {
 // If the right child is bigger, compare with it.
 if (child < numItems - 1 &&
 contents[child].compareTo(contents[child + 1]) < 0)
 child = child + 1;
 if (toSift.compareTo(contents[child]) >= 0)
 break; // we're done
 // Move child up and move down one level in the tree.
 contents[parent] = contents[child];
 parent = child;
 child = 2 * parent + 1;
 }
 contents[parent] = toSift;
}

• We don’t actually swap items. We wait until the end to put the sifted item in place.

remove() Method

public T remove() {
 T toRemove = contents[0];
 contents[0] = contents[numItems - 1];
 numItems--;
 siftDown(0);
 return toRemove;
}
Inserting an Item in a Heap

- Algorithm:
 1. put the item in the next available slot (grow array if needed)
 2. “sift up” the new item until it is <= its parent (or it becomes the root item)

- Example: insert 35

```
20
16 12
5 8
```

```
20
16 12
5 8 35
```

```
20
16 12
5 8 35
```

```
35
16 20
5 8 12
```

insert() Method

```java
public void insert(T item) {
    if (numItems == contents.length) {
        // code to grow the array goes here...
    }
    contents[numItems] = item;
    siftUp(numItems);
    numItems++;
}
```
Converting an Arbitrary Array to a Heap

• Algorithm to convert an array with n items to a heap:
 1. start with the parent of the last element:
 \[\text{contents}[i] \text{, where } i = \frac{(n - 1) - 1}{2} = \frac{n - 2}{2} \]
 2. sift down \text{contents}[i] and all elements to its left

• Example:
 0 1 2 3 4 5 6
 5 16 8 14 20 1 26

 Last element's parent = \text{contents}[(7 - 2)/2] = \text{contents}[2]. Sift it down:

Converting an Array to a Heap (cont.)

• Next, sift down \text{contents}[1]:

• Finally, sift down \text{contents}[0]:
Creating a Heap from an Array

```java
public class Heap<T extends Comparable<T>> {
  private T[] contents;
  private int numItems;
  ...
  public Heap(T[] arr) {
    // Note that we don't copy the array!
    contents = arr;
    numItems = arr.length;
    makeHeap();
  }
  private void makeHeap() {
    int last = contents.length - 1;
    int parentOfLast = (last - 1)/2;
    for (int i = parentOfLast; i >= 0; i--)
      siftDown(i);
  }
  ...
}
```

Time Complexity of a Heap

- A heap containing n items has a height <= log₂n.
- Thus, removal and insertion are both O(log n).
 - remove: go down at most log₂n levels when sifting down from the root, and do a constant number of operations per level
 - insert: go up at most log₂n levels when sifting up to the root, and do a constant number of operations per level
- This means we can use a heap for a O(log n)-time priority queue.
- Time complexity of creating a heap from an array?
Using a Heap to Sort an Array

• Recall selection sort: it repeatedly finds the smallest remaining element and swaps it into place:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>16</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

• It isn’t efficient \(O(n^2)\), because it performs a linear scan to find the smallest remaining element \(O(n)\) steps per scan.

• Heapsort is a sorting algorithm that repeatedly finds the largest remaining element and puts it in place.

• It is efficient \(O(n \log n)\), because it turns the array into a heap, which means that it can find and remove the largest remaining element in \(O(\log n)\) steps.

Heapsort

```java
public class HeapSort {
    public static <T extends Comparable<T>> void heapSort(T[] arr) {
        // Turn the array into a max-at-top heap.
        Heap<T> heap = new Heap<T>(arr);
        int endUnsorted = arr.length - 1;
        while (endUnsorted > 0) {
            // Get the largest remaining element and put it at the end of the unsorted portion of the array.
            T largestRemaining = heap.remove();
            arr[endUnsorted] = largestRemaining;
            arr[endUnsorted] = largestRemaining;
            endUnsorted--;
        }
    }
}
```

• We define a generic method, with a type variable in the method header. It goes right before the method’s return type.

• \(T\) is a placeholder for the type of the array.

 • can be any type \(T\) that implements Comparable<\(T\)>.
Heapsort Example

• Sort the following array: 13 6 45 10 3 22 5

• Here’s the corresponding complete tree:

```
  13
 /   \
 6    45
 / \
10 3 22 5
```

• Begin by converting it to a heap:

```
13
/   \
6    45
 / \
10 3 22 5
```

no change, because 45 >= its children

```
13
/   \
6    45
 / \
10 3 22 5
```

sift down 45

```
13
/   \
6    45
 / \
10 3 22 5
```

sift down 6

```
13
/   \
6    45
 / \
10 3 22 5
```

sift down 13

```
45
/   \
13    \
6 3 22 5
```

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

```
45
/   \
10    22
/ \
6 3 13 5
```

```
45 10 22 6 3 13 5
```

• Remove the largest item and put it in place:

```
45
/   \
10    22
/ \
6 3 13 5
```

remove() copies 45; moves 5 to root

```
5
/   \
10    22
/ \
6 3 13 5
```

remove() sifts down 5; returns 45

```
10
/   \
6 3 13 5
```

heapSort() puts 45 in place: decrements endUnsorted

```
22 10 13 6 3 5 45
```

endUnsorted: 6

largestRemaining: 45

```
22 10 13 6 3 5 45
```

endUnsorted: 5

```
Heapsort Example (cont.)

```plaintext
toRemove: 22
10 6 3 5
13

endUnsorted: 5
largestRemaining: 22

copy 22; move 5 to root
5

toRemove: 13
10 6 3 5
13 22 45

endUnsorted: 4
largestRemaining: 13

copy 13; move 3 to root
3

toRemove: 10
6 3 5 13 22 45

endUnsorted: 3
largestRemaining: 10

copy 10; move 3 to root
6 3 10 13 22 45

endUnsorted: 2
largestRemaining: 10

copy 6; move 5 to root
3 5

toRemove: 6
5 3 10 13 22 45

endUnsorted: 2
largestRemaining: 6
```
Heapsort Example (cont.)

How Does Heapsort Compare?

<table>
<thead>
<tr>
<th>algorithm</th>
<th>best case</th>
<th>avg case</th>
<th>worst case</th>
<th>extra memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection sort</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insertion sort</td>
<td>(O(n))</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Shell sort</td>
<td>(O(n \log n))</td>
<td>(O(n^{1.5}))</td>
<td>(O(n^{1.5}))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>bubble sort</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>quicksort</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>mergesort</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td><strong>heapsort</strong></td>
<td><strong>(O(n \log n))</strong></td>
<td><strong>(O(n \log n))</strong></td>
<td><strong>(O(n \log n))</strong></td>
<td><strong>(O(1))</strong></td>
</tr>
</tbody>
</table>

- Heapsort matches mergesort for the best worst-case time complexity, but it has better space complexity.
- Insertion sort is still best for arrays that are almost sorted.
  - heapsort will scramble an almost sorted array before sorting it
- Quicksort is still typically fastest in the average case.
State-Space Search Revisited

• Earlier, we considered three algorithms for state-space search:
  • breadth-first search (BFS)
  • depth-first search (DFS)
  • iterative-deepening search (IDS)
• These are all uninformed search algorithms.
  • always consider the states in a certain order
  • do not consider how close a given state is to the goal
• 8 Puzzle example:

```
3 1 2
4 5 6
7 8 6
```

- initial state
- one step away from the goal, but the uninformed algorithms won’t necessarily consider it next

Informed State-Space Search

• Informed search algorithms attempt to consider more promising states first.
• These algorithms associate a priority with each successor state that is generated.
  • base priority on an estimate of nearness to a goal state
  • when choosing the next state to consider, select the one with the highest priority
• Use a priority queue to store the yet-to-be-considered search nodes.
State-Space Search: Estimating the Remaining Cost

- The priority of a state is based on the *remaining cost* – i.e., the cost of getting from the state to the closest goal state.
  - for the 8 puzzle, remaining cost = # of steps to closest goal

- For most problems, we can’t determine the exact remaining cost.
  - if we could, we wouldn’t need to search!

- Instead, we estimate the remaining cost using a *heuristic function* \( h(x) \) that takes a state \( x \) and computes a cost estimate for it.
  - heuristic = rule of thumb

- To find optimal solutions, we need an *admissible* heuristic – one that never overestimates the remaining cost.

Heuristic Function for the Eight Puzzle

- Manhattan distance = horizontal distance + vertical distance
  - example: For the board at right, the Manhattan distance of the 3 tile from its position in the goal state = 1 column + 1 row = 2

- Use \( h(x) = \text{sum of the Manhattan distances of the tiles in } x \) from their positions in the goal state
  - for our example:

- This heuristic is admissible because each of the operators (move blank up, move blank down, etc.) moves a single tile a distance of 1, so it will take at least \( h(x) \) steps to reach the goal.
Greedy Search

- Priority of state $x$, $p(x) = -1 \times h(x)$
  - mult. by $-1$ so states closer to the goal have higher priorities

- Greedy search would consider the highlighted successor before the other successors, because it has the highest priority.

- Greedy search is:
  - incomplete: it may not find a solution
    - it could end up going down an infinite path
  - not optimal: the solution it finds may not have the lowest cost
    - it fails to consider the cost of getting to the current state

A* Search

- Priority of state $x$, $p(x) = -1 \times (h(x) + g(x))$
  where $g(x)$ = the cost of getting from the initial state to $x$

- Incorporating $g(x)$ allows A* to find an optimal solution – one with the minimal total cost.
Characteristics of A*

- It is complete and optimal.
  - provided that \( h(x) \) is admissible, and that \( g(x) \) increases or stays the same as the depth increases
- Time and space complexity are still typically exponential in the solution depth, \( d \) – i.e., the complexity is \( O(b^d) \) for some value \( b \).
- However, A* typically visits far fewer states than other optimal state-space search algorithms.

<table>
<thead>
<tr>
<th>solution depth</th>
<th>iterative deepening</th>
<th>A* w/ Manhattan dist. heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>112</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>did not complete</td>
<td>211</td>
</tr>
<tr>
<td>20</td>
<td>did not complete</td>
<td>676</td>
</tr>
</tbody>
</table>

- Memory usage can be a problem, but it’s possible to address it.

Implementing Informed Search

- Add new subclasses of the abstract Searcher class.
- For example:

```java
public class GreedySearcher extends Searcher {
 private Heap<PQItem> nodePQueue;

 public void addNode(SearchNode node) {
 nodePQueue.insert(new PQItem(node, -1 * node.getCostToGoal()));
 }
 ...
```