Sorting an Array of Integers

- Ground rules:
 - sort the values in increasing order
 - sort “in place,” using only a small amount of additional storage
- Terminology:
 - position: one of the memory locations in the array
 - element: one of the data items stored in the array
 - element i: the element at position i
- Goal: minimize the number of comparisons C and the number of moves M needed to sort the array.
 - move = copying an element from one position to another

Example: $\text{arr}[3] = \text{arr}[5]$;
Defining a Class for our Sort Methods

public class Sort {
 public static void bubbleSort(int[] arr) {
 ...
 }
 public static void insertionSort(int[] arr) {
 ...
 }
}

• Our Sort class is simply a collection of methods like Java's built-in Math class.
• Because we never create Sort objects, all of the methods in the class must be static.
 • outside the class, we invoke them using the class name:
 e.g., Sort.bubbleSort(arr)

Defining a Swap Method

• It would be helpful to have a method that swaps two elements of the array.
• Why won’t the following work?
 public static void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
 }
An Incorrect Swap Method

```java
public static void swap(int a, int b) {
    int temp = a;
    a = b;
    b = temp;
}
```

- Trace through the following lines to see the problem:

```java
int[] arr = {15, 7, ...};
swap(arr[0], arr[1]);
```

A Correct Swap Method

```java
public static void swap(int[] arr, int a, int b) {
    int temp = arr[a];
    arr[a] = arr[b];
    arr[b] = temp;
}
```

- This method works:

```java
int[] arr = {15, 7, ...};
swap(arr, 0, 1);
```

- Trace through the following with a memory diagram to convince yourself that it works:

```java
int[] arr = {15, 7, ...};
swap(arr[0], arr[1]);
```
Selection Sort

- Basic idea:
 - consider the positions in the array from left to right
 - for each position, find the element that belongs there and put it in place by swapping it with the element that’s currently there

- Example:

```
15 6 2 12 4
0 1 2 3 4

2 6 15 12 4
0 1 2 3 4

2 4 15 12 6
0 1 2 3 4

6

Why don’t we need to consider position 4?
```

Selecting an Element

- When we consider position i, the elements in positions 0 through i – 1 are already in their final positions.

```
example for i = 3:

2 4 7 21 25 10 17
```

- To select an element for position i:
 - consider elements i, i+1, i+2, ..., arr.length – 1, and keep track of indexMin, the index of the smallest element seen thus far
 - when we finish this pass, indexMin is the index of the element that belongs in position i.
 - swap arr[i] and arr[indexMin]:
Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:
  ```java
  private static int indexSmallest(int[] arr, 
      int lower, int upper) {
    int indexMin = lower;
    for (int i = lower+1; i <= upper; i++)
      if (arr[i] < arr[indexMin])
        indexMin = i;
    return indexMin;
  }
  ```

• The actual sort method is very simple:
  ```java
  public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length-1; i++) {
      int j = indexSmallest(arr, i, arr.length-1);
      swap(arr, i, j);
    }
  }
  ```

Time Analysis

• Some algorithms are much more efficient than others.

• The time efficiency or time complexity of an algorithm is some measure of the number of “operations” that it performs.
 • for sorting algorithms, we’ll focus on two types of operations: comparisons and moves

• The number of operations that an algorithm performs typically depends on the size, n, of its input.
 • for sorting algorithms, n is the # of elements in the array
 • $C(n) =$ number of comparisons
 • $M(n) =$ number of moves

• To express the time complexity of an algorithm, we’ll express the number of operations performed as a function of n.
 • examples: $C(n) = n^2 + 3n$
 $M(n) = 2n^2 - 1$
Counting Comparisons by Selection Sort

```java
private static int indexSmallest(int[] arr, int lower, int upper){
    int indexMin = lower;
    for (int i = lower+1; i <= upper; i++)
        if (arr[i] < arr[indexMin])
            indexMin = i;
    return indexMin;
}

global static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length-1; i++) {
        int j = indexSmallest(arr, i, arr.length-1);
        swap(arr, i, j);
    }
}
```

- To sort \(n\) elements, selection sort performs \(n - 1\) passes:
 - on 1st pass, it performs \(n - 1\) comparisons to find \(\text{indexSmallest}\)
 - on 2nd pass, it performs \(n - 2\) comparisons...
 - on the \((n-1)\)st pass, it performs 1 comparison

- Adding up the comparisons for each pass, we get:
 \[
 C(n) = 1 + 2 + \ldots + (n - 2) + (n - 1)
 \]

Counting Comparisons by Selection Sort (cont.)

- The resulting formula for \(C(n)\) is the sum of an arithmetic sequence:
 \[
 C(n) = 1 + 2 + \ldots + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i
 \]

- Formula for the sum of this type of arithmetic sequence:
 \[
 \sum_{i=1}^{m} i = \frac{m(m + 1)}{2}
 \]

- Thus, we can simplify our expression for \(C(n)\) as follows:
 \[
 C(n) = \frac{(n - 1)(n - 1 + 1)}{2}
 \]
 \[
 = \frac{(n - 1)n}{2}
 \]
 \[
 C(n) = \frac{n^2}{2} - \frac{n}{2}
 \]
Focusing on the Largest Term

- When \(n \) is large, mathematical expressions of \(n \) are dominated by their “largest” term — i.e., the term that grows fastest as a function of \(n \).

- example: \[
\begin{array}{c|cccc}
\text{ } & n^2/2 & n/2 & n^2/2 - n/2 \\
10 & 50 & 5 & 45 \\
100 & 5000 & 50 & 4950 \\
10000 & 50,000,000 & 5000 & 49,995,000 \\
\end{array}
\]

- In characterizing the time complexity of an algorithm, we’ll focus on the largest term in its operation-count expression.
 - for selection sort, \(C(n) = \frac{n^2}{2} - \frac{n}{2} \approx \frac{n^2}{2} \)

- In addition, we’ll typically ignore the coefficient of the largest term (e.g., \(n^2/2 \to n^2 \)).

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that \(C(n) = \frac{n^2}{2} - \frac{n}{2} \) is \(O(n^2) \)

- Common classes of algorithms:

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>(O(1))</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>(3\log_{10}n, \log_2 n + 5)</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>linear time</td>
<td>(5n, 10n - 2\log_2 n)</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(n\log n)</td>
<td>(4n\log_2 n, n\log_2 n + n)</td>
<td>(O(n\log n))</td>
</tr>
<tr>
<td>quadratic time</td>
<td>(2n^2 + 3n, n^2 - 1)</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>exponential time</td>
<td>(2^n, 5e^n + 2n^2)</td>
<td>(O(c^n))</td>
</tr>
</tbody>
</table>

- For large inputs, efficiency matters more than CPU speed.
 - e.g., an \(O(\log n) \) algorithm on a slow machine will outperform an \(O(n) \) algorithm on a fast machine.
Ordering of Functions

- We can see below that:
 - n^2 grows faster than $n \log_2 n$
 - $n \log_2 n$ grows faster than n
 - n grows faster than $\log_2 n$

Ordering of Functions (cont.)

- Zooming in, we see that:
 - $n^2 \geq n$ for all $n \geq 1$
 - $n \log_2 n \geq n$ for all $n \geq 2$
 - $n > \log_2 n$ for all $n \geq 1$
Mathematical Definition of Big-O Notation

- \(f(n) = O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \).
- Example: \(f(n) = n^2/2 - n/2 \) is \(O(n^2) \), because \(n^2/2 - n/2 \leq n^2 \) for all \(n \geq 0 \).

Big-O notation specifies an upper bound on a function \(f(n) \) as \(n \) grows large.

Big-O Notation and Tight Bounds

- Big-O notation provides an upper bound, *not* a tight bound (upper and lower).
- Example:
 - \(3n - 3 \) is \(O(n^2) \) because \(3n - 3 \leq n^2 \) for all \(n \geq 1 \)
 - \(3n - 3 \) is also \(O(2^n) \) because \(3n - 3 \leq 2^n \) for all \(n \geq 1 \)

- However, we generally try to use big-O notation to characterize a function as closely as possible – i.e., as if we were using it to specify a tight bound.
 - for our example, we would say that \(3n - 3 \) is \(O(n) \)
Big-Theta Notation

- In theoretical computer science, *big-theta* notation (Θ) is used to specify a tight bound.

- \(f(n) = \Theta(g(n)) \) if there exist constants \(c_1, c_2, \) and \(n_0 \) such that
 \[
 c_1 g(n) \leq f(n) \leq c_2 g(n) \quad \text{for all } n > n_0
 \]

- Example: \(f(n) = \frac{n^2}{2} - \frac{n}{2} \) is \(\Theta(n^2) \), because
 \[
 \left(\frac{1}{4}\right)n^2 \leq \frac{n^2}{2} - \frac{n}{2} \leq n^2 \quad \text{for all } n \geq 2
 \]

- \(c_1 = \frac{1}{4} \)
- \(c_2 = 1 \)
- \(n_0 = 2 \)

Big-O Time Analysis of Selection Sort

- **Comparisons:** we showed that \(c(n) = \frac{n^2}{2} - \frac{n}{2} \)
 - selection sort performs \(O(n^2) \) comparisons

- **Moves:** after each of the \(n-1 \) passes to find the smallest remaining element, the algorithm performs a swap to put the element in place.
 - \(n-1 \) swaps, 3 moves per swap
 - \(M(n) = 3(n-1) = 3n-3 \)
 - selection sort performs \(O(n) \) moves.

- **Running time (i.e., total operations):**?
Sorting by Insertion I: Insertion Sort

• Basic idea:
 • going from left to right, “insert” each element into its proper place with respect to the elements to its left, “sliding over” other elements to make room.

• Example:

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>12</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
```

Comparing Selection and Insertion Strategies

• In selection sort, we start with the positions in the array and select the correct elements to fill them.

• In insertion sort, we start with the elements and determine where to insert them in the array.

• Here’s an example that illustrates the difference:

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>25</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>
```

• Sorting by selection:
 • consider position 0: find the element (2) that belongs there
 • consider position 1: find the element (9) that belongs there
 • ...

• Sorting by insertion:
 • consider the 12: determine where to insert it
 • consider the 15: determine where to insert it
 • ...
Inserting an Element

• When we consider element i, elements 0 through $i - 1$ are already sorted with respect to each other.

 example for $i = 3$: 0 1 2 3 4 6 14 19 9 ...

• To insert element i:
 • make a copy of element i, storing it in the variable toInsert:

 $\begin{array}{c|c|c|c|c}
 \text{toInsert} & 6 & 14 & 19 & 9 \\
 \end{array}$

 • consider elements $i - 1$, $i - 2$, ...
 • if an element $> \text{toInsert}$, slide it over to the right
 • stop at the first element $\leq \text{toInsert}$

 $\begin{array}{c|c|c|c|c}
 \text{toInsert} & 9 & 6 & 14 & 19 \\
 \end{array}$

• copy toInsert into the resulting “hole”:

 $\begin{array}{c|c|c|c|c}
 & 6 & 9 & 14 & 19 \\
 \end{array}$

Insertion Sort Example (done together)

description of steps

 \begin{array}{c|c|c|c|c|c|c}
 12 & 5 & 2 & 13 & 18 & 4 \\
 \end{array}
Implementation of Insertion Sort

```java
public class Sort {
    ...
    public static void insertionSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] < arr[i-1]) {
                int toInsert = arr[i];
                int j = i;
                do {
                    arr[j] = arr[j-1];
                    j = j - 1;
                } while (j > 0  &&  toInsert < arr[j-1]);
                arr[j] = toInsert;
            }
        }
    }
}
```

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- **best case:**
 - \[\mathcal{C}(n) = n - 1 = \mathcal{O}(n) \]
 - \[\mathcal{M}(n) = 0, \] running time = \[\mathcal{O}(n) \]
- **worst case:**
 - \[\mathcal{C}(n) = 1 + 2 + \ldots + (n - 1) = \mathcal{O}(n^2) \]
 as seen in selection sort
 - \[\mathcal{M}(n) = \mathcal{O}(n^2), \] running time = \[\mathcal{O}(n^2) \]
- **average case:**
Sorting by Insertion II: Shell Sort

- Developed by Donald Shell in 1959
- Improves on insertion sort
- Takes advantage of the fact that insertion sort is fast when an array is almost sorted.
- Seeks to eliminate a disadvantage of insertion sort: if an element is far from its final location, many “small” moves are required to put it where it belongs.
- Example: if the largest element starts out at the beginning of the array, it moves one place to the right on every insertion!

```
999 42 56 30 18 23 ...
0 1 2 3 4 5 ...
```

- Shell sort uses “larger” moves that allow elements to quickly get close to where they belong.

Sorting Subarrays

- Basic idea:
 - use insertion sort on subarrays that contain elements separated by some increment
 - increments allow the data items to make larger “jumps”
 - repeat using a decreasing sequence of increments
- Example for an initial increment of 3:

```
36 18 10 27 3 20 9 8
```

- three subarrays:
 1) elements 0, 3, 6 2) elements 1, 4, 7 3) elements 2 and 5
- Sort the subarrays using insertion sort to get the following:

```
9 3 10 27 8 20 36 18
```

- Next, we complete the process using an increment of 1.
Shell Sort: A Single Pass

- We don't consider the subarrays one at a time.
- We consider elements \texttt{arr[incr]} through \texttt{arr[arr.length-1]}, inserting each element into its proper place with respect to the elements \textit{from its subarray} that are to the left of the element.

The same example (\texttt{incr = 3}):

\begin{center}
\begin{tabular}{cccccccc}
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>18</td>
<td>10</td>
<td>27</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>10</td>
<td>36</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>18</td>
<td>20</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>8</td>
<td>20</td>
<td>36</td>
<td>18</td>
</tr>
</tbody>
</table>
\end{tabular}
\end{center}

- When we consider element \texttt{i}, the other elements in its subarray are already sorted with respect to each other.

\textbf{Inserting an Element in a Subarray}

- To insert element \texttt{i}:
 - make a copy of element \texttt{i}, storing it in the variable \texttt{toInsert}:
 \begin{center}
 \begin{tabular}{cccccccc}
9	27	3	10	36	18	20	9
27	3	10	36	18	20	9	8
27	3	10	27	18	20	36	8
 \end{tabular}
 \end{center}
 - \textbf{consider elements} \texttt{i-incr}, \texttt{i-(2*incr)}, \texttt{i-(3*incr)}, ...
 \- if an element > \texttt{toInsert}, slide it right \textit{within the subarray}
 \- stop at the first element <= \texttt{toInsert}
 \begin{center}
 \begin{tabular}{cccccccc}
9	3	10	27	18	20	36	8
 \end{tabular}
 \end{center}
 - \textbf{copy} \texttt{toInsert} into the “hole”:
 \begin{center}
 \begin{tabular}{cccccccc}
9	3	10	27	18	20	36	8
 \end{tabular}
 \end{center}
The Sequence of Increments

- Different sequences of decreasing increments can be used.
- Our version uses values that are one less than a power of two.
 - \(2^k - 1\) for some \(k\)
 - ... 63, 31, 15, 7, 3, 1
- can get to the next lower increment using integer division:
 \[\text{incr} = \text{incr}/2;\]
- Should avoid numbers that are multiples of each other.
 - otherwise, elements that are sorted with respect to each other in one pass are grouped together again in subsequent passes
 - repeat comparisons unnecessarily
 - get fewer of the large jumps that speed up later passes
- example of a bad sequence: 64, 32, 16, 8, 4, 2, 1
 - what happens if the largest values are all in odd positions?

Implementation of Shell Sort

```java
public static void shellSort(int[] arr) {
    int incr = 1;
    while (2 * incr <= arr.length)
        incr = 2 * incr;
    incr = incr - 1;
    while (incr >= 1) {
        for (int i = incr; i < arr.length; i++) {
            if (arr[i] < arr[i-incr]) {
                int toInsert = arr[i];
                int j = i;
                do {
                    arr[j] = arr[j-incr];
                    j = j - incr;
                } while (j > incr-1 &&
                        toInsert < arr[j-incr]);
                arr[j] = toInsert;
            }
        }
        incr = incr/2;
    }
}(If you replace \text{incr} with 1 in the for-loop, you get the code for insertion sort.)
```
Time Analysis of Shell Sort

- Difficult to analyze precisely
 - typically use experiments to measure its efficiency
- With a bad interval sequence, it's $O(n^2)$ in the worst case.
- With a good interval sequence, it's better than $O(n^2)$.
 - at least $O(n^{1.5})$ in the average and worst case
 - some experiments have shown average-case running times of $O(n^{1.25})$ or even $O(n^{7/6})$
- Significantly better than insertion or selection for large n:

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>$n^{1.5}$</th>
<th>$n^{1.25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>31.6</td>
<td>17.8</td>
</tr>
<tr>
<td>100</td>
<td>10,000</td>
<td>1000</td>
<td>316</td>
</tr>
<tr>
<td>10,000</td>
<td>100,000,000</td>
<td>1,000,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10^6</td>
<td>10^{12}</td>
<td>10^9</td>
<td>3.16×10^7</td>
</tr>
</tbody>
</table>

- We’ve wrapped insertion sort in another loop and increased its efficiency! The key is in the larger jumps that Shell sort allows.

Sorting by Exchange I: Bubble Sort

- Perform a sequence of passes through the array.
- On each pass: proceed from left to right, swapping adjacent elements if they are out of order.
- Larger elements “bubble up” to the end of the array.
- At the end of the kth pass, the k rightmost elements are in their final positions, so we don’t need to consider them in subsequent passes.

- Example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>24</td>
<td>27</td>
<td>18</td>
</tr>
</tbody>
</table>

 after the first pass: 24 | 27 | 18 | 28 |
 after the second: 24 | 18 | 27 | 28 |
 after the third: 18 | 24 | 27 | 28 |
Implementation of Bubble Sort

public class Sort {
 ...
 public static void bubbleSort(int[] arr) {
 for (int i = arr.length - 1; i > 0; i--) {
 for (int j = 0; j < i; j++) {
 if (arr[j] > arr[j+1])
 swap(arr, j, j+1);
 }
 }
 }
}

• One for-loop nested in another:
 • the inner loop performs a single pass
 • the outer loop governs the number of passes, and the ending point of each pass

Time Analysis of Bubble Sort

• Comparisons: the kth pass performs ______ comparisons, so we get \(C(n) = \)

• Moves: depends on the contents of the array
 • in the worst case:

 • in the best case:

• Running time:
Sorting by Exchange II: Quicksort

- Like bubble sort, quicksort uses an approach based on exchanging out-of-order elements, but it’s more efficient.
- A recursive, divide-and-conquer algorithm:
 - *divide*: rearrange the elements so that we end up with two subarrays that meet the following criterion:

 \[
 \text{each element in the left array} \leq \text{each element in the right array}
 \]

 example:

 \[
 12 \ 8 \ 14 \ 4 \ 6 \ 13 \quad \rightarrow \quad 6 \ 8 \ 4 \ 14 \ 12 \ 13
 \]

 - *conquer*: apply quicksort recursively to the subarrays, stopping when a subarray has a single element
 - *combine*: nothing needs to be done, because of the criterion used in forming the subarrays

Partitioning an Array Using a Pivot

- The process that quicksort uses to rearrange the elements is known as *partitioning* the array.
- Partitioning is done using a value known as the *pivot*.
- We rearrange the elements to produce two subarrays:
 - left subarray: all values \(\leq \) pivot
 - right subarray: all values \(\geq \) pivot

 equivalent to the criterion on the previous page.

 \[
 7 \ 15 \ 4 \ 9 \ 6 \ 18 \ 9 \ 12
 \]

 partition using a pivot of 9

 \[
 7 \ 9 \ 4 \ 6 \ 9 \ 18 \ 15 \ 12
 \]

 all values \(\leq 9 \) all values \(\geq 9 \)

- Our approach to partitioning is one of several variants.
- Partitioning is useful in its own right.
 ex: find all students with a GPA > 3.0.
Possible Pivot Values

- First element or last element
 - risky, can lead to terrible worst-case behavior
 - especially poor if the array is almost sorted

```
4 8 14 12 6 18  
```

- Middle element (what we will use)
- Randomly chosen element
- Median of three elements
 - left, center, and right elements
 - three randomly selected elements
 - taking the median of three decreases the probability of getting a poor pivot

```
4 8 14 12 6 18
```

Partitioning an Array: An Example

- Maintain indices i and j, starting them “outside” the array:

  ```
i = first - 1
j = last + 1
7 15 4 9 6 18 9 12
```

- Find “out of place” elements:
 - increment i until arr[i] >= pivot
 - decrement j until arr[j] <= pivot

  ```
7 15 4 9 6 18 9 12

i

j
```

- Swap arr[i] and arr[j]:

  ```
7 9 4 9 6 18 15 12
```
Partitioning Example (cont.)

from prev. page:

- Find:

 • Subarrays: left = \text{arr[first:j]}, right = \text{arr[j+1:last]}

and now the indices have crossed, so we return \(j \).

Partitioning Example 2

- Start (pivot = 13):

 and now the indices are equal, so we return \(j \).

 • Subarrays: left = \text{arr[first:j]}, right = \text{arr[j+1:last]}
Partitioning Example 3 (done together)

- Start (pivot = 5):

 \[i \quad 4 \quad 14 \quad 7 \quad 5 \quad 2 \quad 19 \quad 26 \quad 6 \]

- Find:

 \[4 \quad 14 \quad 7 \quad 5 \quad 2 \quad 19 \quad 26 \quad 6 \]

partition() Helper Method

```java
private static int partition(int[] arr, int first, int last) {
    int pivot = arr[(first + last)/2];
    int i = first - 1;  // index going left to right
    int j = last + 1;   // index going right to left
    while (true) {
        do {
            i++;
        } while (arr[i] < pivot);
        do {
            j--;
        } while (arr[j] > pivot);
        if (i < j) {
            swap(arr, i, j);
        } else {
            return j;   // arr[j] = end of left array
        }
    }
}
```
Implementation of Quicksort

public static void quickSort(int[] arr) {
 qSort(arr, 0, arr.length - 1);
}

private static void qSort(int[] arr, int first, int last) {
 int split = partition(arr, first, last);
 if (first < split)
 qSort(arr, first, split); // left subarray
 if (last > split + 1)
 qSort(arr, split + 1, last); // right subarray
}

Counting Students: Divide and Conquer

• Everyone stand up.

• You will each carry out the following algorithm:
 count = 1;
 while (you are not the only person standing) {
 find another person who is standing
 if (your first name < other person's first name)
 sit down (break ties using last names)
 else
 count = count + the other person's count
 }
 if (you are the last person standing)
 report your final count
Counting Students: Divide and Conquer (cont.)

• At each stage of the "joint algorithm", the problem size is divided in half.

• How many stages are there as a function of the number of students, n?

• This approach benefits from the fact that you perform the algorithm in parallel with each other.

A Quick Review of Logarithms

• \(\log_b n\) = the exponent to which b must be raised to get n
 • \(\log_b n = p\) if \(b^p = n\)
 • examples: \(\log_2 8 = 3\) because \(2^3 = 8\)
 \(\log_{10} 10000 = 4\) because \(10^4 = 10000\)

• Another way of looking at logs:
 • let's say that you repeatedly divide n by b (using integer division)
 • \(\log_b n\) is an upper bound on the number of divisions needed to reach 1
 • example: \(\log_2 18\) is approx. 4.17
 \(18/2 = 9\quad 9/2 = 4\quad 4/2 = 2\quad 2/2 = 1\)
A Quick Review of Logs (cont.)

- If the number of operations performed by an algorithm is proportional to $\log_b n$ for any base b, we say it is a $O(\log n)$ algorithm – dropping the base.
- $\log_b n$ grows much more slowly than n

<table>
<thead>
<tr>
<th>n</th>
<th>$\log_2 n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
</tr>
<tr>
<td>1024*1024 (1M)</td>
<td>20</td>
</tr>
</tbody>
</table>

- Thus, for large values of n:
 - a $O(\log n)$ algorithm is much faster than a $O(n)$ algorithm
 - a $O(n \log n)$ algorithm is much faster than a $O(n^2)$ algorithm
- We can also show that an $O(n \log n)$ algorithm is faster than a $O(n^{1.5})$ algorithm like Shell sort.

Time Analysis of Quicksort

- Partitioning an array requires n comparisons, because each element is compared with the pivot.
- **best case:** partitioning always divides the array in half
 - repeated recursive calls give:

 \[
 \begin{align*}
 \text{comparisons} & : n \\
 2^{(n/2)} & = n \\
 4^{(n/4)} & = n \\
 \cdots & \cdots \\
 1 & \cdots \\
 \end{align*}
 \]

 - at each "row" except the bottom, we perform n comparisons
 - there are _______ rows that include comparisons
 - $C(n) = ?$
 - Similarly, $M(n)$ and running time are both ________
Time Analysis of Quicksort (cont.)

- **worst case**: pivot is always the smallest or largest element
 - one subarray has 1 element, the other has \(n-1\)
 - repeated recursive calls give:

 \[
 \begin{array}{c}
 n \\
 1 \\
 1 \\
 1 \\
 \vdots \\
 1 \\
 2 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 n-1 \\
 \end{array}
 \begin{array}{c}
 n-2 \\
 \end{array}
 \begin{array}{c}
 n-3 \\
 \end{array}
 \begin{array}{c}
 \vdots \\
 \end{array}
 \begin{array}{c}
 1 \\
 1 \\
 \end{array}
 \]

 \[
 \sum_{i=2}^{n} i = O(n^2) .
 \]

 M(n) and run time are also \(O(n^2)\).

- **average case** is harder to analyze
 - \(C(n) > n \log_2 n\), but it's still \(O(n \log n)\)

Mergesort

- All of the comparison-based sorting algorithms that we've seen thus far have sorted the array in place.
 - used only a small amount of additional memory

- Mergesort is a sorting algorithm that requires an additional temporary array of the same size as the original one.
 - it needs \(O(n)\) additional space, where \(n\) is the array size

- It is based on the process of **merging** two sorted arrays into a single sorted array.
 - example:

 \[
 \begin{array}{cccc}
 2 & 8 & 14 & 24 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 2 & 5 & 7 & 8 & 9 & 11 & 14 & 24 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 5 & 7 & 9 & 11 \\
 \end{array}
 \]
Merging Sorted Arrays

- To merge sorted arrays A and B into an array C, we maintain three indices, which start out on the first elements of the arrays:

 \[\begin{array}{c}
 A & 2 & 8 & 14 & 24 \\
 j & \ \\
 B & 5 & 7 & 9 & 11 \\
 \end{array} \]

 \[\begin{array}{c}
 k & \ \\
 C & \ \\
 i & \ \\
 j & \ \\
 \end{array} \]

- We repeatedly do the following:
 - compare A[i] and B[j]
 - copy the smaller of the two to C[k]
 - increment the index of the array whose element was copied
 - increment k

\[\begin{array}{c}
 i & 2 & 8 & 14 & 24 \\
 j & \ \\
 A & \ \\
 B & 5 & 7 & 9 & 11 \\
 \end{array} \]

\[\begin{array}{c}
 k & \ \\
 C & \ \\
 i & \ \\
 j & \ \\
 \end{array} \]

Merging Sorted Arrays (cont.)

- Starting point:

 \[\begin{array}{c}
 i & 2 & 8 & 14 & 24 \\
 j & \ \\
 A & \ \\
 B & 5 & 7 & 9 & 11 \\
 \end{array} \]

 \[\begin{array}{c}
 k & \ \\
 C & \ \\
 i & \ \\
 j & \ \\
 \end{array} \]

- After the first copy:

 \[\begin{array}{c}
 i & 2 & 8 & 14 & 24 \\
 j & \ \\
 A & \ \\
 B & 5 & 7 & 9 & 11 \\
 \end{array} \]

 \[\begin{array}{c}
 k & 2 & \ \\
 C & \ \\
 i & \ \\
 j & \ \\
 \end{array} \]

- After the second copy:

 \[\begin{array}{c}
 i & 2 & 8 & 14 & 24 \\
 j & \ \\
 A & \ \\
 B & 5 & 7 & 9 & 11 \\
 \end{array} \]

 \[\begin{array}{c}
 k & 2 & 5 & \ \\
 C & \ \\
 i & \ \\
 j & \ \\
 \end{array} \]
Merging Sorted Arrays (cont.)

- After the third copy:

 \[
 \begin{array}{c|cccc}
 i & 2 & 8 & 14 & 24 \\
 \hline
 j & & & & \\
 B & 5 & 7 & 9 & 11 \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 k & \\
 C & 2 \\
 \end{array}
 \]

- After the fourth copy:

 \[
 \begin{array}{c|cccc}
 i & 2 & 8 & 14 & 24 \\
 \hline
 j & & & & \\
 B & 5 & 7 & 9 & 11 \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 k & \\
 C & 2 \\
 \end{array}
 \]

- After the fifth copy:

 \[
 \begin{array}{c|cccc}
 i & 2 & 8 & 14 & 24 \\
 \hline
 j & & & & \\
 B & 5 & 7 & 9 & 11 \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 k & \\
 C & 2 \\
 \end{array}
 \]

- After the sixth copy:

 \[
 \begin{array}{c|cccc}
 i & 2 & 8 & 14 & 24 \\
 \hline
 j & & & & \\
 B & 5 & 7 & 9 & 11 \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 k & \\
 C & 2 \\
 \end{array}
 \]

- There's nothing left in B, so we simply copy the remaining elements from A:

 \[
 \begin{array}{c|cccc}
 i & 2 & 8 & 14 & 24 \\
 \hline
 j & & & & \\
 B & 5 & 7 & 9 & 11 \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 k & \\
 C & 2 \\
 \end{array}
 \]
Divide and Conquer

- Like quicksort, mergesort is a divide-and-conquer algorithm.
 - **divide**: split the array in half, forming two subarrays
 - **conquer**: apply mergesort recursively to the subarrays, stopping when a subarray has a single element
 - **combine**: merge the sorted subarrays

```
12  8  14  4  6  33  2  27
```

Tracing the Calls to Mergesort

The initial call is made to sort the entire array:

```
12  8  14  4  6  33  2  27
```

Split into two 4-element subarrays, and make a recursive call to sort the left subarray:

```
12  8  14  4  6  33  2  27
12  8  14  4
```

Split into two 2-element subarrays, and make a recursive call to sort the left subarray:

```
12  8  14  4  6  33  2  27
12  8  14  4
12  8
```
Tracing the Calls to Mergesort

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

```
12 8 14 4 6 33 2 27
```

```
12 8 14 4
```

```
12 8
```

base case, so return to the call for the subarray \{12, 8\}:

```
12 8 14 4 6 33 2 27
```

```
12 8 14 4
```

```
12 8
```

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

```
12 8 14 4 6 33 2 27
```

```
12 8 14 4
```

```
12 8
```

base case, so return to the call for the subarray \{12, 8\}:

```
12 8 14 4 6 33 2 27
```

```
12 8 14 4
```

```
12 8
```
Tracing the Calls to Mergesort

merge the sorted halves of \{12, 8\}:

[Diagram showing merging process]

end of the method, so return to the call for the 4-element subarray, which now has a sorted left subarray:

[Diagram showing sorted subarray]

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

[Diagram showing recursive call]

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

[Diagram showing recursive call]

base case...
Tracing the Calls to Mergesort

return to the call for the subarray \{14, 4\}:

```
12  8  14  4  6  33  2  27
```

```
8 12 14 4
```

```
14 4
```

make a recursive call to sort its right subarray:

```
12  8  14  4  6  33  2  27
```

```
8 12 14 4
```

```
14 4
```

```
4
```

base case...

Tracing the Calls to Mergesort

return to the call for the subarray \{14, 4\}:

```
12  8  14  4  6  33  2  27
```

```
8 12 14 4
```

```
14 4
```

merge the sorted halves of \{14, 4\}:

```
12  8  14  4  6  33  2  27
```

```
8 12 14 4
```

```
14 4
```

```
4 14
```

Tracing the Calls to Mergesort

end of the method, so return to the call for the 4-element subarray, which now has two sorted 2-element subarrays:

\[
\begin{align*}
12 & \quad 8 & \quad 14 & \quad 4 & \quad 6 & \quad 33 & \quad 2 & \quad 27 \\
8 & \quad 12 & \quad 4 & \quad 14 \\
\end{align*}
\]

merge the 2-element subarrays:

\[
\begin{align*}
12 & \quad 8 & \quad 14 & \quad 4 & \quad 6 & \quad 33 & \quad 2 & \quad 27 \\
8 & \quad 12 & \quad 4 & \quad 14 & \quad \Rightarrow & \quad 4 & \quad 8 & \quad 12 & \quad 14 \\
\end{align*}
\]

end of the method, so return to the call for the original array, which now has a sorted left subarray:

\[
\begin{align*}
4 & \quad 8 & \quad 12 & \quad 14 & \quad 6 & \quad 33 & \quad 2 & \quad 27 \\
\end{align*}
\]

perform a similar set of recursive calls to sort the right subarray. Here's the result:

\[
\begin{align*}
4 & \quad 8 & \quad 12 & \quad 14 & \quad 2 & \quad 6 & \quad 27 & \quad 33 \\
\end{align*}
\]

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

\[
\begin{align*}
4 & \quad 8 & \quad 12 & \quad 14 & \quad 2 & \quad 6 & \quad 27 & \quad 33 \\
2 & \quad 4 & \quad 6 & \quad 8 & \quad 12 & \quad 14 & \quad 27 & \quad 33 \\
\end{align*}
\]
Implementing Mergesort

- One approach is to create new arrays for each new set of subarrays, and to merge them back into the array that was split.

- Instead, we'll create a temp. array of the same size as the original.
 - pass it to each call of the recursive mergesort method
 - use it when merging subarrays of the original array:

```
arr = [8, 12, 4, 14, 6, 33, 2, 27]
temp = [4, 8, 12, 14]
```

- after each merge, copy the result back into the original array:

```
arr = [4, 8, 12, 14, 6, 33, 2, 27]
temp = [4, 8, 12, 14]
```

A Method for Merging Subarrays

```java
private static void merge(int[] arr, int[] temp, int leftStart, int leftEnd, int rightStart, int rightEnd) {
    int i = leftStart;  // index into left subarray
    int j = rightStart; // index into right subarray
    int k = leftStart;  // index into temp
    while (i <= leftEnd && j <= rightEnd) {
        if (arr[i] < arr[j]) {
            temp[k] = arr[i];
            i++; k++;
        } else {
            temp[k] = arr[j];
            j++; k++;
        }
    }
    while (i <= leftEnd) {
        temp[k] = arr[i];
        i++; k++;
    }
    while (j <= rightEnd) {
        temp[k] = arr[j];
        j++; k++;
    }
    for (i = leftStart; i <= rightEnd; i++) {
        arr[i] = temp[i];
    }
}
```
Methods for Mergesort

- We use a wrapper method to create the temp. array, and to make the initial call to a separate recursive method:

  ```java
  public static void mergeSort(int[] arr) {
      int[] temp = new int[arr.length];
      mSort(arr, temp, 0, arr.length - 1);
  }
  ```

- Let's implement the recursive method together:

  ```java
  private static void mSort(int[] arr, int[] temp, int start, int end) {
  ```

Time Analysis of Mergesort

- Merging two halves of an array of size n requires \(2n\) moves. Why?

- Mergesort repeatedly divides the array in half, so we have the following call tree (showing the sizes of the arrays):

 - at all but the last level of the call tree, there are \(2n\) moves
 - how many levels are there?

 - \(M(n) = ?\)
 - \(C(n) = ?\)
Summary: Comparison-Based Sorting Algorithms

<table>
<thead>
<tr>
<th>algorithm</th>
<th>best case</th>
<th>avg case</th>
<th>worst case</th>
<th>extra memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertion sort</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Shell sort</td>
<td>$O(n \log n)$</td>
<td>$O(n^{1.5})$</td>
<td>$O(n^{1.5})$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>bubble sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>quicksort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>mergesort</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

- Insertion sort is best for nearly sorted arrays.
- Mergesort has the best worst-case complexity, but requires extra memory – and moves to and from the temp array.
- Quicksort is comparable to mergesort in the average case. With a reasonable pivot choice, its worst case is seldom seen.
- Use `sortCount.java` to experiment.

Comparison-Based vs. Distributive Sorting

- Until now, all of the sorting algorithms we have considered have been comparison-based:
 - treat the keys as wholes (comparing them)
 - don’t “take them apart” in any way
 - all that matters is the relative order of the keys, not their actual values.
- No comparison-based sorting algorithm can do better than $O(n \log_2 n)$ on an array of length n.
 - $O(n \log_2 n)$ is a lower bound for such algorithms.
- Distributive sorting algorithms do more than compare keys; they perform calculations on the actual values of individual keys.
- Moving beyond comparisons allows us to overcome the lower bound.
 - tradeoff: use more memory.
Distributive Sorting Example: Radix Sort

• Relies on the representation of the data as a sequence of \(m \) quantities with \(k \) possible values.

• Examples:

 \[
 \begin{array}{cc}
 \text{m} & \text{k} \\
 \text{integer in range 0 ... 999} & 3 & 10 \\
 \text{string of 15 upper-case letters} & 15 & 26 \\
 \text{32-bit integer} & 32 & 2 \text{ (in binary)} \\
 & 4 & 256 \text{ (as bytes)} \\
 \end{array}
 \]

• Strategy: Distribute according to the last element in the sequence, then concatenate the results:

 \[
 \begin{array}{cccccccc}
 33 & 41 & 12 & 24 & 31 & 14 & 13 & 42 & 34 \\
 \text{get:} & 41 & 31 & 12 & 42 & 33 & 13 & 24 & 14 & 34 \\
 \end{array}
 \]

• Repeat, moving back one digit each time:

 \[
 \begin{array}{c}
 \text{get:} \\
 \end{array}
 \]

Analysis of Radix Sort

• Recall that we treat the values as a sequence of \(m \) quantities with \(k \) possible values.

• Number of operations is \(O(n^m) \) for an array with \(n \) elements

 • better than \(O(n \log n) \) when \(m < \log n \)

• Memory usage increases as \(k \) increases.

 • \(k \) tends to increase as \(m \) decreases

 • tradeoff: increased speed requires increased memory usage
Big-O Notation Revisited

• We’ve seen that we can group functions into classes by focusing on the fastest-growing term in the expression for the number of operations that they perform.
 • e.g., an algorithm that performs $\frac{n^2}{2} - \frac{n}{2}$ operations is a $O(n^2)$-time or quadratic-time algorithm

• Common classes of algorithms:

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>$3\log_{10}n, \log_2n + 5$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>linear time</td>
<td>$5n, 10n - 2\log_2n$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>nlogn time</td>
<td>$4n\log_2n, n\log_2n + n$</td>
<td>$O(n\log n)$</td>
</tr>
<tr>
<td>quadratic time</td>
<td>$2n^2 + 3n, n^2 - 1$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>cubic time</td>
<td>$n^2 + 3n^3, 5n^3 - 5$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>exponential time</td>
<td>$2^n, 5e^n + 2n^2$</td>
<td>$O(c^n)$</td>
</tr>
<tr>
<td>factorial time</td>
<td>$3n!, 5n + n!$</td>
<td>$O(n!)$</td>
</tr>
</tbody>
</table>

How Does the Number of Operations Scale?

• Let's say that we have a problem size of 1000, and we measure the number of operations performed by a given algorithm.

• If we double the problem size to 2000, how would the number of operations performed by an algorithm increase if it is:
 • $O(n)$-time
 • $O(n^2)$-time
 • $O(n^3)$-time
 • $O(\log_2n)$-time
 • $O(2^n)$-time
How Does the Actual Running Time Scale?

- How much time is required to solve a problem of size n?
 - assume that each operation requires 1μsec (1×10^{-6} sec)

<table>
<thead>
<tr>
<th>time function</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>.00001 s</td>
<td>.00002 s</td>
<td>.00003 s</td>
<td>.00004 s</td>
<td>.00005 s</td>
<td>.00006 s</td>
</tr>
<tr>
<td>n^2</td>
<td>.001 s</td>
<td>.0004 s</td>
<td>.0009 s</td>
<td>.0016 s</td>
<td>.0025 s</td>
<td>.0036 s</td>
</tr>
<tr>
<td>n^3</td>
<td>.1 s</td>
<td>3.2 s</td>
<td>24.3 s</td>
<td>1.7 min</td>
<td>5.2 min</td>
<td>13.0 min</td>
</tr>
<tr>
<td>2^n</td>
<td>.001 s</td>
<td>1.0 s</td>
<td>17.9 min</td>
<td>12.7 days</td>
<td>35.7 yrs</td>
<td>36,600 yrs</td>
</tr>
</tbody>
</table>

- sample computations:
 - when $n = 10$, an n^2 algorithm performs 10^2 operations.
 $10^2 \times (1 \times 10^{-6} \text{ sec}) = .0001 \text{ sec}$
 - when $n = 30$, a 2^n algorithm performs 2^{30} operations.
 $2^{30} \times (1 \times 10^{-6} \text{ sec}) = 1073 \text{ sec} = 17.9 \text{ min}$

What's the Largest Problem That Can Be Solved?

- What's the largest problem size n that can be solved in a given time T? (again assume 1μsec per operation)

<table>
<thead>
<tr>
<th>time function</th>
<th>1 min</th>
<th>time available (T)</th>
<th>1 hour</th>
<th>1 week</th>
<th>1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>60,000,000</td>
<td>3.6 x 10^9</td>
<td>6.0 x 10^{11}</td>
<td>3.1 x 10^{13}</td>
<td></td>
</tr>
<tr>
<td>n^2</td>
<td>7745</td>
<td>60,000</td>
<td>777,688</td>
<td>5,615,692</td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>35</td>
<td>81</td>
<td>227</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>25</td>
<td>31</td>
<td>39</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

- sample computations:
 - 1 hour = 3600 sec
 that's enough time for $3600/(1 \times 10^{-6}) = 3.6 \times 10^9$ operations
 - n^2 algorithm:
 $n^2 = 3.6 \times 10^9 \rightarrow n = (3.6 \times 10^9)^{1/2} = 60,000$
 - 2^n algorithm:
 $2^n = 3.6 \times 10^9 \rightarrow n = \log_2(3.6 \times 10^9) \approx 31$