Motivation: Implementing a Dictionary

- A data dictionary is a collection of data with two main operations:
 - search for an item (and possibly delete it)
 - insert a new item

- If we use a sorted list to implement it, efficiency = $O(n)$.

<table>
<thead>
<tr>
<th>data structure</th>
<th>searching for an item</th>
<th>inserting an item</th>
</tr>
</thead>
<tbody>
<tr>
<td>a list implemented using an array</td>
<td>$O(\log n)$ using binary search</td>
<td></td>
</tr>
<tr>
<td>a list implemented using a linked list</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In the next few lectures, we'll look at how we can use a tree for a data dictionary, and we'll try to get better efficiency.
- We'll also look at other applications of trees.
What Is a Tree?

A tree consists of:
- a set of nodes
- a set of edges, each of which connects a pair of nodes

Each node may have one or more data items.
- each data item consists of one or more fields
- key field = the field used when searching for a data item
- multiple data items with the same key are referred to as duplicates

The node at the “top” of the tree is called the root of the tree.

Relationships Between Nodes

- If a node N is connected to other nodes that are directly below it in the tree, N is referred to as their parent and they are referred to as its children.
 - example: node 5 is the parent of nodes 10, 11, and 12
- Each node is the child of at most one parent.
- Other family-related terms are also used:
 - nodes with the same parent are siblings
 - a node’s ancestors are its parent, its parent’s parent, etc.
 - example: node 9’s ancestors are 3 and 1
 - a node’s descendants are its children, their children, etc.
 - example: node 1’s descendants are all of the other nodes
Types of Nodes

- A leaf node is a node without children.
- An interior node is a node with one or more children.

A Tree is a Recursive Data Structure

- Each node in the tree is the root of a smaller tree!
 - refer to such trees as subtrees to distinguish them from the tree as a whole
 - example: node 2 is the root of the subtree circled above
 - example: node 6 is the root of a subtree with only one node
- We’ll see that tree algorithms often lend themselves to recursive implementations.
Path, Depth, Level, and Height

- There is exactly one path (one sequence of edges) connecting each node to the root.
- Depth of a node = # of edges on the path from it to the root.
- Nodes with the same depth form a level of the tree.
- The height of a tree is the maximum depth of its nodes.
 - example: the tree above has a height of 2

Binary Trees

- In a binary tree, nodes have at most two children.
 - distinguish between them using the direction left or right
- Example:

 26
 /
 12 32
 / /
 4 18 38
 / / /
7 4’s right child 26’s right subtree 4’s right child

 26’s left subtree

- Recursive definition: a binary tree is either:
 1) empty, or
 2) a node (the root of the tree) that has:
 - one or more pieces of data (the key, and possibly others)
 - a left subtree, which is itself a binary tree
 - a right subtree, which is itself a binary tree
Which of the following is/are not true?

A. This tree has a height of 4.
B. There are 3 leaf nodes.
C. The 38 node is the right child of the 32 node.
D. The 12 node has 3 children.
E. more than one of the above are not true (which ones?)

Representing a Binary Tree Using Linked Nodes

```java
public class LinkedTree {
    private class Node {
        private int key;      // limit ourselves to int keys
        private LLList data;  // list of data for that key
        private Node left; // reference to left child
        private Node right; // reference to right child
    }

    private Node root;
}
```
Representing a Binary Tree Using Linked Nodes

```java
class LinkedTree {
    class Node {
        int key;
        LLList data;
        Node left;
        Node right;
    }

    private Node root;
}
```

Traversing a Binary Tree

- Traversing a tree involves visiting all of the nodes in the tree.
 - visiting a node = processing its data in some way
 - example: print the key
 - We will look at four types of traversals. Each of them visits the nodes in a different order.
 - To understand traversals, it helps to remember that every node is the root of a subtree.
1: Preorder Traversal

- preorder traversal of the tree whose root is N:
 1) visit the root, N
 2) recursively perform a preorder traversal of N's left subtree
 3) recursively perform a preorder traversal of N's right subtree

- preorder because a node is visited before its subtrees
- The root of the tree as a whole is visited first.

```
import java.util.List;

public class LinkedTree {
    private Node root;

    public void preorderPrint() {
        if (root != null) {  // Not always the same as the root of the entire tree.
            preorderPrintTree(root);
        }
        System.out.println();
    }

    private static void preorderPrintTree(Node root) {
        System.out.print(root.key + " ");
        if (root.left != null) {
            preorderPrintTree(root.left);
        }
        if (root.right != null) {
            preorderPrintTree(root.right);
        }
    }
}
```

- `preorderPrint()` is a non-static "wrapper" method that makes the initial call. It passes in the root of the entire tree.
- `preorderPrintTree()` is a static, recursive method that takes the root of the tree/subtree that you want to print.
Tracing Preorder Traversal

```java
void preorderPrintTree(Node root) {
    System.out.print(root.key + " ");
    if (root.left != null) {
        preorderPrintTree(root.left);
    }
    if (root.right != null) {
        preorderPrintTree(root.right);
    }
}
```

Using Recursion for Traversals

```java
void preorderPrintTree(Node root) {
    System.out.print(root.key + " ");
    if (root.left != null) {
        preorderPrintTree(root.left);
    }
    if (root.right != null) {
        preorderPrintTree(root.right);
    }
}
```

- Using recursion allows us to easily go back up the tree.
- Using a loop would be harder. Why?
2: Postorder Traversal

- postorder traversal of the tree whose root is N:
 1) recursively perform a postorder traversal of N’s left subtree
 2) recursively perform a postorder traversal of N’s right subtree
 3) visit the root, N

- postorder because a node is visited after its subtrees
- The root of the tree as a whole is visited last.

Implementing Postorder Traversal

```java
public class LinkedTree {
    private Node root;
    public void postorderPrint() {
        if (root != null) {
            postorderPrintTree(root);
        }
        System.out.println();
    }
    private static void postorderPrintTree(Node root) {
        if (root.left != null) {
            postorderPrintTree(root.left);
        }
        if (root.right != null) {
            postorderPrintTree(root.right);
        }
        System.out.print(root.key + " ");
    }
}
```

- Note that the root is printed after the two recursive calls.
void postorderPrintTree(Node root) {
 if (root.left != null) {
 postorderPrintTree(root.left);
 }
 if (root.right != null) {
 postorderPrintTree(root.right);
 }
 System.out.print(root.key + " ");
}

Tracing Postorder Traversal

3: Inorder Traversal

- inorder traversal of the tree whose root is N:
 1) recursively perform an inorder traversal of N's left subtree
 2) visit the root, N
 3) recursively perform an inorder traversal of N's right subtree

- The root of the tree as a whole is visited between its subtrees.
- We'll see later why this is called inorder traversal!
Implementing Inorder Traversal

```java
public class LinkedTree {
    private Node root;

    public void inorderPrint() {
        if (root != null) {
            inorderPrintTree(root);
        }
        System.out.println();
    }

    private static void inorderPrintTree(Node root) {
        if (root.left != null) {
            inorderPrintTree(root.left);
        }
        System.out.print(root.key + " ");
        if (root.right != null) {
            inorderPrintTree(root.right);
        }
    }
}
```

- Note that the root is printed *between* the two recursive calls.

Tracing Inorder Traversal

```java
void inorderPrintTree(Node root) {
    if (root.left != null) {
        inorderPrintTree(root.left);
    }
    System.out.print(root.key + " ");
    if (root.right != null) {
        inorderPrintTree(root.right);
    }
}
```

order in which nodes are visited:
Level-Order Traversal

- Visit the nodes one level at a time, from top to bottom and left to right.

 Level-order traversal of the tree above: 7 9 5 8 6 2 4

- We can implement this type of traversal using a queue.

Tree-Traversal Summary

- preorder: root, left subtree, right subtree
- postorder: left subtree, right subtree, root
- inorder: left subtree, root, right subtree
- level-order: top to bottom, left to right

- Perform each type of traversal on the tree below:
Tree Traversal Puzzle

- preorder traversal: A M P K L D H T
- inorder traversal: P M L K A H T D
- Draw the tree!
- What’s one fact that we can easily determine from one of the traversals?

Using a Binary Tree for an Algebraic Expression

- We’ll restrict ourselves to fully parenthesized expressions and to the following binary operators: +, −, *, /
- Example expression: ((a + (b * c)) − (d / e))
- Tree representation:

```
  --
 /|
/ | /
/   /|
/  / | /
/ /  / | /
/ /  /  / | /
/ /  /  /  / | /
/ /  /  /  /  / | /
```
- Leaf nodes are variables or constants; interior nodes are operators.
- Because the operators are binary, either a node has two children or it has none.
Traversing an Algebraic-Expression Tree

- Inorder gives conventional algebraic notation.
 - print '(' before the recursive call on the left subtree
 - print ')' after the recursive call on the right subtree
 - for tree at right: \((a + (b \ast c)) - (d / e)\)

- Preorder gives functional notation.
 - print '(s and ')s as for inorder, and commas after the recursive call on the left subtree
 - for tree above: \(\text{subtr}(\text{add}(a, \text{mult}(b, c)), \text{divide}(d, e))\)

- Postorder gives the order in which the computation must be carried out on a stack/RPN calculator.
 - for tree above: push a, push b, push c, multiply, add,…

Fixed-Length Character Encodings

- A character encoding maps each character to a number.

- Computers usually use fixed-length character encodings.
 - ASCII - 8 bits per character
 - example: "bat" is stored in a text file as the following sequence of bits: 01100010 01100001 01110100

<table>
<thead>
<tr>
<th>char</th>
<th>Dec</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>97</td>
<td>01100001</td>
</tr>
<tr>
<td>'b'</td>
<td>98</td>
<td>01100010</td>
</tr>
<tr>
<td>'c'</td>
<td>99</td>
<td>01100011</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>'t'</td>
<td>116</td>
<td>01110100</td>
</tr>
</tbody>
</table>

- Unicode - 16 bits per character
 - (allows for foreign-language characters; ASCII is a subset)

- Fixed-length encodings are simple, because:
 - all encodings have the same length
 - a given character always has the same encoding
A Problem with Fixed-Length Encodings

• They tend to waste space.

• Example: an English newspaper article with only:
 • upper and lower-case letters (52 characters)
 • spaces and newlines (2 characters)
 • common punctuation (approx. 10 characters)
 • total of 64 unique characters \(\Rightarrow\) only need ___ bits

• We could gain even more space if we:
 • gave the most common letters shorter encodings (3 or 4 bits)
 • gave less frequent letters longer encodings (> 6 bits)

Variable-Length Character Encodings

• Variable-length encodings:
 • use encodings of different lengths for different characters
 • assign shorter encodings to frequently occurring characters

• Example: if we had only four characters

<table>
<thead>
<tr>
<th>01</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>o</td>
</tr>
<tr>
<td>111</td>
<td>s</td>
</tr>
<tr>
<td>00</td>
<td>t</td>
</tr>
</tbody>
</table>

"test" would be encoded as 00 01 111 00 \(\Rightarrow\) 000111100

• Challenge: when decoding/decompressing an encoded document, how do we determine the boundaries between characters?
 • example: for the above encoding, how do we know whether the next character is 2 bits or 3 bits?
 • One requirement: no character's encoding can be the prefix of another character's encoding (e.g., couldn't have 00 and 001).
Huffman Encoding

- A type of variable-length encoding that is based on the actual character frequencies in a given document.

- Huffman encoding uses a binary tree:
 - to determine the encoding of each character
 - to decode an encoded file – i.e., to decompress a compressed file, putting it back into ASCII

- Example of a Huffman tree (for a text with only six chars):

```
Leaf nodes are characters.
Left branches are labeled with a 0, and right branches are labeled with a 1.
If you follow a path from root to leaf, you get the encoding of the character in the leaf example: 101 = 'i'
```

Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes containing (character, frequency) pairs for each character in the text – sorted by frequency.

```
<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'i'</td>
<td>23</td>
</tr>
<tr>
<td>'a'</td>
<td>25</td>
</tr>
<tr>
<td>'s'</td>
<td>26</td>
</tr>
<tr>
<td>'t'</td>
<td>27</td>
</tr>
<tr>
<td>'e'</td>
<td>40</td>
</tr>
</tbody>
</table>
```

```
means null
```

3) Remove and "merge" the nodes with the two lowest frequencies, forming a new node that is their parent.

- left child = lowest frequency node
- right child = the other node
- frequency of parent = sum of the frequencies of its children
- in this case, 11 + 23 = 34
Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

![Diagram of a Huffman tree]

5) Repeat steps 3 and 4 until there is only a single node in the list, which will be the root of the Huffman tree.

Completing the Huffman Tree Example I

- Merge the two remaining nodes with the lowest frequencies:

![Diagram of a Huffman tree with merged nodes]
Completing the Huffman Tree Example II

- Merge the next two nodes:

```
  't'  27
   /   
  'e'  34
   /   
  'o'  11
   /   
  's'  23
```

```
  'e'  40
   /   
  'a'  25
```

```
  'e'  51
   /   
  's'  26
```

```
  'e'  61
```

- Merge again:

```
  't'  27
     /   
  'o'  11
     /   
  's'  23
```

```
  'e'  40
   /   
  'a'  25
```

```
  'e'  51
   /   
  's'  26
```

```
  'e'  61
```

```
  'o'  34
     /   
  's'  26
```

```
  'o'  34
     /   
  's'  26
```

```
  'e'  91
     /   
  'o'  34
     /   
  's'  26
```
Completing the Huffman Tree Example IV

• The next merge creates the final tree:

![Huffman Tree Diagram]

• Characters that appear more frequently end up higher in the tree, and thus their encodings are shorter.

The Shape of the Huffman Tree

• The tree on the last slide is fairly symmetric.

• This won’t always be the case!
 • depends on the frequencies of the characters in the document being compressed

• For example, changing the frequency of ‘o’ from 11 to 21 would produce the tree shown below:

![Alternative Huffman Tree Diagram]

• This is the tree that we’ll use in the remaining slides.
Huffman Encoding: Compressing a File

1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.
 - include an array containing the frequencies so that the tree can be rebuilt when the file is decompressed.

3) Traverse the Huffman tree to create a table containing the encoding of each character:

4) Read through the input file a second time, and write the Huffman code for each character to the output file.

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:
 - when you read a bit of 1, go to the right child
 - when you read a bit of 0, go to the left child
 - when you reach a leaf node, record the character, return to the root, and continue reading bits

 The tree allows us to easily overcome the challenge of determining the character boundaries!

 example: 10111111000111100
 first character = i
What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
 - when you read a bit of 1, go to the right child
 - when you read a bit of 0, go to the left child
 - when you reach a leaf node, record the character,
 return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of determining the character boundaries!

Example: 101111110000111100
first character = i (101)
Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
 - when you read a bit of 1, go to the right child
 - when you read a bit of 0, go to the left child
 - when you reach a leaf node, record the character,
 return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of determining the character boundaries!

Example: 1011111100001111

00 = left,left = t
01 = left,right = e
111 = right,right,right = s
110 = right,right,left = a
00 = left,left = t
101 = right,left,right = i
111 = right,right,right = s
00 = left,left = t

Diagram of the Huffman tree:

- Root node (1)
- Left child (0)
- Right child (1)
- Leaf nodes:
 - t
 - e
 - i
 - a
 - s